Pathway specific-population attributable fractions Supplementary information

Identification of PS-PAF under conditions 1 and 2.

The following is a proof of the identifiability formula for path-specific attributable fractions, using assumptions 1. and 2. detailed in the main manuscript. In the following and subsequent derivations, we assume that covariates, C and mediators M^1, \ldots, M^K have discrete distributions. The general cases of mixed discrete and continuous random variables with a well defined joint distribution follows similarly by replacing summations with integrals over general probability measures.

$$\begin{split} &P(Y_{A,G_{0|C}^{j}}=1) \\ &= \sum_{c,a,m^{j}} P(Y_{a,G_{0|C}^{j}}=1|A=a,C=c,G_{0|C}^{j}=m^{j})P(C=c)P(A=a|C=c)P(G_{0|C}^{j}=m^{j}|C=c,A=a) \\ &= \sum_{c,a,m^{j}} P(Y_{a,m^{j}}=1|A=a,C=c,G_{0|C}^{j}=m^{j})P(C=c)P(A=a|C=c)P(M_{0}^{j}=m^{j}|C=c) \\ &= \sum_{c,a,m^{j}} P(Y_{a,m^{j}}=1|A=a,C=c)P(C=c)P(A=a|C=c)P(M_{0}^{j}=m^{j}|C=c) \end{split}$$

$$= \sum_{c,a,m^j} P(Y_{a,m^j} = 1 | A = a, C = c) P(C = c) P(A = a | C = c) P(M_0^j = m^j | A = 0, C = c)$$

$$= \sum_{c,a,m^j} P(Y_{a,m^j} = 1 | A = a, C = c, M = m^j) P(C = c) P(A = a | C = c) P(M_0^j = m^j | A = 0, C = c)$$

$$= \sum_{c,a,m^j} P(Y = 1 | A = a, C = c, M = m^j) P(C = c) P(A = a | C = c) P(M = m^j | A = 0, C = c)$$

$$= E_{A,C}(E_{M^{j}|A=0,C}(P(Y=1|A,C,M^{j})))$$

The first equality follows from the double expectation theorem. The second equality follows from the definition of $G_{0|C}^{j}$ (which is generated from the distribution of M_{0}^{j} conditional on C, independently of A) and the 3rd equality since conditional on A and C, $G_{0|C}^{j}$ is independent of $Y_{a,m^{j}}$. The fourth equality follows as $M_{0}^{j} \perp A|C$. The fifth equality follows since $Y_{a,m} \perp M|A, C$. The sixth equality follows by consistency.

Identification of mechanistic PS-PAF under conditions 1, 2 and 4.

$$P(Y_{A,M_0^j} = 1)$$

$$=\sum_{c,a,m^j} P(Y_{a,M_0^j}=1|A=a,C=c,M_0^j=m^j) P(C=c) P(A=a|C=c) P(M_0^j=m^j|A=a,C=c) P(M_$$

$$=\sum_{c,a,m^j} P(Y_{a,m^j}=1|A=a,C=c,M_0^j=m^j) P(C=c) P(A=a|C=c) P(M_0^j=m^j|A=a,C=c) P(M_0^$$

$$= \sum_{c,a,m^j} P(Y_{a,m^j} = 1 | A = a, C = c) P(C = c) P(A = a | C = c) P(M_0^j = m^j | A = a, C = c)$$

$$= \sum_{c,a,m^j} P(Y_{a,m^j} = 1 | A = a, C = c) P(C = c) P(A = a | C = c) P(M_0^j = m^j | A = 0, C = c)$$

$$=\sum_{c,a,m^{j}}P(Y_{a,m^{j}}=1|A=a,C=c,M=m^{j})P(C=c)P(A=a|C=c)P(M_{0}^{j}=m^{j}|A=0,C=c)P(M_{0$$

$$= \sum_{c,a,m^j} P(Y=1|A=a,C=c,M=m^j) P(C=c) P(A=a|C=c) P(M=m^j|A=0,C=c)$$

$$= E_{A,C}(E_{M^{j}|A=0,C}(P(Y=1|A,C,M^{j})))$$

Here the proof is almost the same the proof of the path specific PAF. The main difference is the cross world assumption independence assumption: $Y_{a,m^j} \perp$ $M_0^j|A = a, C$ is needed to reduce $P(Y_{a,m^j} = 1|A = a, C = c, M_0^j = m^j)$ to $P(Y_{a,m^j} = 1|A = a, C = c)$ in the third equality. In contrast, in the previous argument, the equality $P(Y_{a,m^{j}} = 1 | A = a, C = c, G_{0|C}^{j} = m^{j}) = P(Y_{a,m^{j}} = 1 | A = a)$ a, C = c), follows since $G_{0|C}^{j}$ is randomly generated conditional on C and as a result is independent of Y_{a,m^j} conditional on A and C.

Identification of $PAF_{A->Y}$ under condition 3.

$$\begin{split} &P(Y_{0,M^{1},...,M^{K}}=1) \\ &= \sum_{c,m^{1},...,m^{K}} P(Y_{0,M^{1},...,M^{K}}=1|C=c,M^{1}=m^{1},...,M^{K}=m^{K})P(C=c)P(M^{1}=m^{1},...,M^{K}=m^{K}|C=c) \\ &= \sum_{c,m^{1},...,m^{K}} P(Y_{0,M^{1},...,M^{K}}=1|C=c,M^{1}=m^{1},...,M^{K}=m^{K},A=0)P(C=c)P(M^{1}=m^{1},...,|C=c) \\ &= \sum_{c,m^{1},...,m^{K}} P(Y=1|C=c,M^{1}=m^{1},...,M^{K}=m^{K},A=0)P(C=c)P(M^{1}=m^{1},...,M^{K}=m^{K}|C=c) \\ &= E_{C,M^{1}} M^{K}(P(Y=1|A=0,C,M^{1},...,M^{K})) \end{split}$$

$$= E_{C,M^1,...,M^K}(P(Y=1|A=0,C,M^1,...,M^K))$$

The first equality follows from iterated expectation theorem. Here the 3rd identifiability condition: $(Y_{0,M^1,\dots,M^K} \perp A | M^1,\dots,M^K \text{ is used to show } P(Y_{0,M^1,\dots,M^K} = 1 | C = c, M^1 = m^1,\dots,M^K = m^K) = P(Y_{0,M^1,\dots,M^K} = 1 | C = c, M^1 = m^1,\dots,M^K = m^K, A = 0)$ in the second equality. The final equality follows from consistency.

Non parametric structural equations and the validity of the cross world assumption

Under the assumption that the joint distribution of (C, A, M, Y) follows a non-parametric structural model, the cross world condition: $Y_{a,m} \perp M_0 | A =$

a, C is satisfied. For simplicity of notation, we describe a one mediator situation in what follows; a similar argument can be used to demonstrate the same result when there are K > 1 mediators. Effectively the non-parametric structural equations model implies the joint distribution is generated sequentially from unknown deterministic functions F_C, F_A, F_M, F_Y as follows:

$$C = F_C(U_C)$$
$$A = F_A(C, U_A)$$
$$M = F_M(C, A, U_M)$$
$$Y = F_Y(C, A, M, U_Y)$$

where, U_C , U_A , U_M and U_Y are independent noise random variables that add stochasticity to the joint distribution. Potential outcomes can be easily derived using the above equations. For instance, conditioning on A=a and C,

 $M_0 = F_M(C, 0, U_M)$ is a function of U_M , since $C = F_C(U_C)$ is conditioned on. Also $Y_{a,m} = F_Y(C, a, m, U_Y)$ is a function of U_Y , again since C is conditioned on. Since U_M and U_Y are independent, $Y_{a,m} \perp M_0 | A = a, C$

References

 A. Sjölander, "Mediation analysis with attributable fractions," *Epidemi*ologic Methods, vol. 7, no. 1, 2018.