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Abstract 

This study examines the accuracy and applicability of machine learning methods in 

early prediction of mortality in COVID-19 patients. Patient symptoms, pre-existing 

conditions, age and sex were employed as predictive attributes from data spanning 

17 countries. Performance on a semi-evenly balanced class sample of 212 patients 

resulted in high detection accuracy of 92.5%, with strong specificity and sensitivity. 

Performance on a larger sample of 5,121 patients with only age and mortality 

information was added as a measure of baseline discriminatory ability. Stratifying -  

Random Forest - and linear - Logistic Regression - methods were applied, both 

achieving modestly strong performance, with 77.4%-79.3% sensitivity and 71.4%-

72.6% accuracy, highlighting predictive power even on the basis of a single attribute. 

Mutual information was employed as a dimensionality reduction technique, either 

greatly improving performance or having negligible impact, showing how a small 

number of easily retrievable attributes can provide timely and accurate predictions, 

with applications for datasets with slowly available attributes - such as laboratory 

results. 

Limitations of the data were extensively explored and detailed, as each results 

section outlines a further investigation exploring a facet of its flaws. Future use of 

this dataset should be cautious and always accompanied by disclaimers on issues of 

real-life reproducibility. While its open-source nature is a credit to the wider 

research community and more such datasets should be published, in its current state 

it is imperfect for most statistical patient-level studies and can produce valid 

conclusions only for a limited set of applications. 
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1 Introduction 

The continuing development of the COVID-19 pandemic has tested the limits of 

hospital resources and staff across the world, placing large importance on effective 

prognosis for triage and management of admitted patients.  

A large number of mortality predictive models that rely on easily available 

diagnostic and demographic information have been proposed to address the issue, 

but to varying degrees of usability. Many such models suffer from mild to severe 

flaws including the lack of patient level variables, training on pneumonia as a proxy 

for COVID-19, (Barda et. al, 2020), depending on less immediately available data 

from blood tests and other monitoring equipment (Knight et. al, 2020), 

unrepresentative – often older skewing (El-Solh, 2020) or mono-localized (An, 2020) 

– population samples, resulting either in low performance or, more worryingly, in 

excessively optimistic expectations of performance that overfit to a certain facet of 

the population. 

While all predictive models will inevitably suffer from issues surrounding quality 

of data or population reproducibility, many of these still generate valuable findings 

that can materially aid in patient profiling and optimization of treatment and have 

been adopted on a supportive level by hospitals. 

In this study, we aim to further the performance of predictive modelling by 

addressing the main shortcomings of previous iterations, namely lack of anomaly 

detection methods, lack of dimensionality reduction pre-processing, and data 

limitations such as lack of geographic diversity, lack of representative age range and 

other baseline characteristics, leading to more robust performance on unseen data 

and real-life application. At the same time, we will outline limitations in the data of 

this study and of a wider number of studies that rely on the same source but make 

scarce mention of flaws or representativeness issues. 
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2 Methods 

2.1 Dataset 

Data for this study was obtained from a continuously updated repository (Xu, 2020) 

containing anonymized patient level information on 2,676,311 COVID-19 positive 

individuals across 146 countries. 

2.2 Variable Extraction and Data Pre-Processing 

Symptoms and comorbidities in the dataset were parsed and one-hot encoded into 

fixed variable names. The table (Table 1) below shows all patient variables used in 

the study: 

 

CATEGORY VARIABLES 

SYMPTOMS ▪ Cough 

▪ Fever 

▪ Runny Nose 

▪ Headache 

▪ Diarrhea  

▪ Sore Throat 

▪ Chills 

▪ Difficulty Breathing 

▪ ARDS 

▪ Fatigue 

▪ Chest Symptoms 

▪ Pneumonia 

PRE-EXISTING 

CONDITIONS 
▪ Benign Prostatic 

Hyperplasia and 

other Prostate 

Conditions 

▪ Hypertension 

▪ Diabetes 

▪ Pulmonary Condition 

▪ Coronary Heart Disease or 

Other Cardiac Condition 

▪ Chronic Kidney Disease (CKD) 

and other Kidney Conditions 

▪ Cancer 

▪ Bronchitis 

▪ Conditions Affecting the 

Arteries 

▪ Asthma 

DERIVED ▪ Number of Pre-

existing Conditions 
 

DEMOGRAPHICS ▪ Age 

▪ Sex 

 

Table 1: Attributes used as predictors of mortality by category. 

 

As part of our initial analysis, only patients with full data for each of the outlined 

variables were kept in the study. Of the original 2,676,311 patients, 212 patients 

satisfied the data quality requirement and were retained in the study. The data is 

evenly balanced in its proportion of recoveries and deaths, which is not 

representative. 

As a secondary sample, the above data was augmented by sampling from the wider 

dataset even where symptoms were not available to obtain a more representative 

distribution of deaths, gender breakdown and comorbidities. 

Finally, a third data subset is used, which includes patients with information on all 

data categories from Table 1, excluding symptom data. This results in a sample of 

5,121 patients, which however is imbalanced in other ways. A full breakdown of 

sample characteristics is provided in later results sections. 
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2.3 Dimensionality Reduction 

Excessive numbers of explanatory variables can compromise model performance, so 

Mutual Information was applied to reduce the original 25 patient variables. 

The use of variable reduction in this study is partly aimed at avoiding the curse of 

dimensionality, but primarily at exploring how a smaller number of variables may 

still carry strong predictive power. Specifically to models that involve laboratory 

tests and mid to long term variables, the ability to rely on patient history or a smaller 

number of more immediate variables could expedite the decision making process or 

act as a first risk screening while results are expected. 

Two dimensionalities will be compared, one with no reduction and one with 7 

features. 

2.4 Predictive Models 

A range of predictive models will be included in the study. Standard machine 

learning classifiers, namely Random Forest and Logistic Regression, will act as a 

benchmark and comparison to existing studies, while anomaly detection methods, 

namely Isolation Forest and Autoencoders, will be added as an often overlooked 

alternative for minority class detection.  

Standard classifiers will be trained on manually balanced data and tested on 

unprocessed imbalanced data, while anomaly detection models will train and test 

on imbalanced data. 

2.5 Evaluation Criteria 

Model performance will be evaluated on several key metrics. As the dataset is 

imbalanced and recovery outcomes far outweigh death outcomes, accuracy is not a 

reliable measure of performance, as a naïve recovery predictor will achieve strong 

accuracy without providing any benefit.  

Sensitivity and specificity will be the focus of model performance. Sensitivity 

measures the proportion of deaths correctly identified by the model, expressed as:  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

Where death is a positive outcome and recovery is a negative outcome. Specificity 

measures the proportion of recoveries correctly identified, expressed as: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 

Receiver Operator Characteristic curves may be plotted for some predictors and the 

area under the curve (AUC) will serve as an additional point of comparison. 

All above metrics will be derived from aggregation during 3-fold to 5-fold Cross 

Validation depending on size of each dataset variation mentioned earlier. 
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3 Results 

3.1 Correlation Matrix of Patient Characteristics 

Before analysing prediction model performance, the figure below (Fig. 1) outlines 

the main cross correlation of patient characteristics and their correlation with an 

outcome of death. We note that the most explanatory features that raise mortality 

risk are age (correlation coefficient of 0.51), whether a patient has a pre-existing 

chronic condition (0.59) and the number of pre-existing conditions (0.53). This is 

followed by particularly risk elevating conditions such as diabetes and hypertension 

and specific symptoms of advanced disease progression such as pneumonia and 

ARDS.  

 

Fig. 1: Correlation matrix of patient demographics, symptoms and pre-existing conditions with each 

other and with an outcome of death. 

3.2 Prediction Performance on Fully Populated Data 

3.2.1 Baseline Characteristics 

The fully populated data contains full entries for each category mentioned in the 

methodology, resulting in a sample of 212 patients. The data is geographically 

diverse with representation from 17 countries, though 62 patients (29.2%) originate 

from China alone. The mean (± standard deviation [SD]) age in the sample is 55.9 

years (±21.8). The mean age of patients who died of COVID-19 is significantly higher 

than those who didn’t, at 64.1 (±19.6) against 40.8 (±16.9) respectively. Men 

comprised 67.9% of the sample. A sizeable 49.5% of the sample suffered from some 

pre-existing condition, which is overrepresented and 64.6% of patients ultimately 

died, rendering the final class balance highly skewed. 
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3.2.2 Performance 

As mentioned in earlier sections, two standard classifiers and two anomaly detection 

methods were applied to predict mortality, the former training on pre-balanced 

data. In this specific instance, as the data is already highly balanced, anomaly 

detection methods would perform poorly and have been omitted. The table below 

(Table 2) outlines the out of sample performance of remaining classifiers on both the 

full 25 features in the data and a reduced variation with 7 features, using 3-fold cross 

validation. Random Forest performs better than Logistic Regression across both 

variations of the data with high accuracy and class specific performance. Both 

classifiers perform better when reducing the dataset’s dimensionality, more so for 

Random Forest (92.5% accuracy vs. 89.6%). The best performing model has an AUC 

of 96.4 and an accuracy of 92.5%, well split between specificity and sensitivity. This 

dataset however is excessively balanced, so performance is not guaranteed to be 

representative of live testing. 

 

 Full 25 Feature Dataset 7 Feature Dataset 

 Random 

Forest 

Logistic 

Regression 

Random 

Forest 

Logistic 

Regression 

Specificity (%) 89.3 86.7 90.7 89.3 

Sensitivity (%) 89.8 76.6 93.4 76.6 

Accuracy (%) 89.6 80.2 92.5 81.1 
AUC (%) 96.1 89.6 96.4 89.8 

Table 2: Performance of mortality prediction across models measured using 3-fold cross validation on 

out of sample imbalanced data. 

3.3 Prediction Performance on Artificially Oversampled Data 

The previously shown fully populated data is highly skewed, and while this does 

not prevent it from being indicative of real-life performance, it biases it. As a semi-

heuristic solution, we set indicative thresholds of patient characteristics that were 

over or underrepresented and sampled iteratively from the wider dataset (where 

symptom columns were not populated) until those thresholds were reached. 

Symptom data was previously found to be relatively uninformative compared to 

pre-existing conditions – likely due to bad quality data entry – so this does not 

excessively affect performance. 

3.3.1 Baseline Characteristics 

The augmented sample is much more representative of real-world conditions. In 

total, 3,740 unique and replicated patients are included in the sample. The mean (± 

standard deviation [SD]) age in the sample is 42.9 years (±17.8). The mean age of 

patients who died of COVID-19 is significantly higher than those who didn’t, at 60.7 

(±21.8) against 41.6 (±16.7) respectively. Men comprised 49.5% of the sample. A 

modest 3.4% of the sample suffered from some pre-existing condition, which is 

slightly underrepresented, though most conditions listed are close to this prevalence 

in the general population. Finally, only 6.6% of patients ultimately died, which is 

higher than COVID-19 mortality, but within reason, considering that most patients 

in the data were either evaluated or admitted to hospital. 
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3.3.2 Performance 

Both standard classifiers and anomaly detection methods were included in this 

section, as death outcomes are a small minority of cases – though standard classifiers 

are still trained on balanced data. The tables below (Table 3 and Table 4) show how 

each category of models performed. We note that generally all models still perform 

well, with high accuracies and often high specificity accompanied by lower 

sensitivity. Isolation Forest is the weakest performer, while the remaining models 

all perform comparably depending on preferences for specificity, sensitivity or 

overall accuracy.  

Throughout these variations on data, the baseline proportion of deaths across 

datasets must be noted when comparing models’ class specific performances. The 

previously presented models had stronger sensitivities, but the base proportion of 

deaths was 10 times larger. An additional limitation of oversampling is that deaths 

in this augmented dataset are much less associated with the presence of pre-existing 

conditions, thus leaving the model to predict based solely on age and gender, 

whereas a higher proportion of co-morbidities would be expected in real-life settings 

and inform model decisions. This is also likely why dimensionality reduction proves 

detrimental in this sample, though the reduction in performance is minimal. 

 

Standard Classifier Performance 

 Full 25 Feature Dataset 7 Feature Dataset 

 Random 

Forest 

Logistic 

Regression 

Random 

Forest 

Logistic 

Regression 

Specificity (%) 80.4 89.3 83.8 88.9 

Sensitivity (%) 80.1 74.4 71.5 73.6 

Accuracy (%) 80.4 88.3 83.0 87.9 
Table 3: Performance of mortality prediction across models measured using 5-fold cross validation on 

out of sample imbalanced data. 

 

Anomaly Detection Performance 

 Full 25 Feature Dataset 7 Feature Dataset 

 Autoencoder Isolation 

Forest 

Autoencoder Isolation 

Forest 

Specificity (%) 85.3 95.5 84.5 91.1 

Sensitivity (%) 76.4 61.8 74.0 61.4 

Accuracy (%) 84.7 93.3 83.8 89.1 
Table 4: Performance of mortality prediction across models measured using 5-fold cross validation on 

out of sample imbalanced data. 

3.4 Prediction Performance on Large Symptomless Data 

As a final sample, the requirement to have symptom data was dropped, and only 

patients having populated entries for the remaining data categories were kept. This 

results in greater sample size, but, as will be outlined shortly, lacking data on leading 

causes of death. 

3.4.1 Baseline Characteristics 

In total, 5,121 patients are included in the sample. There is representation from 31 

countries. The mean (± standard deviation [SD]) age in the sample is 45.6 years 
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(±19.0). The mean age of patients who died of COVID-19 is significantly higher than 

those who didn’t, at 60.2 (±20.8) against 42.1 (±16.8) respectively. Men comprised 

52.8% of the sample. A small 2.4% of the sample suffered from some pre-existing 

condition, which is underrepresented. Finally, 18.9% of patients ultimately died, 

which is strongly overrepresented, and in particular is highly overrepresented 

compared to the proportion of co-morbidities that might help explain it. 

3.4.2 Performance 

As just mentioned, the proportion of deaths in the sample vastly outweighs the 

proportion of co-morbidities, and as symptom data requirements were omitted in 

this instance, that results in a lack of explanatory variables. We thus use this sample 

purely as a large scale, cross-country testing ground for prediction based on age. 

This attribute has already been strongly linked to adverse COVID-19 outcomes, but 

here it will be specifically benchmarked against the performance of earlier models, 

and the models tested below will form their own custom stratification or 

linearization of age for prediction purposes, as opposed to semi-arbitrarily drawn 

age brackets tested for significance in outcome differences usually found in 

literature. The table below (Table 5) outlines model performance on the data; 

anomaly detection methods were omitted once again, as a single feature dataset is 

not suited to such analysis. Both featured models perform surprisingly well 

considering the single variable constraint, with accuracies in the low 70’s and a very 

favourable breakdown of type 1 and type 2 error. Particularly interesting is their 

ability to now discern death better than recovery with significantly higher sensitivity 

than specificity. The data does still feature a high initial proportion of deaths, 

namely 18.9%, so a live implementation would likely perform worse, though in a 

hospital setting mortality may remain high. Thus on a large sample of diverse data 

age is an adequate standalone predictor of mortality, though strongly less effective 

than a combination model. 

 1 Feature (Age) Dataset 

 Random 

Forest 

Logistic 

Regression 

Specificity (%) 71.0 70.0 

Sensitivity (%) 79.3 77.4 

Accuracy (%) 72.6 71.4 
AUC (%) 81.9 78.7 

Table 5: Performance of mortality prediction across models measured using 5-fold cross validation on 

out of sample imbalanced data. 
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4 Discussion 

Three very differing datasets were used to train a range of machine learning 

methods obtaining a holistic spectrum of results. Models trained on the highest 

quality 212 patient dataset obtained the best results, with the highest-performing 

model achieving 93.4% sensitivity and 90.7% specificity. This dataset however is 

both small and heavily biased in patient characteristics. Performance on a second 

artificially unbiased sample of 3,740 patients resulted in weaker, but still strong, 

results with the most balanced model performing at marginally above 80% in 

accuracy, specificity and sensitivity. Performance for this dataset should be taken 

with caution, as the oversampling process is heuristic and non-robust, and most 

patients only have age and sex entries, leaving models with only two predictors to 

guide their classification. Finally, a third dataset of large dimensionality, but with 

slightly overrepresented mortality, was used to gauge how models would perform 

using only age as a discriminatory characteristic. Surprisingly, age alone acts as a 

very strong and balanced predictor, with the best model achieving a sensitivity of 

nearly 80% and an accuracy of nearly 73% on a baseline proportion of mortality of 

18.9%. There is, as also shown by an earlier correlation matrix, a significant amount 

of cross correlation between age and pre-existing conditions, so the model is 

inevitably including the effect of these omitted variables, however it is noteworthy 

to find such discriminatory power on the basis of a single attribute. Training the 

models on age as opposed to developing stratifications for it ex-ante allows an 

optimal empirical split, and interestingly both Random Forest – which would carry 

out a more traditional and nonlinear stratification – and Logistic Regression – which 

would carry out linearization – perform well. 

Throughout the study,  dimensionality reduction methods either greatly improved 

performance or had a negligible effect on it, implying that these methods are 

imperative for either model discrimination or simply to reduce the number of 

required variables and patient history to reach meaningful conclusions. 

Across samples, the data employed in this analysis is more diverse than that of many 

comparable studies, with representation from 17 countries and a comprehensive age 

range. The primary shortcomings of the dataset however are its small size, 

depending on attribute filtering criteria, the imbalance in classes, with mortality 

rising to 64.6% of the sample for the highest quality 212 patient dataset, and the 

prevalence of chronic conditions, which is too high in the 212 patient dataset and too 

low in the remaining two datasets when filtering criteria are relaxed. These 

limitations are not minute, and caution should be employed in reporting any results 

based on this widely cited and publicly available dataset. While informative 

conclusions can be reached, they must be followed by proper disclosure about issues 

surrounding how representative or small the filtered, high quality data actually is, 

even if the parent dataset spans millions of entries.  
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5 Conclusion 

This study has shown the substantial accuracy machine learning models can bring 

in the early detection of mortality in COVID-19. The most clinically relevant 

performance was obtained on a high quality sample of 212 patients with accuracy, 

sensitivity and specificity all above 90%, though the sample is highly biased with a 

roughly even distribution of death and recovery outcomes. True performance on an 

imbalanced – and more representative – sample is unknown, but a worst estimate 

was provided by artificially oversampling recovery and other underrepresented 

outcomes in the original sample, providing weaker but still potent detection 

performances. Finally, a large sample of 5,121 patients was assembled on the basis 

of age as a mortality predictor, showing that both linear and nonlinear models could 

reasonably detect death – at 80% sensitivity – on a balanced and semi-representative 

group. The limitations of the data employed in this study have been explored and 

addressed, providing a cautious warning on future use in the literature. 
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