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1 Supplementary Methods

Here, we provide mathematical details of computational methods used in this analysis.

1.1 eQTL analysis

We assessed the additive relationship between the log-transformed gene expression values for a
gene g and genotypes with linear regression analysis using MatrixeQTL [1]:

Eg = Xsβs +XCβC + εg,

where Eg is the log-transformed gene expression values for given gene g, Xs is the vector of
genotype dosages for a SNP s, C is a matrix of covariates, βs and βC are the effect sizes on
gene expression for the SNP s and covariates C, respectively. ε is assumed to be random error
such that ε ∼ N(0, σ2), with common variance σ2 across all genes.

We calculate both cis- (variant-gene distance less than 500 kilobases) and trans-eQTLs between
all variants and all genes. We tested for the significant of βs with a two-sided Wald test of the null
hypothesis H0 : βS = 0. We conducted all eQTL analyses stratified by race and controlling for
the following covariates: age, BMI, postmenopausal status, and the first 5 principal components
of the joint Black (AA) and White (WW) genotype matrix. We exclude samples with Normal-like
subtype, as classified by the PAM50 classifier [2], due to generally low tumor content.

1.2 Tumor gene expression imputation models

Genes with significantly cis-heritable tumor expression were prioritized for predictive model train-
ing, adopted from PrediXcan and FUSION [3, 4]. We estimated eQTL-effect sizes for tumor
expression from germline variant in the following process.
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First, gene expression was residualized for the covariates C included in the eQTL models (age,
BMI, postmenopausal, and genotype PCs for population stratification) given the following ordi-
nary least squares (OLS) model:

Eg = XCβC + εg.

We define the covariate-residualized Ẽg ≡ Eg −XC β̂C , where β̂C is the OLS estimator.

For a given gene g, we consider the following linear predictive model, stratified by race:

Ẽg = Xgwg + εg,

where Xg is the genotype matrix for gene g that includes all cis-SNPs within 500 kb of either
the 5’ or 3’ end of the gene, wg is a vector of effect sizes for eQTLs in Xg, and εg is Gaussian
random error. We estimate wg with the best predictive of three schemes:

1. elastic-net regularized regression with mixing parameter α = 0.5 and λ penalty parameter
tuned over five-fold cross-validation [5];

2. linear mixed modeling where the genotype matrix Xg is treated as a matrix of random
effects and ŵg is taken as the best linear unbiased predictor (BLUP) of wg using rrBLUP
[6]; or

3. multivariate linear mixed modeling using GEMMA [7].

In these models, the genotype matrix Xg is pruned for linkage disequilibrium prior to modeling
using a window size of 50, step size of 5, and LD threshold of 0.5 using PLINK [8] to account
for redundancy in signal. These LD-pruning thresholds and window sizes are not stringent [9]
and leads to greater five-fold cross-validation R2 [10].

To impute into external cohorts, we construct the germline genetically-regulated tumor expression
GReXg given ŵg in the predictive model:

GReXg = Xg,newŵg,

where Xg,new is the genotype matrix of all available SNPs in the feature set of ŵg in a GWAS
cohort. As we impute GReX in CBCS, for individuals that were used in the training data set, we
impute their GReX via cross-validation to avoid data leakage. We use GReXg (scaled to zero
mean and unit variance 1) as a primary predictor of interest in multiple linear models for various
outcomes: risk of recurrence or proliferation scores, recurrence time-to-event outcomes, etc.

1.3 Bayesian analysis of correlated phenotypes

We detected several genes with GReX associated with at least one of ROR-P, ROR-S, and
proliferation scores, which are functions of gene expressions that determine PAM50 molecular
subtypes [2]. We wished to detect whether any of these GReX are associated with the tumor
expression of PAM50 genes. In essence, here, we are conducting a trans-eQTL mapping using
strategies similar to Wheeler et al ’s trans-PrediXcan [11] and Liu et al ’s GBAT methods [12].
However, instead of an univariate approach that cannot take into account the dense correlation
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structure between the expression of these genes, we consider a multivariate linear model with
correlated outcomes:

Y = XB + E,

where Y is an n × m matrix for n samples (on rows) and m outcomes (columns), X is an
n × k matrix of k predictors (columns), and B is a k × m matrix of effect sizes for each of
the k predictors. The matrix E represents the correlated errors with a multivariate normal
distribution, such that the vector of errors for a given observation is correlated: εi ∼ N(0,Σε).
This imposes correlation between outcomes in the regression model. We approach estimation
of B and Σε through a straight-forward Bayesian multivariate regression with conjugate priors
[13]. We assume the following prior distributions:

Σε ∼ W−1(V0, ν0)

β|Σε ∼ N
(
β0,Σε ⊗Λ−10

)
,

whereW−1(A, b) represents an inverse Wishart distribution with scale matrix A and b degrees of
freedom and ⊗ represents the Kronecker product operator. Now, the posterior joint distribution
of β and Σε is:

p (β,Σε|Y,X) ∝ |Σε|−(ν0+m+1)/2
exp

{
−1

2
tr (V0Σε)

−1
}

× |Σε|−k/2 exp

{
−1

2
tr ((B−B0)′Λ0(B−B0))

}
× |Σε|−n/2 exp

{
−1

2
tr
(
(Y −XB)′(Y −XB)Σ−1ε

)}
,

with β0 = vec(B0). If we group quadratic forms together with Bn = (X′X + Λ0)−1(X′Y +
Λ0B0), we can find that the posterior takes the form of a product of an inverse Wishart distri-
bution and a Matrix normal distribution:

Σε|Y,X ∼ W−1(Vn, νn)

B|Σε,Y,X ∼MN k,m

(
Bn,Λ

−1
n ,Σε

)
,

where

Vn = V0 + (Y −XBn)′(Y −XBn) + (Bn −B0)′Λ0(Bn −B0)

νn = ν0 + n

Bn = (X′X + Λ0)−1(X′Y + Λ0B0)

Λn = X′X + Λ0.

We call this extension Bayesian trans-QTL mapping, or BtQTL for short.
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1.3.1 Simulation study

We compared BtQTL against GBAT [12] with correlated gene expression through simulations.

Here, we based simulated data off expression and genotype data from CBCS. We randomly
selected a gene (call it gc) from Chromosome 22, extracted the cis-SNPs within a 500 kb
window, and used the linkage disequilibrium structure from these SNPs to simulate n genotypes.
We then simulated eQTL effect sizes with a causal proportion pc of cis-eQTLs and simulated
an expression vector for the cis-gene expression with scaled effect sizes such that the variance
explained from cis-genotypes is h2c [14]. Next, considering the genes not on Chromosome 22,
we selected t genes with a sparse correlation matrix (all absolute cross-gene correlations less
than 0.1) or dense correlation matrix (all absolute cross-gene correlations greater than 0.4). We
generate an effect size βt ∼ N(0, 1) for one of the t randomly selected trans-genes (call it gt)
to simulate a trans-association between gc and gt and scale the effect so that gc explains h2t of
the variance in expression of gt.

Now, consider the following model:

Y = Xβ + E,

where Y is an n× t matrix of correlated gene expressions, X is the vector of expression for gc, β
is the vector of effect sizes of expression of gc on the t trans-genes, and E represents the random
error. Now, to ensure the correlation between columns of Y reflects the correlation matrix from
the observed CBCS data, we match moments to generate a multivariate normal random matrix
for E:

Let C be the observed correlation matrix. Let Yi and Yj be the vectors of expression of the ith
and jth genes. We find

Cov(Yi, Yj) = Cov(Xβi + εi, Xβj + εj)

= βiβjV ar(X) + Cov(εi, εj).

Now, for i 6= j and cij the correlation between Yi and Yj , we have

Cov(Yi, Yj) = cijσiσj = βiβjV ar(X) + Cov(εi, εj).

We can solve for Cov(εi, εj), as other values are known, and use these values across i, j ∈
{1, . . . , t} to simulate E. The ith diagonal entry for E (the variance of εi) can be taken from the
equivalence σ2

i = β2
1V ar(X) + V ar(εi). This gives us a simulated Y with a given correlation

matrix to run GBAT and the Bayesian regression approach. We conduct 10,000 simulations
across a variety of parameters: n ∈ {200, 500, 1000}, pc ∈ {0.05, 0.10, 0.25}, h2c = 0.15,
h2t ∈ {0.05, 0.10}, t ∈ {2, 5}, and a sparse (correlations all under 0.2) or dense (correlations
all over 0.5) correlation matrix. We apply both the GBAT method and the Bayesian regression
model outlined above. For GBAT, we compute a false positive rate for the elements of β that are
set to 0 and power for nonzero β at a Bonferroni corrected significance threshold of P < 0.05/t
for β. For the Bayesian approach, we generate a (100− 5/2t)% credible interval for β to gauge
false positive rates and power by finding whether the interval includes the null (effect size of 0).
Supplementary Figure S1 shows a comparison of GBAT and BtQTL across these simulation
parameters, showing the slight advantage of BtQTL over the GBAT mapping framework, which
generally increases with sample size and the number of total trans-genes considered. We further
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highlight the advantage of BtQTL over GBAT with increased number of trans-genes considered
with the simulation parameters: n = 500, pc = 0.10, h2c = 0.15, h2t = 0.10, and t = 30
(Supplementary Figure S3). We vary the number of true trans-QTLs from 1, 2, 5, and 10. As
the number of the considered genes increases, BtQTL has a larger advantage over the univariate
methods (Supplementary Figure S3).
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3 Supplementary Figures
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Figure S1: Power comparison between univariate GBAT and Bayesian trans-QTL mapping with
many genes. We compare the power (Y -axis) to detect trans-genetic associations between genet-
ically regulated expression of a gene and 2 (top) and 5 (bottom) genes on different chromosomes
using GBAT [12] (red) and BtQTL (blue). The X-axis shows the sample size, the causal pro-
portion of cis-eQTLs is shown on the horizontal strip labels, and the total distal heritability
of the genes is shown on the vertical strip labels. We show differences in power across dense
(circles, solid line; absolute correlation between all genes ≥ 0.40) and sparse (triangle, dotted
line; absolute correlation between all genes ≤ 0.10) correlation structures. Here, we assume only
1 of the 2 or 5 trans-genes considered have a truly non-zero association.
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Figure S2: Power comparison between univariate GBAT and Bayesian trans-QTL mapping. We
compare the power (Y -axis) to detect trans-genetic associations between genetically regulated
expression of a gene and 30 genes on different chromosomes using GBAT [12] (red) and BtQTL
(blue). The X-axis shows the number of simulated non-zero trans-associations. We assume a
sample size of 500, causal proportion of cis-eQTLs 0.10, distal heritability of 0.10, and a dense
correlation structure.
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