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ABSTRACT 
 
There is limited understanding of the epigenetic drivers of tumor evolution in hepatocellular 
carcinoma (HCC). We quantify epigenetic intra-tumoral heterogeneity (ITH) using regional 
enhanced reduced-representation bisulfite sequencing (eRRBS) DNA methylation data from 47 
early stage, treatment-naive HCC biopsies across 9 patients. Integrating these data with matching 
RNAseq, targeted DNA sequencing, tumor-infiltrating lymphocyte (TIL) and hepatitis-B viral (HBV) 
expression, we computed regional differential methylation (DM) ITH signatures across 19,327 
promoter regions, and 654,133 CpG islands, while overlapping with known methylation age 
marker genes (240/354). We found substantial ITH signatures in promoter and enhancer sites 
across 4/9 patients highlighting novel molecular pathways of tumor progression not otherwise 
detectable from RNA analysis alone. Additionally, we identify an epigenetic tumoral aging 
measure that reflects a complex tumor fitness phenotype as a potential proxy for tumor evolution. 
In order to compute clinical associations with epigenetic tumoral age, we use 450k array data 
from 377 HCC patients in the TCGA-LIHC single-biopsy cohort to calculate tumoral age and find 
evidence implying that epigenetically old tumors have lower fitness yet higher TIL burden. Our 
data reveal a novel, unique epigenetic ITH axis in HCC tumors that furthers our understanding of 
tumor evolution and may serve as a potential avenue for enhancing patient stratification and 
treatment. 
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INTRODUCTION 
 
Hepatocellular carcinoma (HCC) is a common yet lethal form of liver cancer that has one of the 
fastest growing incidence rates globally (1,2). HCC typically arises in patients with a background 
of chronic liver disease, such as hepatitis B or C (HBV or HCV) infection, alcohol use disorder, 
and nonalcoholic steatohepatitis (NASH). Despite recent improvements in systemic therapies, 
drug resistance remains a challenge and median survival in advanced stages is still less than two 
years. We and others have shown significant molecular intra-tumoral heterogeneity (ITH) in 30-
40% of HCC (3–5). This includes complex mixtures of subclonal cancer populations evolving over 
time and interacting with non-tumoral stromal and immune cells in the microenvironment (6). This 
process of tumor clonal evolution in the context of the microenvironment is a key molecular feature 
underlying drug resistance in HCC.  
 
To date, there have been relatively few studies that examine HCC ITH leveraging experimental 
designs with multi-regional sampling from the same tumor (3–7). These studies have found that 
increased ITH correlates with worse prognosis and clinical outcomes in patients with HCC (3). 
Additional studies have generally found that driver mutations in genes such as TERT promoter, 
TP53, and CTNNB1 were trunk events, present in all regions of the tumor (4,7). We have recently 
carried out a study leveraging bulk and single-cell RNA-sequencing, SNP array, and TCR-seq 
profiling across multi-regional samples of 14 HCC patients, finding distinct ITH-dependent 
patterns of spatio-temporal interactions between HCC and immune cells along with strong 
evidence of spatially heterogeneous immunoediting (3). However, recent studies have also found 
evidence for profound immune modulation of clonal evolution and evidence of ITH arising from 
gene expression, indicating that HCC ITH cannot be fully characterized through mutation data 
alone (3,4). 
 
It is crucial to better understand the molecular drivers of HCC ITH in order to identify new 
prognostic and treatment prediction biomarkers, develop therapies, and counter drug resistance. 
One notable yet relatively underexplored aspect of ITH in HCC is the role of epigenetics and, in 
particular, DNA methylation. Previous work examining the epigenetic drivers of HCC have found 
evidence of promoter hypermethylation of tumor suppressor genes as an important mechanism 
for tumorigenesis and disease progression in HCC and some of its background etiologies (8,9). 
We detected aberrant methylation patterns in HCC that can be distilled into signatures predictive 
of patient prognosis and survival, indicating a potentially useful avenue for biomarker discovery 
(8). A previous study examined DNA methylation using multi-regional sampling in a small cohort 
of HCCs and reported significant epigenetic heterogeneity among tumors, in contrast to strong 
interindividual homogeneity of nonmalignant liver tissue. Numerous studies in single-biopsy and 
ITH contexts have tied aberrant DNA methylation to cancer-related processes involved with HCC 
tumor oncogenesis, proliferation, and invasiveness (4,8–10).  
 
However, the majority of methylation work in HCC and HCC ITH uses array-based Illumina 450k 
data, therefore limiting the discovery of epigenetic ITH arising from methylation in novel genomic 
loci such as enhancers and CpG open shelf, shore, and open sea positions (11–13). A key aspect 
of methylation data is its ability to predict molecular epigenetic age, which measures proxies of 
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biological age of a tissue as opposed to its chronological age (14). These so-called epigenetic 
clocks have been extensively validated in normal tissue and used to examine the biological aging 
process and its relation to human diseases, including cancer (14–16). However, the role of 
methylation age in HCC and its evolutionary process has yet to be established.  
 
In order to build on our prior work and further investigate the unique contributions of DNA 
methylation to HCC evolution and ITH, here we use enhanced reduced representation bisulfite 
sequencing (eRRBS) to obtain methylation profiles from multiregional biopsies of 9 patients from 
our previous ITH dataset (3). By adding another layer of methylation data to existing extensive 
molecular ITH profiles, we explicitly compare ITH signatures and molecular pathways derived 
from RNA expression and DNA methylation data and find key differences. In particular, we 
leverage well-known associations between conserved methylation signatures and chronological 
patient age to derive estimates of differentially aging tumoral regions that reflect novel aspects of 
tumor evolution and heterogeneity not captured by expression profiling alone (14–16). Integrating 
the TCGA-LIHC (HCC) cohort with our data, we find a differential tumoral aging profile that 
strongly associates epigenetically younger TCGA-LIHC tumors with greater DNA clonal diversity, 
tumor mutation burden (TMB), tumor fitness  (poorer patient prognosis), and lower tumor 
infiltrating lymphocyte (TIL) burden. The differential regional aging of tumors is a novel axis of 
epigenetic ITH (eITH) which may reflect a complex tumor fitness phenotype, serving as a useful 
proxy for tumoral evolution and ultimately treatment response stratification of patients.  
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RESULTS 
 
Spatial tumor methylation profiling via multi-regional sampling  
We performed enhanced reduced representation bisulfite sequencing (eRRBS) (17) on 47 
samples from 9 HCC patients, including tumor (35 samples) and adjacent non-tumoral regions 
(12 samples, Fig 1A). On average, we analyzed a median of 5 samples per patient. All patients 
were treatment-naive at the time of the surgical resection. Most patients were male (67%) with a 
median age of 61 years, median tumor size of 6.5 cm, and about 55% (5/9) had hepatitis B 
infection as the most common underlying liver disease (Fig 1B).  Drawing on our previous 
characterization of these samples (3), tumor purity was determined using SNP-array data via 
ASCAT (version 2.4) and histological examination.   
 
Since eRRBS data offers a granular view of methylation status at specific CpG sites within and 
even outside promoter regions, we designed our regional methylation analysis to take advantage 
of both promoter-specific and site-specific sensitivity. First, we performed a site-specific analysis 
considering only well-covered CpG sites regardless of proximity to a transcriptional start site 
(TSS). Second, we aggregated sites within some proximal region of a TSS and conducted a gene-
wise promoter-based analysis that facilitates a reasonable comparison to both 450k methylation 
array data and its derived methylation age, as well as bulk RNA-seq transcriptional profiling (Fig. 
1C).  
 
Regional epigenetic ITH (eITH) reveals novel differential methylation associations 
Using the normalized site-specific methylation data, we performed a principal component analysis 
(PCA) analysis in order to quantify the leading axes of variation driving patient and regional 
specific DNA methylation signatures (Fig. 2A). While the first two principal components 
collectively explain only 26% of the total variance, the leading principal component separates 
tumor from adjacent normal samples and broadly stratifies tumors by degree of tumor-infiltrating 
lymphocytes (TIL), defined by VDJ read burden normalized for library size from RNA-seq. While 
there is strong evidence of patient-specific clustering, there are also outlier regions which 
demonstrate that the relative scale of eITH can overwhelm patient-specific variance. The second 
principal component also reveals that patient 8 is a strong outlier. All of these findings also hold 
using the promoter-specific methylation data (Fig 2A, Supp Fig 1A).       
 
In order to directly derive multi-regional signatures reflecting epigenetic ITH (eITH) across 
patients’ tumors, we carried out within-patient differential methylation analyses. Patients 2, 3, and 
10 displayed significant eITH (Fig 2B, Fig 3A), while patient 4 revealed the highest ITH with 
region H4.c having the highest relative number of differentially methylated promoters (1993 DM 
promoters, FDR < 0.05). Patient 6, previously described as being heavily immune infiltrated (3), 
displayed only comparatively minor eITH DM (126 DM promoter regions, FDR < 0.05, Fig 3A) 
despite extensive immune heterogeneity across the different tumor regions found through TCR 
sequencing (3). Although increased sampling rate (number of biopsies per tumor) increases 
power to detect eITH, we noticed that the most densely sampled patient (P9, nbiopsies = 6), had 
very few eITH DM loci (Fig 2B, Fig 3A). This suggests that our average sampling rate of 5 
biopsies per tumor was sufficient to capture the leading effect of eITH. Altogether, these data 
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suggest significant eITH in 4 out of 9 patients, and multiple, separate axes of eITH that are in part 
described by DM profiling and principal component analysis.  
 
In order to compare regional eITH signatures with those associated with HBV viral expression, 
tumor-infiltrating-lymphocyte (TIL) burden, and HCC vs adjacent normal, we leveraged our 
previously reported transciptome profiling data. We identified site and promoter level eITH DM 
signatures driven by TIL, tissue type (normal vs HCC tumor), and HBV viral expression (Fig 2B, 
Supp Fig 1B). As expected, the HCC tumor-specific signature had the most DM loci (184,504 
sites and 5,458 promoters, FDR < 0.05; Fig 2B, Supp Fig 1B), followed by TIL-related sites and 
promoters, with the HBV-driven signatures having the fewest sites or promoters (Fig 2B, Supp 
Fig 1B). In all global DM signatures, there is a bias towards hypomethylation (Fig 2B, Supp Fig 
1B). We identified overlapping significant DM sites among global and within patient regional eITH 
DM signatures in order to examine the contribution of general cancer or immune specific 
methylation patterns to regional methylation gradients. Overall, we observed unexpectedly little 
overlap in DM sites among global and regional comparisons (Fig 2C) and among eITH DM profiles 
between patients. This suggests that eITH DM profiles are not only unique on a per-patient basis, 
but may also be uniquely independent of general tumor-or immune-driven transcriptional 
regulation programs. 
 
eITH signature is not a simple recapitulation of transcriptomic profiling 
Since ITH is a complex manifestation of cancer evolution, we combined DM promoters with 
differentially expressed (DE) genes from RNAseq data already available from these samples to 
gain an integrative view of the data (3). DM promoters and DE genes had zero overlap for 32 
regional comparisons (i.e, the majority of the intra-tumor regional comparisons) across 9 patients. 
A handful of regional comparisons, which belong to patients 2, 3, 4, and 5, had low overlap relative 
to the DNA methylation (max = 34.06%, median = 17.07%) and to the RNA (max = 10%, median 
= 1.590%) (Fig 3B). Sample sizes from gene overlap only allowed us to correlate DNA 
methylation and gene expression log fold changes in three contrasts, with no significant 
correlation in two (H4.c and H4.a&c) and a moderate negative correlation in the third (H3.a; 
Spearman rho = -0.409, P = 4.5 e-03). Taken together, these observations suggest that the eITH 
described by DM profiling offers a unique signal that may not be captured by gene expression 
information alone. 
 
 
Tumoral hyper-aging and inter-regional heterogeneity predicted by methylation clock 
To better quantify how eITH relates to tumor clonal evolution, we calculated the predicted 
methylation age of the tissue across tumor samples and adjacent normal tissue using the 
methylation clock described by Horvath et al (14–16). Of the 353 CpG sites used to inform 
Horvath’s model only 12 sites were covered with reasonable depth across sites in the eRRBS 
sequencing data (Fig 1C), making it difficult to compute age based on these data. However, the 
promoter-aggregated site analysis provided coverage overlap at the gene level of 240 of the 353 
genes from the methylation clock mode (Fig 1C), allowing us to predict tissue methylation age 
across samples at the gene level.  
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To visualize how eITH might be driving differences in methylation age and in turn reflect a facet 
of clonal evolution, we compared the relative tissue methylation age across tissue types for 
patients 2,4,8,9 and 10, each of which had three or more regionally sampled tumor sites and 
sampled adjacent normal tissue (Fig 4A). While for all but patient 8 we found wide variance in the 
predicted methylation ages across regional samples within tumor, average relative tumoral 
methylation age was more advanced than the predicted methylation age of the adjacent normal 
liver tissue for all patients. Tumoral relative hyper-aging was greatest in patient 8, where average 
tumoral methylation age was 1.35 times greater than that of the average predicted age of the 
adjacent liver tissue (Fig 4B), with a median tumoral hyper-aging ratio of 0.17 across patients. 
Tumor-normal blood relative methylation age ratios calculated for two of three additional multi-
regionally samples HCC patients (4) validated this trend, though the remaining patient had a 
significant hyper-aging signature of the normal tissue compared to the tumor (Supp Fig. 3) (4). 
 
The ratio of predicted sample methylation age to true patient age was used to determine a relative 
tissue DNA methylation aging factor. This ratio was significantly positively correlated with the 
second principal component of a promoter-aggregated site methylation PCA across regional 
samples (Fig 4C; Spearman rho = 0.5, P = 0.002), with the tumoral samples from patient 8 
demonstrating the largest hyper-aging effect compared to the true patient age. Methylation clock 
age was also significantly correlated with PC2 (Fig 4C; Spearman rho=0.31, P = 0.001), but to a 
lesser degree. Neither measure correlated with other sample clinical covariates. We also 
observed a negative correlation between methylation clock age and VDJ read burden (Fig 4C; 
Spearman rho = -0.35, P = 2.52e-04). These data indicate that tumoral hyper-aging is a potentially 
useful quantitative proxy for eITH in terms of a direct facet of tumor evolution, and that it helps 
uncover a key axis of variation (PC2) in our multi-regional dataset.  
  
Tumoral hyper-aging associates with reduced tumor clonality, decreased tumor fitness, and 
“hotter”, less clonal tumor microenvironment.  
We applied our methylation-age analysis to 450k methylation array data for 366 single biopsy 
HCC samples from the TCGA-LIHC cohort in an attempt to not only validate our observation of 
tumor hyper-aging, but also establish the association with patient survival and known clinical 
biomarkers for immune activity such as TIL and tumor mutational burden (TMB). We observed 
advanced relative tumor methylation-age in 260/366 (71%) HCC patients in the cohort (ratio of 
predicted tumoral methylation age to patient diagnosis age; mean = 1.22, median =1.15; Fig 5A). 
Kaplan-Meier survival estimates were calculated for patients organized by tumor methylation 
clock age into “old” and “young” groups, defined by the median tumor aging factor. Patients with 
“old” methylation-aged tumors saw significant survival benefit over patients with “young” tumors 
(HR=0.667, p=0.037; Fig 5B).  
 
To investigate whether the relative tumor methylation age remains a significant predictor of patient 
survival after regressing out known clinical covariates, we constructed a multivariable Cox 
proportional hazard model using patient TMB, sex, tumor stage, and relative tumor age factor 
(Supp. Table 6). A first order cubic spline was applied to the relative age factor to test for non-
linear effects on survival. We found relative tumor methylation age to have a significant positive 
effect on patient survival (p=0.04), with no evidence for a significant non-linear effect. To 
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demonstrate the improvement in survival prediction error using relative tumor methylation age, 
we compared the time dependent integrated Brier scores for cph models using the clinical 
covariates with and without the relative methylation age factor (Fig 5C). Comparing the resulting 
prediction error curves under bootstrap resampling (see Methods) we found that inclusion of 
relative methylation age factor reduces survival prediction error compared to the model that does 
not include the measure (Fig 5C, inset table). Computing Brier scores under cross-validation 
indicates these results are robust and suggests that these results will favorably generalize to other 
datasets.  
 
As we found advanced relative tumor DNA methylation age associated with improved patient 
survival (decreased tumor fitness) in the TCGA, we investigated its association with other key 
tumoral and immune molecular features. Performing VDJ-deconvolution RNA sequencing data 
from TCGA HCC samples matched with 450k array data (18), we observed TIL burden and 
immune clonality to be significantly higher amongst “old” relative tumor methylation age HCCs 
compared to “young” tumors (p=0.016, p=0.046; Fig 5D-E), and PD-1 receptor expression, 
typically associated with T cell influx, was similarly significantly upregulated in “old” tumors 
(p<0.01; Fig 5G). Interestingly, using the TCGA HCC DNA-sequencing data to determine and 
cluster somatic mutations into clones, “old” HCCs were also found to have significantly fewer 
tumor clones compared to “young” tumors (p<0.01; Fig 5H), and tended to have lower TMBs 
(p=0.024, Fig 5F). Together, these results bring further context to our earlier observations of eITH 
by directly relating tumoral hyper-aging to reduced clonal complexity, hotter and more clonal TIL 
burden, and decreased tumor fitness, in a much larger cohort of single-biopsy HCC samples from 
the TCGA.   
 
  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 24, 2021. ; https://doi.org/10.1101/2021.03.22.21253654doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.22.21253654
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 

DISCUSSION 
 
DNA methylation alterations in cancer are often difficult to systematically interpret outside of well-
studied examples such as promoter hypermethylation of tumor suppressor genes and hypo-
methylation of repeat-rich regions. These exceptions define the rule of poor overall correlation of 
gene expression and promoter methylation in cancer, which we also dramatically confirm in the 
context of ITH (Figure 3). Indeed, there are few studies that have evaluated eITH in cancer. A 
recent comprehensive characterization of eITH in lung cancer found that ITH mapping to tumor 
suppressors was lower than that of oncogenes. The authors suggested a greater selection 
pressure in these regions with lower methylation ITH (19). To date, we have found only one other 
study using multiregional sampling and DNA methylation to assess eITH in HCC (4). We confirm 
the authors’ prior findings on the prognostic value of eITH, and expand upon it in this analysis. By 
leveraging multiregional eRRBS methylation profiling on 47 samples from 9 patients, we provide 
a characterization of spatial differential methylation gradients as a novel, relatively unexplored 
axis of ITH. We characterized these eITH gradients and found they are unique, not fully 
recapitulated by RNA expression, and are distinct from global cancer or immune expression 
programs. Further, we report a novel property of eITH driven by tumoral hyper-aging that may 
capture a complex tumor fitness phenotype with clinical prognostic value. To our knowledge, this 
work provides the most comprehensive analysis of epigenetic ITH in HCC reported to date. 
 
Regional differential methylation underlying hyper-aging tends to implicate promoters belonging 
to genes which are not differentially expressed in those same regional comparisons. Moreover, 
eITH patterns are both very specific to each patient and have no significant overlap between each 
other (intra-patient FDR adjusted over-enrichment Fisher p-value < 0.05). This indicates highly 
specific epigenetic reprogramming can characterize tumor evolution. Even so, we observed that 
patients with marked eITH, such as patients 4 and 5, had strong over-enrichment of their eITH 
signatures across global DM signatures associated with TIL burden and HCC vs. adjacent normal 
liver. This contrasts with patients exhibiting minimal eITH such as patients 7 and 10, who were 
significantly under-enriched in these contrasts. This underscores that eITH is unraveling an 
orthogonal axis of tumoral evolution that is normally not specifically captured in a single-biopsy 
context. It also provides a rich feature space from which to mine potential biomarkers of tumoral 
evolution and treatment response in HCC. To this end, we note that given the relative granularity 
of eRRBS data compared to array-based DNA methylation data, our spatial multi-regional eITH 
data will add a number of previously uncharacterized eITH-specific loci for potential downstream 
prioritization in other applications such as liquid biopsies.  
 
Using well-known epigenetic clocks, we show that tumoral hyper-aging, which in principle may be 
biologically related to a higher mitotic rate in tumor cells, is a useful, novel metric for describing 
tumor evolution and eITH in both the multi-regional and single-biopsy context. The chronological 
alteration of epigenetic profiles via progressive DNA methylation has been extensively established 
in a number of normal tissues (16,20), however its utility as a proxy of eITH for malignancies has 
yet to be fully explored. From the point of view of multi-regional sampling, we show that eITH 
effectively describes differential epigenetic aging for spatially distal regions in HCC relative to the 
adjacent normal aging rate. In other words, different parts of the same tumor are epigenetically 
aging at different rates, and on average these rates are all higher than that of adjacent non-HCC 
liver tissue.  Even from the under-sampled point of view of single-biopsy data, as in the TCGA 
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LIHC cohort, we show that on average even a single HCC biopsy is older than the diagnosis age 
of the patient. In our previous work, we established that a key facet of ITH was immune-editing 
resulting from tumor-immune interactions which can effectively constrain tumoral evolution (3). 
Here, we report an association of tumoral hyper-aging with a “hotter” immune microenvironment 
and decreased clonality. This finding not only corroborates recent evidence showing that DNA 
methylation loss supports immune evasion (21), it demonstrates this concept in the context of 
tumor clonality and may suggest this mechanism could play a larger role in ITH than previously 
thought. 
 
Despite being among the largest HCC cohorts analyzed for eITH to our knowledge, our study is 
limited by its relatively small sample size, a lack of sufficiently powered publicly available multi-
regional omics datasets for validation, and the absence of a robustly trained epigenetic clock 
specific for HCC. Our study has characterized an additional layer of molecular intra-tumoral 
heterogeneity, finding that significant regional differential DNA methylation patterns in patient 
HCC tumors are unique and poorly recapitulated in standard pooled or single-biopsy profiles. We 
also report on accelerated epigenetic aging on a regional basis within tumors which serves as a 
new proxy for tumor evolution. We envision that these data will provide new insights into 
characterizing epigenetically driven tumor evolution and provide a framework of analysis for 
uncovering potential new biomarkers of treatment resistance.  
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METHODS 
 
Sample collection 
Patient recruitment and sample collection was performed as previously described (3). Briefly, 
patients were enrolled in the study at Icahn School of Medicine at Mount Sinai (ISMMS) and 
provided informed consent for tissue biobanking. The study was approved by the Mount Sinai IRB 
(IRB# HS-14-01011) and samples were provided by the ISMMS Tissue Biorepository (IRB# HS-
10-00135). All patients had early stage hepatocellular carcinoma (HCC) as per EASL guidelines, 
and were treatment-naïve prior to surgical resection (17). Frozen tissue samples from the same 
tumor nodule were collected allowing for at least 1 cm of distance between each other. Samples 
were selected from areas without macroscopic evidence of necrosis or hemorrhage.  
 
eRRBS sequencing and processing 
DNA was extracted using the DNeasy blood and tissue kit (Qiagen) from 30mg tissue following 
manufacturers protocol. RRBS sequencing was performed by the Epigenomics Core facility at 
Weill Cornell Medical College using an in-house developed protocol consisting of restriction 
enzyme digestion for enrichment of CpG sites, NGS library construction and bisulfite conversion 
of cytosines (17). 50bp single-read libraries were sequenced using the Illumina HiSeq 2500 
platform in high output mode. 
 
Raw eRRBS reads were trimmed using trim galore (version 0.5.0) with the ‘-rrbs’ flag enabled, 
and quality control metrics were compiled using fastqc (v 0.5.0). Reads were then aligned to the 
hg38 UCSC reference genome using bismark (v 0.22.3), bowtie2 (v 2.4.1), and samtools (v 1.11) 
with the options to retain unmapped and ambiguously mapped reads enabled. A count matrix with 
methylated and unmethylated counts for each sample was created using bismark’s methylation 
extractor tool (v 0.22.3). 
 
Differential methylation analysis 
Differential methylation signatures were computed with edgeR, generally following the procedures 
outlined in Chen et al (22). We used the generalized linear model (GLM) framework in edgeR 
because it allows for great flexibility and robustness in analyzing our complex experimental design 
while being able to account for technical and biological covariates. 
 
The raw counts matrix for the eRRBS data was filtered for two analysis pipelines: one that looked 
at individual CpG island sites (site-based), and one that aggregated the averaged counts over 
promoter regions (promoter-based).  
 
In the site-based analysis, CpG islands with a minimum coverage of 10 reads across all samples 
were retained. In the promoter-based analysis, counts for sites that fall within the same promoter 
region (within 2kb upstream or 1kb downstream of the nearest transcription start site (TSS) 
annotation per edgeR’s nearestTSS function) were summed (22,23). Promoters with at least 10 
aggregated reads across all samples were retained for further analysis.  
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Site-based and promoter-based DM signatures were computed on a within-patient, regional-
relative basis, and on a global basis. In all analyses, sites or promoters from mitochondrial, sex, 
and unannotated chromosomes were removed from analysis. Total library size for all samples 
was set as the sum of methylated and unmethylated counts. All dispersion estimates assumed 
no mean-variance trend. 
 
Regional-relative DM signatures 
Within-patient regionally-relative DM signatures were computed using pooled sample 
comparisons in an effort to directly sample epigenetic ITH while compensating for lack of 
statistical power. Briefly, a generalized linear model using edgeR’s eRRBS pipeline was created 
for each of the 39 within-patient comparisons across all 9 patients (22). HBV viral expression 
(measured in RPKM) and normalized VDJ read burden determined via RNA sequencing as 
previously described were included as covariates in the model (3,22,23). For each comparison, a 
separate, paired design matrix that accounts for methylation status in the counts matrix was used. 
Differential methylation was assessed using a likelihood ratio test via edgeR. 
 
Global DM signatures 
Differential methylation signatures using all tumor and adjacent samples over all patients were 
computed with generalized linear models using edgeR’s eRRBS pipeline. The design matrix 
accounted for HBV viral expression (measured in RPKM) and normalized VDJ read burden 
determined as previously described, and multiple samples from the same patient. Differential 
methylation along three major axes was assessed with a likelihood ratio test: normal vs tumor, 
VDJ read burden (as a proxy measure for TIL), and HBV viral expression. 
 
RNA-seq differential expression analysis and integration with DM promoters 
In order to compare expression-based ITH with DM promoter-based eITH, matched RNA 
sequencing for the MSSM cohort was obtained and processed as previously described (3).  In 
order to ensure a fair comparison between the RNAseq and the eRRBS, generalized linear 
models for DE analysis were generated using the edgeR pipeline and the same covariates as that 
used in the DM analysis where reasonably applicable (23). DE testing was performed using a 
likelihood ratio test in edgeR for the same regional-relative and global comparisons used in DM 
promoter testing as described above. 
 
 
Methylation age prediction 
Methylation based tumor age was calculated for the HCC regional samples using the CpG-site 
based age clock described by Horvath et al (14–16). As site-level coverage of the 354 CpG-sites 
used to determine methylation age was low in the eRRBS data, encompassing genes for the 
Horvath CpG-sites were identified and beta methylation normalized values for overlapping genes 
from the promoter-based analysis were used as proxy. Methylation age was only computed for 
patients with regional sampling of at least one or more normal sites and three or more tumor sites 
(patients 2, 4, 8, 9, and 10), such that age predictions could be compared intratumorally and 
between tissue types. Patient age was transformed via logit function as described previously (14). 
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Median computed tumor and normal regional sampling ages for each patient were contrasted to 
calculate the patient normalized relative aging factor ratio (Fig 4A-C; Supp Fig 3).   
 
Survival Analysis 
Kaplan-Meier curves and risk tables grouping patients along the median tumor methylation age 
factor into “old” and “young” cohorts were created using the survminer R package (24). Patients 
with missing survival times or model feature data were removed before modeling. The log-rank 
test was used to evaluate the difference in survival outcomes between groups, with the 
significance and confidence intervals reported for each comparison. 
 
Multivariate cox proportional hazard (cph) models using tumor methylation age, tumor clinical 
stage, sex, and patient tumor mutation burden (TMB), were constructed using the ‘cph’ function 
from the rms package (25). The relative predictive power amongst survival models and to the 
reference model was assessed by plotting prediction error curves with the pec package in R (26). 
Integrated Breier scores for each model were computed with .632+ bootstrap resampling across 
100 iterations (B=100) and compared, with the weights of each score corresponding to the inverse 
likelihood of being censored, with censoring times for each iteration estimated using the Kaplan-
Meier estimator. Brier scores for each model were compared at 75 months with significance by 
KS-test calculated and included in the inset figure tables, corresponding to 90% of patient events.   
 
Validation of clock-associated tumoral hyper-aging and outcome analysis in external datasets 
Two additional Illumina 450k methylation array HCC datasets were used for validation of 
methylation-based tumor aging and patient survival findings.  
 
To demonstrate the tumor hypermethylation and regional methylation patterns seen in the main 
dataset, we retrieved beta-normalized illumina 450k methylation array data from the GEO 
database project GSE83691 for 17 samples from multi-regionally sampled HCC liver biopsies for 
three patients (HCC8010, HCC6952, and HCC8257) was retrieved (4). These three patients were 
selected due to the availability of matched normal data from circulating blood. Methylation based 
age predictions were made for each sample and relative aging factor ratios between median 
tumor ages and normal age were calculated for each patient.  
 
To demonstrate the effects of tumor methylation age on patient survival, Illumina 450k methylation 
array data for 376 tumor samples from the TCGA liver cancer cohort (LIHC) was retrieved from 
the GDC portal (https://www.cancer.gov/tcga). Clinical phenotype and survival data for these 
patients was also retrieved. TMB information was available for 362 samples, and tumor clonality 
was assessed using SciClone in 192 samples where appropriate matched mutation data was 
available (27). For 188 samples where matched RNA-seq data was available, the estimated VDJ 
read burden and TIL clonality was assessed using MiXCR, and logCPM expression values for 
PDCD1 were calculated (28). Normalized methylation beta values were calculated for each site, 
and tumor methylation-based ages were predicted using Horvath’s clock. Relative tumoral age 
factors were calculated for each patient using the ratio of the predicted tumor methylation age to 
the patient’s age at diagnosis. Patients were separated into ‘old’ and ‘young’ tumor groups based 
on median age factor, and survival analyses were carried out as described above. Tumor 
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clonality, VDJ burden, TMB, and PDCD1 expression was statistically compared between tumor 
groups using a wilcoxon test in R. 
 
SUPPLEMENT 
 
Enhancer overlap with differential methylation signatures 
We overlapped DM sites with known enhancer regions reported in the HACER database (29) and 
identified sites residing in putative promoter regions defined as within 2Kbp downstream or 1Kbp 
upstream of a transcription start site (TSS). While most DM sites fall into promoter regions they 
do also overlap known enhancers and there are also a number of DM sites whose genomic 
coordinates overlap with both a known enhancer region and a putative gene promoter (i.e., dual 
overlap). Furthermore, we find an aberrant, global TIL-associated bias towards hypermethylation 
in enhancers, and a less pronounced hypermethylation in dual-overlap sites (Supp Fig 2A). In 
within-patient, regional-relative eITH DM sites, we find a significant hypermethylation bias in 
enhancers or dual-overlap sites in 7 comparisons across 4 patients (Supp Fig 2B). 
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FIGURE LEGENDS 
 

 
Figure 1. A) Representation of multi-regional sampling for tumors used in this study, and available 
data types used. B) Heatmap showing clinical features of samples, including TERT, CTNNB1, 
and TP53 mutation status. C) Flow chart indicating eRRBS processing and analysis framework. 
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Figure 2. Differentially methylated sites. A) PCA of beta values. B) DM Sites in regional-relative 
and global comparisons. C) UpSet plot shows little overlap in significant DM sites across 
comparisons.  
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Figure 3. A) Regional-relative DM promoter profiling. B) Low overlap between significant DM 
promoters from eRRBS and significant DE genes in matched RNA seq. C) Regional DE gene 
profiling via RNA-seq.  
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Figure 4. A) Ratio of predicted methylAge to patient age across  regionally sampled patients . B) 
Hyper-aging relative to methylAge in adjacent normals explains patient 8 outlier status through 
accelerated tumoral hyper-aging. C) Correlation heatmap of MSSM cohort sample clinical, 
phenotype, and PCA with methylation clock age and relative age factors. 
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Figure 5. A) Age factor landscape of HCC tumors from TCGA LIHC. B) Kaplan-Meier analysis 
illustrates the survival benefit of “old” tumors with relative hyper-aging signature. C) Comparison 
of prediction error across cph models. A survival model including the predicted methylation age 
factor outperforms the model using only covariates of clinical tumor stage, sex, and TMB, across 
90% of patient events. D) LIHC HCC relative methylation age factor  tracks with known clinical 
markers including VDJ clone count, E) VDJ read burden, F) tumor mutation burden (total number 
of somatic mutations), G) PD-1 expression from RNA-seq, and H) number of tumor subclones 
estimated via SciClone.  
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Supplementary Figure 1. A) PCA of promoter aggregated methylation beta matrix. B) eRRBS DM 
promoters for global contrasts of (top to bottom) TIL, Tumor vs Adjacent, and HBV.  
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Supplementary Figure 2. Methylation change comparisons across DM regions covering promoter, 
enhancer, both, or neither feature loci for A) global contrasts (top to bottom) TIL, Tumor vs 
Adjacent, and HBV; B) regional contrasts across HCC in patient 4. 
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Supplementary Figure 3. Tumoral hyper-aging validation via GEO (Lin et al 2017 Cancer Discover 
Study). A) Site-by-site methylation predicted age to patient age ratios across three multi-regionally 
sampled HCCs. B) Tumoral methylation hyper-aging observed in two tumors, and hypo-aging in 
one tumor.  
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