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Figure S1: Self-reported symptoms before the baseline visit in each study cohort.
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Figure S2: Two-by-two serological test confusion matrices. Results are shown for the EI-positive (a,b) and
EI-negative (c,d) cohorts at baseline (a,c) and at followup (b,d). EI results were not available at followup for
the negative cohort. Tests are abbreviated as EI: Euroimmun anti-S1 IgG, Roche-N: Roche anti-N total Ig,
Roche-RBD: Roche anti-RBD total Ig.
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Table S1: Cohort serostatus change and test response trajectories by sex and age group. Test results for
the EI assay where not available for the EI-negative cohort. Significance of differences between proportions
within each strata was determined by two-sided Wilson tests. Significance of trajectory increase or decrease
was not computed for EI and Roche-N given that they are defined as qualitative or semi-quantitative by the
manufacturers. For Roche-RBD significance was based on the z-score of baseline and followup values using a
CV of 7.6%. Test abbreviations as in Figure S2.

EI Roche-N Roche-RBD

Category N change (%) p-value N change (%) p-value N change (%) p-value

EI-positive
Sero-status change
reversion

age (17,65] 82/313 0.69 6/293 0.82 0/298 -
(65,105] 9/41 0/37 0/39

sex female 41/183 0.18 4/167 0.70 0/170 -
male 50/171 2/163 0/167

conversion
age (17,65] - - 3/20 1.00 3/15 1.00

(65,105] - 1/4 0/2
sex female - - 3/16 1.00 2/13 1.00

male - 1/8 1/4
Antibody level
decay

age (17,65] - - - - 44 (14.1%) 0.06
(65,105] - - 11 (26.8%)

sex female - - - - 15 (8.2%) 0.0001
male - - 40 (23.4%)

increase
age (17,65] - - - - 199 (63.6%) 0.17

(65,105] - - 21 (51.2%)
sex female - - - - 123 (67.2%) 0.05

male - - 97 (56.7%)

EI-negative
Sero-status change
reversion

age (17,65] - - 3/21 - 1/21 1.00
(65,105] - 0/0 0/2

sex female - - 0/7 0.51 0/7 1.00
male - 3/14 1/16

conversion
age (17,65] - - 25/162 0.88 29/162 1.00

(65,105] - 0/4 0/2
sex female - - 13/86 1.00 16/86 0.90

male - 12/80 13/78
Antibody level
decay

age (17,65] - - - - 5 (2.7%) 0.29
(65,105] - - 1 (25.0%)

sex female - - - - 2 (2.2%) 0.69
male - - 4 (4.3%)

increase
age (17,65] - - - - 43 (23.5%) 1.00

(65,105] - - 1 (25.0%)
sex female - - - - 21 (22.6%) 0.90

male - - 23 (24.5%)
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Figure S3: Test readout trajectories for the EI-negative cohort (n=187). EI results for this cohort were not
available at followup. Test abbreviations as in Figure S2.

S2 Test readout variation

Internal quality controls for the three immunoassays (Euroimmun anti-S1, Roche anti-N and Roche anti-S)
were performed using the same internal positive control, an in-house diluted leftover serum sample with high
antibody levels, allowing for inter- and intra-lot comparisons for each test (determination of the coefficient of
variation, CV).

All baseline and follow-up samples were tested using the same lot of Roche-N and Roche-RBD immunoassays,
with intra-lot CVs of 4.66 and 7.55%, respectively. EI test readouts for our internal quality control (IQC)
across lots show substantial intra- (CV range 8.06%-15.5%) as well as inter-lot variability (CV=30.4%, Fig.
S4). All EI tests on follow-up samples were performed using the same lot (EI-9), which had a significantly
lower IQC mean than all other lots (mean: 1.39, sd: 0.12, pair-wise p-values t-test with correction for multiple
testing < 0.01).

We performed a sensitivity analysis on EI-based seroconvertion/reversion rates by analyzing samples processed
using lot EI-7 at baseline, which had the closest IQC mean to the follow-up lot (mean: 1.66, sd: 0.22, p-value
of difference with followup lot with correction for multiple testing 0.004). Baseline samples for a total of 127
participants (63 (50%) of which were female, and 111 (87%) were between 18 and 65) were processed using
this lot. EI test readout trajectories and distributions at each visit are given in Fig. S5. The percentage of
seroreversions in this baseline lot what 27% (31/ 115), not significantly different from the overall reversion
rate in the EI-positive cohort (91/354, p-value: 0.89).
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Figure S4: Test internal quality control of variation within and across test reagent lots. The IQC consisted of
an in-house diluted leftover serum sample with high antibody levels. Readout units are test-specific. The
inter-lot coefficient of variation (CV) is given for each test.
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Figure S5: EI test readout trajectories and distribution in lot wih low internal control values. Changes in test
readout for lot EI-7 between visits (a) and distribution for at each visit (b, dotplot with binwidth of 0.45).
Horizontal dashed lines indicates the manufacturers reccomended seropositivity threshold (OD/IC ratio =
1.1).

S3 Latent class model

Our aim is to jointly infer the underlying sero-status in both followup (‘positive’) and negative control cohorts
and the performance (specificity and sensitivity) of multiple tests in the absence of a gold-standard for
identifying historic SARS-CoV-2 infections. To do so we use a latent class model accounting for multiple
imperfect tests with unknown sensitivity and specificity, and possible sero-status changes (due to infection)
in between visits. Inference is made in a Bayesian framework that incorporates our longitudinal serologic
data as well as in-house and external assay validation datasets.

S3.1 Model description

Let z0
i , z

1
i ∈ {0, 1} be the latent class representing the true underlying infection history of participants i at

baseline (z0
i ) and at followup (z1

i ), with z·i = 0 denoting infection naive participants, and z·i = 1 those where
were infected in the past. We have access to multiple observations of zi from J different serological assays,
yi,j , j ∈ {1, . . . J}, both at baseline (y0

i,j) and at followup (y1
i,j) (Fig. S6). We assume that an individual’s

infection history can change in between visits due to SARS-CoV-2 infection. which occurs with probability
P(infection) = λ. Possible infection history trajectories are therefore; (1) remaining un-exposed from baseline
to followup (with probability 1− λ),(2) going from un-exposed to infected (with probability λ), or (3) already
having been infected at baseline.

S3.2 Time-invariant test sensitivity

Given the infection history of individual zi, we model the probability of test result yi,j for individual i and
test j as a Bernoulli random variable which depends on the test’s specificity, θ− (1-P(false positive)), and
sensitivity, θ+ (P(true positive)), which we first consider to be time (since infection) invariant. We do not
know the true underlying status, zi. We can however obtain the probability of a serological test result given
test sensitivity and specificity by marginalizing out the probability of having infection history zi:
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Figure S6: Latent class model diagram.

P(yi,j |θ+
j , θ

−
j ) =

∑
k=0,1

P(yi,j |zi = k, θ+
j , θ

−
j )× P(zi = k)

=
∑
k=0,1

Bernoulli(yi,j |zi = k, θ+
j , θ

−
j )× P(zi = k)

=
∑
k=0,1

(kθ+
j + (1− k)(1− θ−j ))yi,j (1− kθ+

j + (1− k)(1− θ−j ))1−yi,j × P(zi = k).

Each individual has an unknown underlying infection status at baseline (z0
i ), which can change at followup

(z1
i ) due to infection in between visits (Fig.S6). Assuming test sensitivity and specificity do not vary with

time post-infection, the probability of a baseline-followup pair of observations {y0
i,j , y

1
i,j} can be obtained by

marginalizing out both infection-statuses at baseline and followup as:

P(y0
i,j , y

1
i,j |θ+

j , θ
−
j ) =

∑
k=0,1

∑
l=0,1

P(y0
i,j |z0

i = k, θ+
j , θ

−
j )× P(z0

i = k)+

P(y1
i,j |z1

i = l, θ+
j , θ

−
j )× P(z1

i = l|z0
i = k)P(z0

i = k),
(1)

where P(z1
i = l|z0

i = k) is the conditional probability of having infection history l at followup status k at
baseline. Following the description in Fig.S6, we have four possible combinations of baseline-followup infection
histories with probabilities:

P(z1
i = l|z0

i = k)P(z0
i = k) =


(1− λ)(1− ρ) if k = 0 and l = 0
λ(1− ρ) if k = 0 and l = 0
ρ if k = 1 and l = 1
0 if k = 1 and l = 0

,

where P(z0
i = 1) = ρ is the prior probability of individual i being sero-positive at baseline.

For a set of J different serological tests, the likelihood of parameter set Θ = {θ+,θ−,η, ρ, λ}, where
θ+(−) = {θ+(−)

1 , . . . , θ
+(−)
J } is the vector of all test sensitivities (specificities), given observations {y0,y1} =

{y0
1,...,i,...,N,1...,j,...J , y

1
1,...,i,...,N,1...,j,...J} is:

L(Θ|y0,y1) =
N∏
i=1

J∏
j=1

P(y0
i,j , y

1
i,j |θ+

j , θ
−
j ). (2)
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S3.3 Time-varying test sensitivity

In eq.1 we assume that test sensitivity and specificity are the same at baseline and followup. While by
definition, specificity can not vary with time since infection, we expect that test sensitivity will decrease
as the time from infection increases (after the acute-convalescent period) due to the decay of circulating
antibodies.

Instead of having a single value of sensitivity for serological test j, we can make it depend on time post
infection (tpi) τ , θ+

j,τ . Since the tpi is not usually available we therefore need to marginalize over possible
delays between infection and serological visits:

P(yi,j |θ+
j,τ , θ

−
j ) =

τmax
i∑
τi=0

∑
k=0,1

Bernoulli(yi,j |zi = k, θ+
j,τi
, θ−j )× P(zi = k)× P(τi),

where P(τi) is the probability of participant i having been infected τi days prior to the visit date, tvi , and
τmaxi is the longest possible delay given the start of the pandemic at t0.

Following (Azman et al. 2020), we model time-varying sensitivity as a cubic polynomial of log(τ) on the
logit-scale:

logit(θ+
j,τ ) = αj + β1,j log(τ) + β2,j log(τ)2 + β3,j log(τ)3. (3)

To set P(τi) we assume that the probability of infection on a given day tsi is proportional to the daily number
of reported virologically-confirmed SARS-CoV-2 infections (in Geneva) accounting for the delay between
infection, symptom onset, and case reporting, δ:

P(τi) = P(tsi = t|tvi ) = casest+δ∑tv
i
t′=t0 casest′+δ

.

Time between infection and symptom onset was based on median estimates of the incubation period and set
to 5 days (Lauer et al. 2020). The delay between cases and symptom onset was set to 6 days for the first
wave (Sciré et al. 2020), which we assumed halved during the second pandemic wave due to test capacity
buildup (Stringhini, Zaballa, et al. 2021). Given strong intra-week case reporting variability we take a 7-day
moving average of reported cases to compute P(τi).

S3.4 Test performance validation datasets

Following our previous seroprevalence estimation framework in (Stringhini, Wisniak, et al. 2020), we treat test
sensitivity and specificity as unknown and use validation data to inform their values (Gelman and Carpenter
2020). To do so we use both test-specific validation datasets, as well as a validation dataset produced by the
virology laboratory at Geneva University Hospitals (HUG) for which all three immunoassays were run on
each sample.

S3.4.1 Test-specific validation data

For test-specific validation study s, test specificity is informed by the number of false positives, n−s,j , resulting
from a negative control sample of size N−s,j , modeled as a binomial distribution:

n−s,j ∼ Binomial(N
−
s,j , 1− θ

−
s,j).

Numbers and data sources for test-specific validation datasets are given in Table S2.
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For sensitivity validation studies we exploit available information on the likely time post infection to inform
time-varying sensitivity. While exact infection dates are typically not known (or reported), data on the number
of true positives within a range k of times post symptom onset or post RT-PCR test, τ ′k = {τ ′min,k, . . . , τ ′max,k},
n+
s,j,[τmin−τmax], among N−s,j,τ ′

k
positive controls:

P(n+
s,j,τ ′

k
|N+

s,j,τ ′
k
, αj,s, βj,1−3) = 1

τkmax − τkmin

τk
max∑

τ=τk
min

Binomial(N+
s,j,τ ′

k
, θ+
s,j,τ ),

where time varying-sensitivity θ+
s,j,τ is given as in eq.3, with the intercept αj,s allowed to vary between studies

(as opposed to polynomial coefficients β1−3 that are assumed to be the same across studies for a given test).
When validation studies report times post symptom onset we extend the ranges by the median incubation
period of SARS-CoV-2, δinc = 5 days, (Lauer et al. 2020) (τmin/max = τ ′min/max + δinc). When delays are
expressed as times post RT-PCR test we assume that symptom onset may have occurred up to 10 days prior
to testing, and thus extend the upper bound of the range by that amount (τmax = τ ′max + δinc + 10). We
assume that there is equal probability of delays within each range τ ′k. Time-varying sensitivity validation
data used in the analysis are shown in Fig. S7.

Euroimmun
anti−S1 IgG

Roche
anti−N total Ig

Roche
anti−RBD total Ig

D
ays post 

sym
ptom

 onset
D

ays post 
R

T
−

P
C

R
 test

0−
4

5−
9

10
−1

9

20
−2

9

30
−3

9
40

+

un
kn

ow
n

0−
4

5−
9

10
−1

9

20
−2

9

30
−3

9
40

+

un
kn

ow
n

0−
4

5−
9

10
−1

9

20
−2

9

30
−3

9
40

+

un
kn

ow
n

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Period of time [days]

R
aw

 s
en

si
tiv

ity

# samples

250

500

750

study

EI PHE

EI manufacturer

Meyer et al. (2020)

Muench et al. (2020)

Roche−N PHE

Roche−RBD manufacturer

Figure S7: Time-informed sensitivity validation studies. Raw sensitivity (percen positive among positive
controls) are given with Wilson binomial 95% confidence intervals. and Study sources given in Table S2, in
addition to evaluation reports from Public Health England on EI (PHE 2020b) (also contains manufacturer
data), and Roche-N (PHE 2020a).

S3.4.2 Multi-assay validation data

Validation data covering all three test in each participant provide information on joint test performance.
Assuming test results are independent from each other, the probability of a set of results {yci,1, . . . , yci,J} for
control participant i with known infection history zci is given by:

S9



Table S2: Test-specific validation studies
Specificity Sensitiviy

Test N controls N false positives N controls N true positives source
Euroimmun anti-RBD IgG 326 4 181 154 Meyer et al. 2020
Roche anti-N total Ig 10453 21 185 184 Muench et al. 2020
Roche anti-RBD total Ig 5991 1 1423 1406 Roche 2020

P(yci,1, . . . , yci,J |θ+
τ ,θ

−, zi = zci , τ) =
J∏
j=1

P(yci,j |θ+
j,τ , θ

−
j , z

c
i )

=
J∏
j=1

Bernoulli(yci,j |θ+
j,τ , θ

−
j , zi = zci ).

S3.5 Hierarchical Bayesian inference framework

We combine our longitudinal data, external test-specific validation data and the in-house multi-assay validation
dataset in a hierarchical Bayesian framework that allows for pooling between separate sensitivity and specificity
estimates (Gelman and Carpenter 2020).

Pooling between external case-specific and the multi-assay validation studies was implemented by modeling
specificity and sensitivity of each test j and study s on the logit scale:

logit(αj,s) ∼ N (µαj , σαj )
logit(θ−j,s) ∼ N (µθ−

j
, σθ−

j
)

µθ−
j
∼ N (4, 2)

µαj
∼ N (2, 1)

σθ−
j
∼ N+(0, 1)

σαj ∼ N+(0, 1),

where µθ−
j

and σθ−
j

are hyperparameters corresponding to the logit-scale pooled mean and variance of the
specificity of test j, and N+ is the positive half-normal distribution. Similarly we pool the estimates of the
intercept of the cubic polynomial modeling sensitivity (eq. 3), with test-specific mean µαj

and standard
deviation σαj

. Following (Gelman and Carpenter 2020) we choose weekly informative priors for σθ− , σα which
allows for weak pooling while letting significant variation between study estimates, and for µθ− and µα which
put two-thirds of the mass in the intervals (0.881, 0.997) and (0.731, 0.952) respectively.

The latent class model also allows for the inference of the probability of infection between visits, λ, for
which we give un-informative priors between 0 and 1. We also set weakly informative normal priors on the
time-varying sensitivity polynomial coefficients β1−3,j ∼ N (0, 1), and a strong prior on the sensitivity at 0
days post infection θ+

0,j ∼ N (0, 0.01) representing the fact that there is a lag between infection and immune
response buildup against SARS-CoV-2.

The prior probability of being infected, ρ, is set separately for each participants using information on eventual
SARS-CoV-2 test results during the study period. We assume the prior of being infected at baseline of a
participant had an RT-PCR positive result prior to the baseline visit was equal to the test specificity, here
assumed to be 98%. Conversely, if the participant reported having an RT-PCR positive result between the
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first and second visit, then the prior probability of being infected at baseline was of 2% (= 1− test specificity).
The prior was set to 50% if no diagnostic test data was available.

Posterior draws were obtained using a Hamiltonian Monte Carlo sampler as implemented in the Stan
programming language (Carpenter et al. 2017), through the package rstan (Stan Development Team 2020)
in R. We ran four chains in parallel with 250 warmup iterations and 1000 sampling iterations each. Chain
convergence was assessed using the Gelman-Rubin R̂ statistic (Gelman, Rubin, et al. 1992). The code used in
the analysis is available at https://github.com/UEP-HUG/serosuivi-public.
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Figure S8: Time-varying estimates of test sensitivity for the whole sample and the low-IQC lot.

S4 Simulation analysis

To quantify the impact of time-varying sensitivity on seroprevalence estimates when using conventional
methods for test performance correction. For each simulation seroprevalence level (varying between 10% and
90%) and epidemic scenario (single wave with early and late serosurvey, and two waves) described in the
Materials and Methods section of the main text, we generate a set of 2000 test results based on the estimates
of test specificity and time-varying sensitivity resulting from the analysis descried above.

We then estimate seroprevalence following a Bayesian hierarchical framework that allows for uncertain test
performance as described in Gelman and Carpenter 2020, which we define as the “conventional” approach.
Given the focus on changes in test sensitivity with time post infection, we treat specificity as a known and fix
its value to the one used to generate the simulated test results. Test sensitivity, θ+

j , is treated as unknown and
time-invariant, for which we pool estimates from other available studies, s, as detailed in Table S2, using the
same priors as described in section S3.5. Given simulated test results yi,j , seroprevalence is p then estimated
as:
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yi,j ∼ Binomial(pθ+
j + (1− p)(1− θ−j ))

logit(θ+
j,s) ∼ N (µθ+

j
, σθ+

j
)

µθ+
j
∼ N (4, 2)

σθ+
j
∼ N+(0, 1).

Parameter posterior samples were drawn using the same approach as in section S3.5.
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Natacha Noël, Princess Ojo Osarugue, Valérie Pascoli, Francesco Pennacchio, Javier Perez-Saez, Attilio
Picazio, Giovanni Piumatti, Didier Pittet, Jane Portier, Klara M Posfay-Barbe, Géraldine Poulain, Caroline
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Testini, Camille Tible, Didier Trono, Charlotte Verolet, Guillemette Violot, Nicolas Vuilleumier, Loic Widmer,
Manon Will, Ania Wisniak, Sabine Yerly, Maŕıa-Eugenia Zaballa
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