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The variant of concern (VOC) P.1 emerged in the Amazonas state
(Brazil) in November-2020. It contains a constellation of mutations,
ten of them in the spike protein. Consequences of these specific mu-
tations at the population level have been little studied so far, despite
the detection of P.1 variant in 26 countries, with local transmission
in at least four other countries in the Americas and Europe. Here, we
estimate P.1’s transmissibility and reinfection using a model-based
approach, by fitting data from the Brazilian national health surveil-
lance of hospitalized individuals and frequency of the P.1 variant in
Manaus from December 2020 to February 2021, when the city was
devastated by four times more cases than in the previous peak (April
2020). The new variant was found to be about 2.6 times more trans-
missible (95% Confidence Interval (CI): 2.4–2.8) than previous circu-
lating variant(s). The city already had a high prevalence of individu-
als previously affected by the SARS-CoV-2 virus (estimated as 78%,
CI:73–83%), and the fitted model attributed 28% of the cases during
the period to reinfections by the variant P.1. Our estimates rank P.1
as the most transmissible among the current identified SARS-CoV-
2 VOCs, posing a serious threat and requiring urgent measures to
control its global spread.
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The Japanese National Institute of Infectious Diseases iden-1

tified the new P.1 SARS-CoV-2 variant from travelers2

returning from Amazonas State, Brazil, on 6-January-20213

(1). P.1 was eventually reported in Manaus city (Amazonas4

state capital), on 11-January-2021 (2). Later, it was identi-5

fied in samples collected since 6-Dec-2020 from Manaus (3).6

According to phylogenetic studies, P.1 likely emerged in the7

Amazonas state in early (3) or late (4) November 2020. This8

variant shares mutations with other variants of concern (VOCs)9

previously detected in the United Kingdom and South Africa10

(B.1.1.7 and B.1.351, respectively) (2). Mutations of these11

two other variants are associated with greater transmissibility12

and immune evasion (5, 6), which confer them the status of13

variant of concern. However information, data, and analyzes14

on the epidemiology of P.1 are still incipient.15

The Coronavirus disease 2019 (COVID-19) outbreak in16

Manaus (April–May 2020) was followed by a period of high17

but stable incidence, after which prevalence may have reached18

42% (7) to 76% (8) by November 2020. From December 202019

to February 2021 the city was devastated by a new outbreak20

that caused a collapse in the already fragile health system21

(9), with shortages of oxygen supply (10), while the frequency22

of P.1 increased sharply from 0% in November 2020 to 73%23

S

Force of 
reinfection

Transmission 
rate VOC

Transmission 
rate E1

H2

I2

A2

A1

I1

H1 D1

R1

D2

R2E2

Fig. 1. Diagram of the extended deterministic compartmental model (SEAIHRD). S:
Susceptible, E: Exposed (pre-symptomatic), H: Hospitalized (severe infected individ-
uals), I: Infected (symptomatic individuals, not hospitalized), A: Asymptomatic. D:
Deceased, R: Recovered. Compartments are subdivided into 3 age categories, not
represented here for simplicity. Compartments with subindex 1 represent the wild-type
variant, subindex 2 refers to the VOC P.1. Continuous lines represent flux between
each compartment; dashed lines, infection pathways. Small arrows indicate force of
reinfection and transmissibility.

in January 2021 (4). The pathogenicity of P.1 variant is still 24

unknown, although recent studies point to increased viral load 25

in individuals infected with the new variant (4), suggesting 26

it could be higher than the one from previous circulating 27

strain. We analyzed Brazilian national health surveillance 28

data on COVID-19 hospitalizations and the frequency of P.1 29

among sequences from residents of Manaus city using a model- 30

based approach (an extended SEIR compartmental model – 31

see Fig. 1) to estimate the transmissibility and relative force 32

of reinfection of the P.1 variant. 33

Results. The estimated transmissibility of P.1 was 2.6 (95% 34

Confidence Interval (CI): 2.4—2.8) times higher compared to 35

the wild-type variant, while the relative force of reinfection 36

of the new variant was estimated to be 0.032 (CI: 0.026— 37

0.040, Table 1) The fitted model also estimated that, at the 38

RMC, FMDM, LSF, MEB, RLPS, TPP, SP, CF, RAK, MASMV, and PIP designed research; RMC,
FMDM, LSF, MEB, RLPS, TPP, SP, and PIP performed research and analyzed data; and all authors
wrote the paper.
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Fig. 2. First panel: Weekly new hospitalized COVID-19 cases in Manaus city. Grey
line represents the fitted values of total cases (all variants) by maximum likelihood
estimation (MLE) of the parameters. Red and blue lines represent the predicted values
of cases due to P.1 and wild-type variants, respectively. Black dots are nowcasted
observed data of hospitalizations. Second and third panels show the fittings to the
time-series frequency of P.1 on datasets provided by (11) and (3) respectively. The
area around the lines indicate the 95% Confidence Interval (CI) of the expected values.
Dots and lines are the sample proportions of P.1 in sequenced genomes, and their
95% sample CI. The fitted values of the model parameters are presented in Table 1.

time P.1 variant emerged, the prevalence of previous infection39

by the wild-type variant was 78% (CI: 73–83%), and that40

the number of cases by the wild-type variant were increasing41

with an estimated daily intrinsic growth rate of 0.029 days−1
42

(CI: 0.024—0.035 days−1). Given these parameter values,43

reinfections by P.1 accounted for 28% of the cases in Manaus44

from November 2020 through January 2021.45

We also evaluated the impact of a distinct pathogenicity46

of the P.1 variant on our estimates by allowing the infection47

hospitalization rate (IHR) of the new variant to be estimated48

as a free parameter (see SA1 in Table 1). The relative trans-49

missibility and prevalence did not differ statistically from the50

the previous estimates. However, the data gives no support51

for a higher IHR of P.1. Moreover, the model fit to hospi-52

talization data prior to the healthcare system collapse in the53

city of Manaus (11 January, 2021) estimated an even larger54

transmissibility (SA2 in Table 1).55

Discussion. COVID-19 hospitalizations and frequency of the56

P.1 variant in clinical samples showed a sharp increase in57

Manaus, Brazil, starting December 2020. The fitted model58

describes this joint increase as the result of the emergence of59

P.1, estimated to be 2.6 times more transmissible than the 60

wild-type variant. The spread of P.1 occurred despite a high 61

estimated prevalence of infection by the wild-type virus. The 62

pathogenicity of P.1 is still unknown, but assuming hospital- 63

ization rates as a proxy for pathogenicity, P.1 transmissibility 64

holds for different ranges of pathogenicity. Two recent studies 65

analysed genomic data of SARS-CoV-2 from Manaus evaluat- 66

ing the transmissibility of the new variant (3, 4). Faria and 67

collaborators integrated mortality and genomic data and, using 68

a semi-mechanistic Bayesian model, estimated a transmissi- 69

bility 1.4–2.2 times higher and 25–61% evasion of protective 70

immunity related to the variant P.1 (3). Naveca and collab- 71

orators estimated a 2.2 times higher effective reproduction 72

number for the P.1 variant using phylogenetic methods, and 73

suggested that P.1 is at least two times more transmissible than 74

the parental lineage, assuming reinfections are rare (4). The 75

present work follows a different approach that can be defined 76

as an epidemiological, model-based, and data-fitting approach, 77

suitable for scenarios where only surveillance data are avail- 78

able, and applicable to other emerging variants throughout 79

the world. Notably, all three different approaches estimated 80

very high transmissibility of the P.1 variant. 81

Many knowledge gaps about the pandemic in the Amazo- 82

nian region still remain. Population-based serological surveys 83

are not available and thus prevalence was included in the fitted 84

parameters. The analysed data overlapped with the period 85

of the health system collapse. Aware that in-hospital fatality 86

rates can quickly change when the health system is under 87

stress (12), we have chosen hospitalization data instead of 88

mortality data (See Dataset). Still, during the health system 89

collapse many severe cases probably were not recorded in the 90

system and remained unaccounted for. Our results were robust 91

to removing this period in the sensitivity analysis (SA2). Even 92

without P.1 emergence, the model estimates an increase in the 93

number of cases (parameter r, see Table 1), which could be a 94

consequence of loosening non-pharmacological interventions 95

(NPIs) (9), an effect of waning immunity, or both. Our model 96

does not consider these effects explicitly, but by fitting the 97

initial growth rate we indirectly account for their effects on the 98

dynamics and on the estimation of the remaining parameters. 99

The impacts of a highly transmissible variant have already 100

been highlighted by the spread of VOC B.1.1.7 in the UK, USA 101

and Europe (13). The variant B.1.1.7 has an upper-bound 102

estimate for transmissibility of 2.3 (5), which is smaller than 103

our lower bound estimate for P.1. Higher transmissibility of 104

the P.1 variant raises strong concerns of swift upsurges in the 105

number of cases once P.1 reaches community transmission. 106

Although our estimate for the relative force of reinfection 107

by the variant P.1 seems low, the impact is strong enough 108

to drive, together with a high transmissibility, a large surge 109

even in a population heavily affected by the wild-type variant. 110

For instance, in Manaus, 28% of the new cases in the period 111

considered were due to reinfections by P.1 in our estimations, 112

reaching 40% when assuming a different IHR for P.1 (SA1). 113

However, in a scenario of low prevalence rate of infection by 114

the wild-type variant, the high transmissibility is the most 115

determinant parameter of the rapid increase in the number 116

of cases and can lead to even sharper outbreaks. The P.1 117

variant has already been detected in at least 26 countries, with 118

local transmission currently confirmed in four of them (13). 119

This points to the urgency of reinforcing measures to avoid a 120
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Table 1. Summary of the fitted parameters and respective confidence intervals considering the entire period, November-1, 2020–January-31,
2021 maintaining the same pathogenicity of the previous variant. Sensitivity analyses were performed considering different pathogenicity of
the P.1 variant (SA1) and data censuring after the collapse of the healthcare system (SA2) in Manaus, Brazil, on 10-Jan-2021.
* parameter was fixed, not estimated, in this analysis

Parameter
main fitting SA1 SA2

estimate 2.5 % 97.5% estimate 2.5 % 97.5 % estimate 2.5 % 97.5 %
Relative transmission rate for the new variant 2.61 2.45 2.76 2.52 2.28 2.76 2.95 2.70 3.20
Relative force of reinfection of P.1 0.032 0.026 0.040 0.053 0.044 0.065 0.000 0.000 0.000
Prevalence of previous infection (2020-11-01) (%) 78 73 83 73 67 78 71 69 74
Initial fraction of the new variant (2020-11-01) (x 10−5) 30.4 8.2 112.9 8.5 1.4 50.8 17.6 5.0 62.4
Intrinsic growth rate (days−1 ) 0.029 0.024 0.035 0.045 0.037 0.052 0.030 0.026 0.034
Relative IHR odds ratio 1* – – 0.74 0.63 0.85 1* – –

global spread of P.1, which include an agile global genomic121

surveillance network. Further, to improve our ability to deal122

with the threat of P.1, it is urgent to study i) the pathogenicity123

of the P.1 variant, since this trait, in association with high124

transmissibility, can drive even well-prepared health systems125

to collapse; ii) the efficacy of current vaccines for P.1 variant126

infections; and iii) the main factors promoting the emergence127

of VOCs, specially the roles of previous high prevalence and128

of waning immunity.129

Materials and Methods130

131

Dataset. We used the Brazilian epidemiological syndrome surveil-132

lance system for influenza, SIVEP-Gripe (https://opendatasus.saude.133

gov.br), to track COVID-19 hospitalized cases. All hospitalized134

patients with Severe Acute Respiratory Illness (SARI) are reported135

to SIVEP-Gripe with symptom onset date and SARS-CoV-2 test136

results. SIVEP-Gripe, due to its universal coverage and mandatory137

notification of SARI cases, has an homogeneous testing effort to138

diagnose SARS-CoV-2 infections, and is currently the best source139

for Brazilian data at the national level. Hospitalization data pro-140

vides the most accurate basis to infer incidence in Manaus, because141

mild cases are vastly under-reported and testing capacity fluctuates,142

while mortality data is harder to relate to total number of cases,143

since the city’s health system endured a prolonged stress even before144

the collapse, with large variation in the in-hospital fatality rate over145

time (12). Data for hospitalized COVID-19 cases among residents146

in Manaus from 01-Nov-2020 to 31-Jan-2021 was obtained from147

SIVEP-Gripe database of 15-Feb-2021. The hospitalized cases of the148

last 10 weeks in the time series were nowcasted (14) to correct for149

notification delay. Time-series of frequency of sequenced genomes150

identified as P.1 in Manaus were extracted from published datasets151

(3, 11).152

Model. A deterministic compartmental model (Figure 1) was devel-153

oped to model the infection of Susceptible individuals moving to the154

Exposed (pre-symptomatic) compartment, which can progress to155

three alternative compartments: Hospitalized (severely ill), Infected156

(symptomatic but non-hospitalized), and Asymptomatic. Eventu-157

ally, individuals move to Recovered or Deceased. Two variants are158

considered: 1-non-P.1 (“wild-type”) and 2-new/P.1. The latter is159

assumed to infect Recovered individuals previously infected by the160

wild-type, and no reinfections of wild-type due to waning immu-161

nity occur. Compartments were stratified into three age categories:162

young (< 20 years old), adult (≥ 20 and < 60 years old) and elderly163

(≥ 60 years old), with different rates for outcomes. The key pa-164

rameters of relative transmissibility and relative force of reinfection165

– the ratio between the force of infection by P.1 on previously in-166

fected individuals (reinfections) and the force of infection by P.1 on167

susceptible ones (new infections) – were estimated by a maximum168

likelihood fitting to the weekly number of new hospitalizations and169

to genomic surveillance data. Three additional model parameters170

with unknown values were estimated. The remaining parameters171

(24 out of 29) were fixed, using current values from the literature172

(see Supplementary Information (SI) for values and references). Sen- 173

sitivity to different pathogenicity of the variant P.1 was explored 174

by repeating the fit assuming IHR as a free parameter (SA1). The 175

sensitivity to the period analysed was also explored by another fit 176

excluding the health system collapse period (SA2). Further model 177

details and fitting methodology are available in the SI. 178
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Supporting Information Text10

In order to estimate key parameters of the variant of concern (VOC) P.1, we developed a model and fitted it to time-series11

data of number of hospitalized cases and frequency of the P.1 variation. The fitting approach used here can be applied to other12

regions where data is relatively scarce. It primarily requires weekly incidence data to determine proper model initial conditions.13

In Brazil, these are the hospitalized cases data. Stratification by age allows the model to also consider the different death rates,14

asymptomatic and hospitalized proportions of each age class, important features for SARS-CoV-2. Contact levels between15

different age classes, which may vary from one place to another, can also be considered. For special cases in which information16

such as contact between ages classes and age distribution are not available (or even unnecessary for some other disease), the17

model can be easily simplified. In this sense, the method proposed here demands low-detailed data and relies on the structure18

of a simple compartmental model to measure quantities of interest, such as transmissibility and relative force of reinfection.19

Section 1 describes the model, section 2 relates the values of the parameters taken from the current literature, section 320

describes the contact matrix used, and finally section 4 describes the treatment of case data (subsec. A), the choice of initial21

conditions (subsec. B), the fitting procedure (subsec. C), and the sensitivity analysis evaluated regarding pathogenicity and22

data period analysed (subsec. D)23

1. Model equations24

The model is an extended Susceptible, Exposed, Infected, and Recovered (SEIR) model that comprises susceptible (S),25

pre-symptomatic (E), asymptomatic (A), mild symptomatic (I), severe/hospitalized (H), recovered (R) and deceased (D)26

compartments. These compartments are duplicated to account for a second variant of SARS-CoV-2, and each of them is27

stratified into three age classes: young (<20 years old), adults ([20− 59] years old), and the elderly (≥ 60 years old). The28

“wild-type” classes represent all non-P.1 variants present, which do not seem to be variants of concern.29

We assume that the second variant is capable of reinfecting individuals who have recovered from infection by the wild-type30

variant while the inverse is not possible; in the absence of data indicating this possibility, allowing reinfection by the wild-type31

variant on recovered of infection by P.1 would have negligible effect due to the small time window (3 months) considered in the32

present work. We also consider that a variant is not capable of reinfecting individuals recovered from the same lineage. Our33

model does not include vaccination due to low rates of vaccination in Brazil during the study time period.34

To model the virus spread in the population, we assume that asymptomatic individuals have equal infectiousness compared
to symptomatic ones, while pre-symptomatic individuals have reduced infectiousness represented by ω. To model behaviour,
we assume that symptomatic individuals self-isolate themselves to some degree, reducing their contacts by ξ. Individuals with
severe disease have greater isolation ξsev due to hospitalization. The daily contacts between each age class is represented by
the matrix Ĉ. The force of infection λk for each variant k is defined below:

λk = βkĈ[Ak + ωEk + (1− ξ)Ik + (1− ξsev)Hk]

The complete system of equations is given by:

Completely Susceptible

dS

dt
= −λ1

S

N
− λ2

S

N
[1a]

Wild variant

dE1

dt
= λ1

S

N
− E1

γ1
[1b]

dA1

dt
= (1− σ1)α1E1

γ1
− A1

νi,1
[1c]

dI1

dt
= (1− α1)(1− σ1)E1

γ1
− I1

νi,1
[1d]

dH1

dt
= σ1E1

γ1
− H1

νs,1
[1e]

dR1

dt
= A1

νi,1
+ I1

νi,1
+ (1− µ1)H1

νs,1
− prλ2

R1

N
[1f]

dD1

dt
= µ1H1

νs,1
[1g]
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P.1 variant
dE2

dt
= λ2

S

N
− E2

γ2
+ prλ2

R1

N
[1h]

dA2

dt
= (1− σ2)α2E2

γ2
− A2

νi,2
[1i]

dI2

dt
= (1− α2)(1− σ2)E2

γ2
− I2

νi,2
[1j]

dH2

dt
= σ2E2

γ2
− H2

νs,2
[1k]

dR2

dt
= A2

νi,2
+ I2

νi,2
+ (1− µ2)H2

νs,2
[1l]

dD2

dt
= µ2H2

νs,2
[1m]

Supplementary Equations

C1(t) =
∫ t

0
χσ1

E1(t′)
γ1

dt′ [1n]

C2(t) =
∫ t

0
χσ2

E2(t′)
γ2

dt′ , [1o]

where C1 ad C2 are the cumulative hospitalization cases reported, and each variable of the system (S, Ek, ..., Ck) is a vector35

containing each age class, e.g., E1 = (E1,y, E1,a, E1,e)T . The equations were numerically solved by the R package developed by36

(1).37

2. Parameterization of the model38

The parameters considered for the wild-variant are described below. The parameters for the P.1 variant are the same except39

for those considered in the model fitting.40

• γ, Average time in days between being infected and developing symptoms: 5.8 (2)41

• νi, Average time in days between being infectious and recovering for asymptomatic and mild cases: 9.0 (3)42

• νs, Average time between being infectious and recovering/dying for severe cases: 8.4 SIVEP-Gripe for São Paulo State43

• ξ, reduction on the exposure of symptomatic cases (due to symptoms/quarantining): 0.1 [Assumed]44

• ξsev, Reduction on the exposure of severe cases (due to hospitalization): 0.9 [Assumed]45

• ω, Relative infectiousness of pre-symptomatic individuals: 1.0 [Assumed]46

• α, Proportion of asymptomatic cases [0.67,0.44,0.31] for Juvenile (4), Adult and Elderly (5)47

• σ, Proportion of infections that require hospitalization: [0.001,0.012,0.089]* (6)48

• µ, In-hospital mortality ratio: [0.417,0.188,0.754] (7)49

• χ, Case report probability: 1.0 [Assumed]50

∗The proportion is weighted by the age distribution of the population with each age category.51

3. Contact Matrices52

Our model includes three age group categories: young ([0− 19] y.o.), adults ([20− 59] y.o.), and elderly (greater than 60y.o.).53

To model contacts between these groups we use estimated contact matrices computed by (8), but since the original matrices54

use five-year age bins going up to 95+ years, we aggregate classes leading to a 3× 3 matrix in the following way:55

Let A, B be sets of indexes forming age groups (not necessarily of equal sizes), xi,j denoting contact between age groups i56

and j in the original matrix, di denoting population size of the age group i. The new contact matrix Ĉ is given by:57

ĈA∗,B∗ =

∑
i∈A

∑
j∈B

dixi,j∑
i∈A

di
[2]58

where A∗, B∗ denotes a new indexation rule. Note that the contact matrices depend on local demographics and therefore must59

be computed for each place of study.60
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4. Data Analysis Procedures61

A. Nowcasting. Data used in parameters estimation were collected from the national public health system of severe acute62

respiratory illness (SARI) surveillance database, named Sistema de Vigilância da Gripe - SIVEP-Gripe. In this system,63

reporting of cases can be delayed for several reasons, including the notification system itself and confirmation of RT-PCR test64

results. The nowcasting procedure estimates, based on the past delay distribution, the number of cases that already occurred65

but were not yet reported. A window of 10 weeks is the acting window on the series, since delays greater than this are rare.66

Nowcasting requires a pair of dates: (i) onset date of the event and (ii) report date of the event. The delay distribution is67

modeled as being best described as a Poisson distribution for days since the onset date to the report date. We considered the68

first symptoms date as the onset date. For the report date, we used the latest between the test result date and the clinical69

classification date. The nowcasting algorithm were developed by (9), and implemented in the NobBS (Nowcasting by Bayesian70

Smoothing) package in R (10).71

B. Initial Condition Estimation. The model requires appropriate mid-epidemic initial conditions in order to give relevant results.72

In the model, the number of new hospitalizations at a given time – hnew, is directly proportional to the number of exposed73

individuals at that time, therefore data was used to get an approximation of the number of exposed people. Also, to quantify74

the number of people belonging to the recovered class, prevalence was used.75

We can estimate the appropriate initial conditions by finding an approximation for our model that relates more directly to76

the available data in each class. In the absence of the variant P.1, the model has four classes of infected compartments, namely77

y = (E1, A1, I1, H1)T , and another three classes, represented by z, i.e., z = (S, R1, D1)T . To that effect, we can write the78

system as79

ẏ = F (y, z)−G(y, z), [3]80

ż = J(y, z) , [4]81

where F comprises all entries of new Infected, coming from classes z, whilst G accounts for the transitions within infected82

classes and also recovery and death from the disease. Then, to find a good approximation for a small time window, we perform83

a linearization of our model around a point (y, z). Keeping z fixed, we get84

ẏ = (F̂ − Ĝ)y , [5]85

where F̂ and Ĝ are the linearized matrices arising from the functions F and G, respectively. The only entrance of new infected86

comes from the βSλ/N terms in the Ė1 = (Ė1,y, Ė1,a, Ė1,e)T equations (sub-indexes are y young, a adults and e elderly), then,87

the only non-zero elements of F̂ are in its first 3 lines. Before proceeding, it is useful to define88

b̂ = diag(S)Ĉ [6]89

which allow us to write90

F̂ = β

N

 ωb̂ b̂ (1− ξ)b̂ (1− ξsev)b̂

09,12

 [7]91

Ĝ contains the terms of Exposed, E1, the 3 possible forms of the disease considered in the model (A1, I1 and H1), as the92

terms in its first 3 rows, , whilst the remainder of its main diagonal contains terms of recovery and death. For simplicity, every93

constant (or vector for the terms with σ) in Ĝ expression Eq. (8) should be thought as diagonal matrices with its elements94

given by the constants (or vectors) and every 0 is a 3-dimensional square matrix where all entries are null.95

Ĝ =

 γ−1 0 0 0
−α(1− σ)γ−1 ν−1

i 0 0
−(1− α)(1− σ)γ−1 0 ν−1

i 0
−σγ−1 0 0 ν−1

s

 [8]96

The linearization above implies that, for a small time interval, y has an exponential behavior and that the eigenvalues97

of L̂ = F̂ − Ĝ are related to the exponential growth rates. Therefore, a short time after the beginning of the epidemic, the98

largest eigenvalue should be the one to dominate. So the exponential growth rate of the wild-type variant – r, can be matched99

to the largest eigenvalue of L̂ to obtain an estimate for β. The eigenvector associated with the largest eigenvalue gives the100

proportions of infected classes, which, together with the estimated number of exposed individuals – E1 = γ1hnew/σ1, results in101

an approximation for the number of people in the other infected classes.102

Given a β, the largest eigenvalue of the linearization matrix is computed using the eigs function of the R package rARPACK103

(11) and we find the β that gives r as the largest eigenvalue through bisection root finding. Finally, subtracting the number of104

recovered and infected from the total population gives the number of susceptible individuals.105
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C. Maximum Likelihood Estimation. Given the cumulative daily curves of hospitalization for wild-type variant, C1, and P.1106

variant, C2, we can obtain the daily variation of each curve, namely ∆Ct1 and ∆Ct2. Those curves are summed up to give the107

total number of weekly new cases:108

∆Cτ =
7∑
i=1

(∆Cτ−1+i
1 + ∆Cτ−1+i

2 ) [9]109

where τ is a discrete index given in weeks.110

To calculate the frequency of P.1 in a given time period T , we use the proportion of new cases in this period from the111

wild-type and P.1 variant as follows:112

P t
′

=

T∑
i=1

∆CT−1+i
2

T∑
i=1

∆CT−1+i
1 +

T∑
i=1

∆CT−1+i
2

[10]113

where t′ is a discrete index given in T periods.114

The time period T depends on the dataset of genome sequences: it is daily in (12) and monthly in (13).115

Using maximum likelihood, we fitted the model by estimating five parameters, namely, the relative transmissibility (∆β = β2
β1

),116

the relative force of reinfection of P.1 (pr), initial total prevalence (ρ0 = [R/N ]t=0), initial fraction of cases that were caused by117

the new variant (P 0), and intrinsic growth rate of the wild-type variant (r). The initial fraction of P.1 cases (P 0) accounts for118

the uncertainty in the time of emergence of the new variant: the simulation starts at beginning of November, so this initial value119

is below 1 individual, and only reaches this threshold by mid- to late November, depending on the value of P 0. The parameter120

r incorporates effects related to contact rates for the wild-type variant, such as non-pharmacological interventions relaxation,121

elections, and others; it affects the transmissibilities of both variants (β1 and β2) in the same way, and so is independent of ∆β.122

Number of hospitalization cases were assumed to follow a Poisson distribution, with expected value given by equation123

Eq. (9). The recorded number of P.1 in genome samples was assumed to follow a binomial distribution with an expected value124

equal to the product of the total number of genome sequences sampled in each date and the proportion of P.1 cases (equation125

Eq. (10)). The log-likelihood function for the model fitting was then:126

L =
∑
i

log Pois(xi|λ = Ci) +
∑
j

log Bin(yj |N = nj , θ(πj) = P j) , [11]127

where Pois is a Poisson distribution with parameter λ, xi is the number of recorded hospitalizations in week i, Bin is a Binomial128

distribution with parameters N (total number of trials) and πj (probability of success at each trial), nj is total number of129

sequences in clinical samples in week or day j, yj is the number of P.1 sequences in each of these samples, and θ(.) is the logit130

function.131

The model was then fitted by finding the values of the five above mentioned parameters that minimize the negative of the132

log-likelihood function (equation 11), using the function mle2, from the R package bbmle (14).133

To find starting values for the optimization performed by mle2 we calculated the log-likelihood function for one million134

combinations of parameters values in a regular reticulate within reasonable ranges. The 100 sets of parameters that were local135

minima and with highest log-likelihood were used as starting values for the computational minimization.136

The confidence intervals for the expected number of cases and frequency were estimated from 20000 parametric bootstrap137

samples assuming that the estimated parameters follow a multivariate normal distribution. The parameters of these multivariate138

distributions were the estimated values and estimated variance-covariance matrix of the parameters. For each sampled139

combination of para 2.5% and 95% quantiles of the distribution of bootstrapped expected values.140

D. Sensitivity analysis. The model fitting assumed a constant infection hospitalization rate (IHR, parameter σ) for each age141

group over time for both variants. Recent evidence suggests that prior SARS-CoV-2 infection protects most individuals against142

reinfection (15), so reinfections might have lower IHR. Because the pathogenicity of the variant P.1 is unknown, the model143

fitting was repeated assuming that the odds ratio of the IHR in each age class for P.1 infections compared to wild-type variant144

infections (SA1) is a free parameter. Moreover, as the collapse of Manaus health system hindered hospitalizations of new severe145

cases and may have affected case recording in surveillance databases, the model fitting was repeated considering only the146

period prior to the collapse (10-January-2021) (SA2).147

References148

1. K Soetaert, T Petzoldt, RW Setzer, Solving differential equations in R: Package deSolve. J. Stat. Softw. 33, 1–25 (2010).149

2. Y Wei, et al., A systematic review and meta-analysis reveals long and dispersive incubation period of covid-19. medRxiv150

(2020).151

3. M Cevik, et al., SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and152

infectiousness: a systematic review and meta-analysis. The Lancet Microbe 2, e13–e22 (2021).153

Coutinho 5 of 6

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 23, 2021. ; https://doi.org/10.1101/2021.03.03.21252706doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.03.21252706
http://creativecommons.org/licenses/by-nc/4.0/


4. SM de Saúde Município de São Paulo, Inquérito sorológico para Sars-Cov-2: Prevalência da infecção em escolares das154

redes públicas e privada da cidade de São Paulo (http://www.capital.sp.gov.br/arquivos/pdf/2021/coletiva_saude_14-01.pdf)155

(2021) [Online; accessed 31-January-2021].156

5. WW Sun, et al., Epidemiological characteristics of COVID-19 family clustering in Zhejiang Province.157

Chin. journal preventive medicine 54, 625–629 (2020).158

6. H Salje, et al., Estimating the burden of SARS-CoV-2 in france. Science 369, 208–211 (2020).159

7. TP Portella, et al., Temporal and geographical variation of COVID-19 in-hospital fatality rate in brazil. medRxiv (2021).160

8. K Prem, et al., Projecting contact matrices in 177 geographical regions: an update and comparison with empirical data161

for the covid-19 era. medRxiv (2020).162

9. SF McGough, MA Johansson, M Lipsitch, NA Menzies, Nowcasting by bayesian smoothing: A flexible, generalizable163

model for real-time epidemic tracking. PLoS Comput. Biol. 16, e1007735 (2020).164

10. S McGough, ML Nicolas Menzies, M Johansson, NobBS: Nowcasting by Bayesian Smoothing, (2020) R package version165

0.1.0.166

11. Y Qiu, J Mei, MY Qiu, r‘ARPACK’: Solvers for Large Scale Eigenvalue and SVD Problems, (2016) R package version167

0.11-0.168

12. NR Faria, et al., Genomics and epidemiology of a novel sars-cov-2 lineage in Manaus , Brazil. medRxiv , 1–44 (2021).169

13. Rede Genômica Fiocruz, Plots of lineages presence by state (2021) http://www.genomahcov.fiocruz.br/170

presenca-das-linhagens-por-estado, Accessed on 2021-02-28.171

14. B Bolker, R Development Core Team, bbmle: Tools for General Maximum Likelihood Estimation, (2020) R package172

version 1.0.23.1.173

15. VJ Hall, et al., Do antibody positive healthcare workers have lower sars-cov-2 infection rates than antibody negative174

healthcare workers? large multi-centre prospective cohort study (the siren study), england: June to november 2020.175

medRxiv , 1–35 (2020).176

6 of 6 Coutinho

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 23, 2021. ; https://doi.org/10.1101/2021.03.03.21252706doi: medRxiv preprint 

http://www.capital.sp.gov.br/arquivos/pdf/2021/coletiva_saude_14-01.pdf
http://www.genomahcov.fiocruz.br/presenca-das-linhagens-por-estado
http://www.genomahcov.fiocruz.br/presenca-das-linhagens-por-estado
http://www.genomahcov.fiocruz.br/presenca-das-linhagens-por-estado
https://doi.org/10.1101/2021.03.03.21252706
http://creativecommons.org/licenses/by-nc/4.0/

	Materials and Methods

