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Abstract

Amid COVID-19, many institutions deployed vast resources to test their members regularly for
safe reopening. This self-focused approach, however, not only overlooks surrounding communi-
ties but also remains blind to community transmission that could breach the institution. To test
the relative merits of a more altruistic strategy, we built an epidemiological model that assesses
the differential impact on case counts when institutions instead allocate a proportion of their
tests to members’ close contacts in the larger community. We found that testing outside the
institution benefits the institution in all plausible circumstances, with the optimal proportion of
tests to use externally landing at 45% under baseline model parameters. Our results were robust
to local prevalence, secondary attack rate, testing capacity, and contact reporting level, yielding
a range of optimal community testing proportions from 18% to 58%. The model performed best
under the assumption that community contacts are known to the institution; however, it still
demonstrated a significant benefit even without complete knowledge of the contact network.

1 Introduction

During any societal crisis, altruism has the potential to both satisfy moral duty and maximize
“utility,” leading to the best possible outcome for the greatest number of people [24]. It gains
newfound urgency and utility during a pandemic, when important decisions must be made around
allocating scarce resources, such as tests, therapies, and vaccines. In these instances more than ever,
our own interests—our health, safety, and well-being—become highly interdependent on those of
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others. Specifically for communicable diseases, testing is patently a public good because a positive
result can reduce others’ exposure and suffering by guiding isolation and quarantine practices.

Considerations of altruism and its efficacy have resurfaced in various COVID-19 response plans
worldwide. As the disease began to spread in the U.S., it forced schools and businesses to cease
in-person operations to mitigate its spread. To reopen, many of these institutions rushed to test
their own members, enacting several-times-per-week or even daily testing protocols in hopes of
preventing outbreaks [I5]. Countless institutions spent millions on internal testing programs. Some
universities, for instance, spent upwards of $1-2 million per week to test students and staff, often
using clinical-grade diagnostics [3, 20]. Meanwhile, communities surrounding these institutions
continued to struggle with ongoing clinical testing shortages and long delays for results. Even for
institutional testing programs that considered supporting community testing, legal and regulatory
barriers served as an additional deterrent from doing so.

To turn inward is a common and understandable approach during any crisis, but these expensive
self-focused testing programs still left institutions blind to community cases that could potentially
enter and spread like wildfire. For example, the NFL spent $100 million in total throughout the
2020-21 season on nearly one million tests for around 7,500 institutional members, administered
daily [19]. Yet, the League still experienced several outbreaks [22]. They were not alone; outbreaks
occurred within many similar testing programs, as the world witnessed prominently at the White
House in Fall 2020.

We are now faced with the question of whether the confined use of significant resources to enable
high-frequency testing within individual institutions alone is the most appropriate or effective way
to contain a virus. We hypothesized that if institutions test altruistically—that is, designate a
substantial portion of their testing capacity outside the institutions—it would not only be good for
their communities, but also for them. That is, there would be lower case counts in these institutions
themselves had their programs incorporated the testing of close contacts of its members into its
testing strategy, thereby detecting potential COVID-19 encroachment.

This paper seeks to ascertain whether a self-focused or an altruistic testing approach is a more
effective mitigation strategy. We provide a simple yet plausible epidemiological model to answer
this question, comparing results under varying local community prevalence levels, social mitigation
efforts, testing capacity, contact tracing adoption, and other parameters. We then discuss the
significant real-world implications of our findings concerning how institutions might better allocate
their available testing capacity

2 Epidemiological Model

To test our central claim, we built an agent-based epidemiological model of a hypothetical insti-
tution such as a workplace, school, or similar organization, accounting for interactions between
within the institution as well as between the institution and its surrounding community. For a full,
mathematically rigorous methods section, see Appendix A; here, we provide an intuitive, high-level
description. We modeled two distinct groups: (1) institution members and (2) all of their first-
degree close contacts outside the institution (hereafter referred to as the ‘periphery’). We assumed
that the periphery remains unchanged throughout the simulation. We then assessed the effect of
redistributing some of the institution’s testing capacity to the periphery, assuming for simplicity
that diagnostic testing in the community was negligibly rare before the institution’s intervention.
The model provided critical insight into the optimal proportion of tests to redistribute, given sev-
eral baseline assumptions about viral dynamics, prevalence, and more. Moreover, we assumed no
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Figure 1: (a) Example of a contact network representing members of the institution (large, purple
nodes) and their contacts in the periphery (small, orange nodes). Here we have 10 institution
members who make an average of 2 contacts within the institution and 2 contacts outside the
institution (variance = 3 for both distributions). (b) Flowchart of compartments and possible

state transitions.

knowledge of the institution and the periphery beyond what institutional administrators/health
officers might reasonably gather, such as the number of individuals, their frequent contacts, and
the number of tests conducted. As such, our model gives a general framework by which institutions
may assess possible testing protocols’ effectiveness.

Modeling viral propagation between an institution and its periphery requires detailed information
on how the agents involved interact with each other. A typical means to capture this information
is a simple undirected graph, in which two nodes (i.e., people) share an edge if and only if those
two people interact during the modeled period [I]. In a real-world context, we might construct
this graph by, for example, surveying members of the institution and its surrounding community
about their social interactions. For our model, however, we assumed knowledge only of the mean
and variance in contact numbers inside and outside the institution, which is likely more feasible to
estimate in most contexts.

We proceeded by modeling N agents who interact according to a random graph, in which node de-
grees follow an overdispersed Negative Binomial distribution fit to the observed mean and variance
(see Appendix A for the random graph generation algorithm) [12]. To account for institution-
periphery interactions, we assigned each agent a number of regular contacts made outside the
institution, drawn from a different Negative Binomial distribution. See Figure [1a] for an example
of a contact network generated via this method. This contact network may or may not be fully
known to the institution; we included a model parameter that captures the extent to which agents
report their contacts.

Having established a graphical contact network, we experimented with different testing strategies
to simulate the spread of COVID-19. As a first step, we assumed that the periphery exhibits
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an epidemiological steady-state, computed based on the proportion of tests distributed there. By
steady-state, we mean that the probability of an individual in the periphery being in a certain
epidemiological state remains constant over the course of the simulation (see Appendix C for a
more detailed treatment of this assumption). Within the institution, by contrast, we set the initial
infection rate low in comparison to the periphery, reflective of the fact that many institutions
returning to in-person activities have rigorous testing/quarantining protocols. For these agents,
we modeled viral states probabilistically via an adapted N-intertwined mean-field approximation
(NIMFA). In its original form, the NIMFA states that at a given time, the rate of transmission
from agent j to adjacent agent ¢ is proportional to the product of the marginal probabilities that
i is susceptible and that j is infectious [17, [I8]. This approach offers the flexibility to encompass
a wide range of epidemiological compartments while capturing the granularity of graphical contact
networks [13], 2], 25].

We then extended NIMFA to include testing-based interventions. First, we allowed the outgoing
transmission rate to vary between agents as a partial means of modeling overdispersion (with the
rest coming from the node degree distribution). To account for quarantine compartments, we set the
time-dependent rate at which agent j enters quarantine proportional to the product of the marginal
probabilities that j is infectious and that j receives a test. In turn, this latter probability depended
on the test distribution strategy, the probability that j had not previously tested positive, and the
number of adjacent nodes in j’s contact network. Finally, accounting for the fact that COVID-
19 cases exhibit an exposed (but not yet infectious) stage, we arrived at detailed compartmental
model, in which agents transition between epidemiological states as depicted in Figure

3 Results

We first applied our model to a mid-sized university (N = 10,000), using real data we gathered at
Colorado Mesa University (CMU). CMU established a testing program in summer 2020 initially
focused on university students and staff, and began supporting testing in the greater Mesa County
community later that year [4]. Contact tracers determined that the mean and variance of the
number of close contacts within the institution were 2.3 and 2.4, respectively, and outside the
institution were 0.2 and 1.9, respectively. They also found that the prevalence on campus at the
beginning of the Spring 2020 semester was approximately 1%, and that they planned to conduct
about 0.12 diagnostic tests per day per person. Supplementing our own data collection with that
of the local public health authority, we compiled a complete set of parameters specific to CMU and
ran the model accordingly (see Appendix D).

Our initial model results based on the CMU parameters provided strong evidence in support of an
altruistic testing strategy. We observed that the projected number of cases 40 days after the begin-
ning of the modeled period was lowest when CMU deployed 45% of its tests to the periphery (see
Figure . This strategy reduced the institutional case count by 25% as compared to a self-focused
testing strategy (i.e. 0% peripheral testing). However, our data from CMU-—which informed our
baseline parameters—were likely subject to several biases. While CMU administrators attested
that they believed the data to represent the student body fairly well, students who contracted the
virus (as every individual in our dataset did) were likely to have higher degrees of social interaction
than those who did not, leading to a positive bias. On the other hand, CMU informed us that
certain close contacts were likely not reported or otherwise not included in some cases, introducing
a negative bias.

Because of the potential limitations and biases of our CMU data, and because our model relies
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Figure 2: (a) Modeled cumulative cases over time at CMU under 5 different proportions p of
peripheral testing; (b) cumulative cases on day 40 as a function of the proportion of tests
deployed to the periphery, with the minimum at 45% peripheral testing

on numerous parameters that vary widely between institutions, we proceeded by demonstrating
robustness to and characterizing the influence of several factors on our results. These included four
key factors: local community prevalence, social mitigation efforts, testing capacity, and contact
tracing adoption (see Figure . Of course, there are more factors to assess, including distributions
in numbers of contacts, variance in transmissibility, and initial prevalence within the institution.
For an assessment of these factors, see Appendix B, or, for an interactive sensitivity analysis, visit
https://ispecht.shinyapps.io/covidl9-altruistic-testing/.

We first assessed sensitivity to the prevalence of COVID-19 among members of the periphery (Vj.).
While the 6% positivity rate in Mesa County in January 2020 was reflective of national statistics
at the time, different institutions faced significantly higher or lower caseloads in their surrounding
communities, representative of factors such as density and public health resources that varied from
place to place. Beyond that, rates have naturally varied over the course of the outbreak. We
observed that under higher values of Vj,, the effectiveness of redistributing tests to the periphery
grew, with the optimal proportion increasing from 24% when Vj. = 2% to 58% when V. = 16% (see
Figure . This finding is unsurprising, given that the probability of any individual test detecting
a case in the periphery grew with higher values of Vj,. In turn, the resulting quarantine (of both
the peripheral member and their contact in the institution) minimized the probability of the virus
breaching the institution.

Next, we turned to social mitigation efforts. While several model parameters capture these efforts,
we focused on the secondary attack rate (SAR) for institution members—that is, the probability of
transmission between an infectious individual and a susceptible one. Individuals may decrease the
proportion of contacts they infect by, for example, wearing masks and socially distancing—thereby
decreasing the observed SAR. Many institutions employ different mitigation measures, but altruism
proved an effective strategy under a wide range of values for the observed SAR among institution
members, denoted p, (see Figure . For p, = 0.05, the optimal proportion of peripheral testing
lay at 54%; this proportion decreased to 25% when p, = 0.4. This again fell in line with our
expectations, as for higher p, values, a single case within the institution had much greater potential
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Figure 3: Cumulative cases on day 40 as a function of the proportion of tests deployed to the
periphery under different values of (a) the initial prevalence in the periphery, Vj,; (b) the
secondary attack rate among institution members, 1,; (c) the tests-per-person-per-day ratio, c,
and (d) the proportion of contacts traced w


https://doi.org/10.1101/2021.03.16.21253669
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2021.03.16.21253669; this version posted March 25, 2021. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

to spread, limiting the effectiveness of peripheral testing and lowering the optimal proportion of
tests to be administered outside the institution. On the other hand, when 1, was low, a single case
within the institution likely did not give rise to an outbreak. This made institutional testing less
essential, leaving more capacity to establish a ‘barrier of defense’ in the periphery to prevent cases
from breaching the institution in the first place.

We then focused on ¢, the number of tests administered by the institution per day per person. An
intuitive way to think about this parameter is that on average, an institution member receives a
diagnostic test every 1/c days. We found that test redistribution to the periphery remained an
effective strategy even for relatively low values of ¢, such as ¢ = 10% (see Figure . The optimal
proportion of peripheral testing stayed relatively constant, ranging from about 38% to 48% for
values of ¢ between 45% to 10%. This result reflected the fact that under our baseline CMU
parameters, institution members average about 10 times more contacts within the institution than
outside it. As such, the size of the periphery was small, limiting the possible pathways for the
virus to breach the institution. Our results tell us that even with limited testing resources, tests
would best be used to prevent the virus from entering the institution via these pathways. Note
that we also investigated different distributions of contacts within and outside the institution; for

an analysis, see Appendix B, Figures

Finally, we accounted for the fact that institution members may not report all of their contacts in the
periphery, or may have contacts that the institution cannot test due to factors such as geographic
disparity. We captured the proportion of reported, testable contacts with the parameter w. As
our results suggest, contact reporting needed not be perfect for peripheral testing to help curb
viral spread (see Figure [3d)). Even if institution members reported only 30% of their contacts, the
optimal proportion of peripheral testing lay at 18%; this proportion increases to 45% as the fraction
of reported contacts grows to 100%. This result makes sense because the most socially-active—and
therefore riskiest—members of the institution had many peripheral contacts, at least some of which
will likely be known to the institution even under imperfect contact tracing (e.g. familial contacts).
A positive test from even just one of these contacts would send the original institution member into
quarantine, allowing the ‘barrier of defense’ strategy to remain an effective means of protecting the
institution.

We note that the model exhibited some slight variance between runs due to the stochastic nature
of the contact network generation step. While such stochasticity slightly affected numerical values
for case counts between model runs, the shapes of the curves in Figures remained consistent.

4 Discussion

Our model supports our hypothesis that the altruistic approach—in which institutions test beyond
their walls—is the most effective protection strategy. In every instantiation of the model, we
observed that deploying some proportion of diagnostic tests to the periphery significantly reduces
the cumulative caseload at the end of a 40-day period. The optimal proportion of peripheral testing
was 45% under baseline parameters and ranged from 18% to 58% under different levels of local
prevalence, social interaction, testing, and contact tracing.

Our methods serve as a general framework for modeling one specific population within the context
of another, and we hope that further research may help refine the intricacies of such dynamics.
We also hope our work provides justification for institutions to consider implementing an altruistic
testing strategy, and for legal and regulatory bodies to create a path for them to do so. We
encourage institutions to partner with local public health authorities to support testing or connect
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members of the periphery with the appropriate testing provider, as Colorado Mesa University and
the University of California Davis have done [4], [§].

Our results urge a fundamental rethinking of how institutions with substantial testing capacity
approach safety amid outbreaks. Epidemics are one of those rare instances where a seemingly
selfless approach is, in fact, the most self-serving: institutions must help test beyond their walls to
stay safe within them.
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A Methods

Overview. Here we derive the full set of modeling equations we used to conduct our analysis.
We construct an agent-based epidemiological model (ABM) with known contact network in order
to compare the effectiveness of various testing regimes at controlling viral spread within an insti-
tutional context. Specifically, we model two groups of agents—the members of an “institution”
(such as a school, business, etc.) and all of their close contacts outside the institution (henceforth
referred to as the “periphery”)—and assume the institution has access to a disproportionately-
large tests-per-person-per-day ratio in comparison to the periphery. We then analyze the effect of
redistributing some of the institution’s testing capacity to the periphery. The model provides key
insight into the optimal proportion of tests to be redistributed in such a way. More broadly, the set
of equations we provide serve as a general framework by which institutions may assess the relative
effectiveness of various testing protocols.

We simulate an institution with N agents that interact according to a random graph whose node
degree distribution reflects known contact patterns of the institution’s members. Let M; be a
random variable representing the number of edges connected to node i. To reflect the overdispersion
typically associated with node degrees in social contact networks, we assume that the M;’s are i.i.d.
negative binomial with mean p and variance o2 [12]. We can express M; as a function of the
activity levels a = (aq,...,an) of the N individuals—parameters that represent sociability, whose
distribution we will derive. Assuming proportionate mixing, we define €;;, the probability of nodes

1 and j sharing an edge, to be
a;G

Z]kvzl ag
for i # j, and O for ¢ = j. Assuming that ¢;; is small in general (an assumption we will justify
below), we have that X;|A = a ~ Pois(a;), where ~ means “approximately distributed as.” So,
we now need to choose a distribution for the A;’s to ensure that the marginal distribution of X;
is Negative Binomial. Since the Negative Binomial distribution may be expressed as the Poisson
distribution compounded with the Gamma distribution, we model the A;’s as i.i.d. Gamma(a, \)
random variables. To solve for the parameters, we have that

e’L]

(6%
p = E[X;] = E[E[X;[A]] = E[A;] = +
o2 = Var[X,] = E[Var[X;|A]] + Var[E[X;|A]] = E[A,] + Var[4;] = % + %
Thus,
2
a = a and A= L.
o2 —p o2 —p

Finally, the assumption that a;a; < ) éVZl ay, follows from the Cauchy-Schwarz inequality. We have
that:

A A 1
Elej;] =E Nij < E[A?AJQ]E v 3|
Zk:l Ap (Zk:l Ap)
For the first expectation within the radical, we have that
2 2
2421 _ 2 2 _ 22 _ a1+ 0a)
B[4} 43] = B[AZJE[4}] = B2 = 10
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For the second expectation, let S = Z]kvzl Ag. Then S ~ Gamma(Na, \). Therefore

I ————

so long as Na > 2. Thus,

Na—1)(Na—2) M(Na—2)2  MNa-—2)
which approaches 0 as N — oo.

Thus, we may generate our contact network by drawing the a;’s from the Gamma(ca, \) distribution,
then drawing a Bern(e;;) random variable for each unordered pair of nodes {i, j} to generate the
edges of the graph stochastically. Note that the probability of ¢;; exceeding 1 is small because
P(e;j > 1) < Elej;] by Markov’s inequality; in practice, this never occurred for all parameter
combinations studied in this paper.

For contacts outside the insitution, we assume for simplicity that no two agents share a peripheral
contact. Letting Y; be the number of close contacts in the network of agent ¢ outside the institution,
we model the Y;’s as i.i.d. Negative Binomial random variables with mean s, and variance o?2.
Contact reporting outside the institution, however, is likely imperfect—and even among reported
contacts, some may be unwilling to receive a diagnostic test. To address this, we introduce the
parameter w, which represents the probability of any given contact outside the institution being
traced and testable by the institution. Then, letting Z; be the number of traced and testable
contacts made by agent ¢ outside the institution, we model Z;|Y; ~ Bin(Y;,w). Moving forward, we
will treat the contact network as fixed, and thus we will use the notations x,y, and z to represent
the values taken on by random variables X, Y, and Z. We refer to the set of all traced and testable

people outside the institution as the “known periphery”

Viral propagation model. To capture the structure of a given graphical contact network, we
take an agent-based approach for members of the institution; for the periphery, we implement a
compartmental model that describes the population at large. Moreover, we assume that the preva-
lence in the periphery exhibits an epidemiological steady-state, a somewhat atypical assumption
that we will explain further below and test as part of our sensitivity analysis (see Figure and
Appendix B). Finally, we include inter-compartmental “flux” terms in our modeling equations to
account for the propagation of cases from the periphery into the institution.

We begin with the compartmental model for the periphery. We model five compartments: Sus-
ceptible (S.), Exposed (E.), Infectious (Vi), Exposed/Infectious and Quarantined (Q.), and Re-
covered/Deceased (R.). Note that from now on, we will use the lower star notation for vari-
ables/parameters specific to the periphery. For our purposes we take exposed to mean “contracted
the virus, but not yet infectious,” and assume that every agent enters the exposed stage before
entering the infectious stage [6]. Let v and d be the recovery rate and exposed-to-infectious tran-
sition rates, respectively. Let ¢ be the tests-per-person-per-day ratio, of which a proportion p are
designated for members of the known periphery. Assuming for simplicity that each member of the
known periphery is equally likely to be tested on any given day, we may set 7., the daily probability
of an agent in the known periphery being tested, as follows:

pecN
= —. 1
U S (1)
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We only need to compute the steady-state probabilities of being exposed and infectious in the
periphery, since the other states do not substantively impact our model. We assume that prior to
interventions, i.e. testing and quarantine, the steady-state probability of being infectious is V.
Given the transition rates, we may then assume that FEjy,., the steady-state probability of being
exposed prior to interventions, is 7V« /0. Finally, since vV, recover per day, it follows that vVj.
must transition from susceptible to infected each day to maintain the steady state.

Next, we include the effects of interventions, which affect only the known periphery. COVID-19
diagnostic tests have been shown to be highly reliable during the infectious stage of illness, but
often fail to detect the extremely low viral loads present during the exposed staged [6]. As such,
we let ¥ g be the test sensitivity during the exposed stage and 1y be the test sensitivity during the
infectious stage. Modeling the exposed-to-quarantined and infectious-to-quarantined rates as n,¢¥ g
and 7,9y, respectively, we arrive at the following system of differential equations:

) _ 5m.0) — i () +1V0 @
W) _ ) et + 550 ®

where F,(t) and V. (t) are the probabilities of an individual in the known periphery being exposed
and infected at time ¢, respectively. Setting both derivatives equal to 0 and solving in terms of Vjy,
we obtain the steady states, which we denote Foo« and Vo, respectively:

Vo
Foy=——"-——
> NYE + 0
T (v + ) (it +6)

(4)
()

In the “unknown periphery” (i.e. members of the periphery who institution members do not
report), we may assume that the the probabilities of being exposed and infected are Fy. and Vp,
respectively.

We now turn our focus to the institution. Given the level of granularity provided by contact net-
works, along with the difficulty in capturing agent-specific conditions through more traditional
epidemiological methods (i.e. compartmental modeling for the population at large), we model the
state of each agent in the institution probabilistically using N-Intertwined Mean-Field Approx-
imation (NIMFA) [I7]. A widely-used and computationally-efficient approximation for the true
stochastic process, the NIMFA approximates the joint probability of some agent ¢ being susceptible
and some other agent j being infectious as the product of the marginals. In its original form, the
NIMFA states that:

) N
W) — o(t) + 50D 1850 ©
j=1

where v;(t) and s;(t) are the probabilities of agent 7 being infectious and susceptible at time ¢,
respectively; 1;; is the indicator of an edge between ¢ and j; v is the recovery rate (as before), and
B; is the probability of transmission between infectious agent j and a susceptible agent per unit
time.
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We allow for heterogeneity in 3 = (51, ..., 8 ), where M is the total number of agents in both the
institution and the periphery, to account for part of the overdispersion in COVID-19 transmission
(the other part coming the node degree distribution in our graphical model). To derive 3, we begin
by drawing p = (p1,...,pam), the (heterogeneous) secondary attack rate specific each agent, from
a Beta distribution with mean p, and variance 02. Since we defined p; to be the probability of
transmission over the course of agent i’s infection, and since the probability density of recovery at
time ¢ is equal to v exp(—~t), we may write the total probability of transmission p; in terms of the

daily probability of transmission j;:

pi— / T - (- By exp(—yt) dt. (7)

And, solving for ;, we obtain:

Bi=1-exp (-2 ). 0

Note that in the case of COVID-19, limited literature exists on the variation in the secondary
attack rate between agents, and the extent to which this phenomenon influences overdispersion is
not known. As such, our distribution of the p;’s will be weakly informed, so we assess sensitivity
to p, and ag in Appendix B.

Having solved for 3, we now adapt the NIMFA to include additional transmission pathways and
compartments for each individual agent while staying true to the original idea. Within the in-
stitution, we model seven compartments: Susceptible (S), Exposed (E), Infected (V'), Recov-
ered/Deceased (R), Susceptible and Quarantined (U), Exposed and Quarantined (W), and Infected
and Quarantined (Q). See below for a diagram of all possible state transitions:

Susceptible (S) Exposed (F) Infectious (V) Recovered/Deceased (R)

/

For any of the above states Z € {S,E,V,R,U,W,Q}, we use the notation z;(t) to mean the
probability that individual ¢ is in state Z at time f. Since our agent-based model applies only to
members of the institution, we allow ¢ to range over integers only from 1 to N, inclusive. Revising
(6) to account for the “exposed” compartment and for each agent’s outside-the-institution contacts,
and then applying a Poisson approximation (to avoid the fact that the sum of the transmission
probabilities may exceed 1), we obtain:

Susceptible and Exposed and Infectious and
Quarantined (U) Quarantined (V) Quarantined (Q)

) M
di;it) = —5ei(t) + Si(t) 1-— exXp | — ; ]lijﬁjvj (t) (9)
dvéit) = —yv;(t) + de;(t). (10)

Note that for j > N, we take v;(t) to equal Vi, if j is a member of the known periphery and V.,
otherwise. For ease of notation, from now on we let

M
Bi(t)=|1—exp | — Z Li;B5v;(t)
j=1
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Next, we revise (9) and (10) to include the impact of quarantine due to a positive test result. To do
so, we first need to decide on a prioritization for diagnostic tests within the institution. Let 7;(t)
be the probability that agent ¢ is tested at time . It is natural that we model this probability as
roughly proportional to the number of known close contacts agent ¢ has (both within and outside
the institution) times the probability that agent i has not already been identified as a positive
case. However, we also need to satisfy that the number of tests administered within the institution
per unit time always sums to (1 — p)cN, and choosing a constant of proportionality to satisfy this
condition may cause 7;(t) to be greater than 1 for certain i. As such, we instead model 7;(t) as

ni(t) =1 —exp ( —a(t)(xz; + 2i)(si(t) + e;(t) + vl(t))> (11)

with a(t) chosen to satisfy

N
Zm(t) = (1 —p)eN. (12)

Note that no closed-form solution for a(t) exists; in practice, we compute it numerically for each
discrete timestep At. Just as in the model for the periphery, we then set the exposed-to-quarantined
and infectious-to-quarantined rates (due to a positive test result) equal to n;(t)yp and n;(¢t)yy,
respectively. Now accounting for the quarantine rate due to a positive test result, we obtain:

deoiit) = —dei(t) — mi(t)ypei(t) + si(H)Bi(t) )
dv£§t> = —vi(t) — ni () v vi(t) + Oei(t) (14)
d“(;ift) = —0w;(t) 4+ ni(t) e (t) (15)
dqét) = —74i(t) + ni(£)Yvvi(t) + dwi(t). 10

Finally, we include the effect of quarantine due to a positive test result from an agent’s first-degree
contact. Again applying Poisson approximation to the events of each institutional agent’s first-
degree contacts testing positive, we may write the time-dependent rate I';(¢) at which agent 4
enters quarantine due to a known neighbor testing positive as:

N
Ti(t) = | 1= exp [ —nuzi(¥pBoox + ¥y Vo) — Y Lijni(t) (Ve (t) + yu;(t)
j=1
Revising (13-16) once again and adding in the remaining states, we arrive at our complete set of

differential equations:

dsi (t)

g = siOLi(t) = si(®)Bi(t) + m(H)ui(?) (17)
de(;it) = —ei(O)Ti(t) — dei(t) — mi(t)pei(t) + 5i(t)Bi(t) (18)
Q) — o OT) — y0i(t) — mOiv(®) + be) )
du(; it) = —ni(t)ui(t) + si(t)T4(t) (20)
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dwi (t)

o = owit) + ei(OTi(t) + ni(t)vEei(t) (21)
dq(;it) = —vqi(t) + vi(O)T3(t) + ni(O) Yy vi(t) + dw;(t) (22)
de) = yui(t) + vai(t). (23)

For the analyses conducted in this paper, we solved this system of differential equations using a
discrete timestep of At =1 day.

B Further Sensitivity Analysis

Here we build on the analysis in the Results section by assessing sensitivity to u, o2, s, 02, ag,

and vq, using a one-at-a-time approach. As in the Results section, for each parameter, we selected
a range of possible values under which to plot cumulative cases on day 40 as a function of p (the
proportion of tests deployed outside the institution). We found that the strategy of deploying at
least some proportion of tests to the periphery is robust to a wide variety of parameter combinations
(see Figure S1). Note that we observed some noise in our analyses of ji, and o2 due to the skewness
in the distribution of peripheral contacts; nonetheless, we still observed a clear trend in the day-40
cumulative case count as a function of peripheral testing under each values of y, and o2 (see Figures

514 51d).

C Peripheral Steady State

In our epidemiological model, we made the critical assumption that the periphery exhibits an
epidemiological steady state. The rationale behind this assumption is that over the course of the
COVID-19 pandemic, overall trends in cases (at the county, state, and national levels alike) have
fluctuated based on a number of factors outside the control of individual institutions. As such,
we chose not to model any change in the extra-institutional prevalence, but instead assumed it to
be constant and then assess sensitivity to this factor (see Figure [3a)). Here we provide additional
analysis of how long after the implementation of testing in the periphery it takes in order to
achieve such a steady state. Numerically approximating F,(¢) and V,(¢) based on equations (2-3),
we obtained the curves shown in Figure which provide estimates for the probabilities of being
exposed and infectious in the periphery as a function of the duration of testing. We set all other
relevant parameters to their baseline values (see Appendix D).
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Figure S1: Cumulative cases on day 40 as a function of the proportion of tests deployed to the
periphery under different values of (a) the mean number of institutional contacts, u; (b) the
variance in institutional contacts, o2; (c) the mean number of peripheral contacts, ju.; (b) the
variance in peripheral contacts, o2; (e) the variance in the secondary attack rate, og; and (f) the
initial prevalence at the institution, vy (assumed to be uniform among agents)
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Figure S2: Modeled probabilities of an agent in the periphery being (a) exposed and (b)
infectious over time starting with the implementation of community testing at time 0, under 5
different proportions p of peripheral testing.

D Model Parameters

See below for a table of model parameters, explanations, values, and citations. Parameters with no
citation are estimated based on data gathered at CMU. Parameters marked * are weakly-informed.

Symbol | Description Value Citation
N Number of people in the institution 10,000
L Mean number of contacts per agent at the institution 2.3
o? Variance in number of contacts per agent at the insti- | 2.4

tution
L Mean number of contacts per agent outside the institu- | 0.23

tion
o2 Variance in number of contacts per agent outside the | 1.8

institution
w Proportion of contacts made outside the institution | 1

known to testing authorities
Lo Mean secondary attack rate 0.16 [16]
O'z Variance in secondary attack rate among agents 0.01 *
v Recovery rate 0.1 [11]
0 Exposed-to-infectious transition rate 0.2 [6]
Vo Initial probability of infection within the institution, for | 0.01 (uniform)

each agent
Vos Initial probability of infection outside the institution 0.06
c Number of tests per day per person 0.12
Vg Test sensitivity during the exposed stage 0.02 [10]
Yy Test sensitivity during the infectious stage 1 [10]
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