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Abstract 

The time-varying reproduction number (Rt: the average number secondary infections caused by each 
infected person) may be used to assess changes in transmission potential during an epidemic. While 
new infections are not usually observed directly, they can be estimated from data. However, data may 
be delayed and potentially biased. We investigated the sensitivity of Rt estimates to different data 
sources representing Covid-19 in England, and we explored how this sensitivity could track epidemic 
dynamics in population sub-groups.  

We sourced public data on test-positive cases, hospital admissions, and deaths with confirmed Covid-
19 in seven regions of England over March through August 2020. We estimated Rt using a model that 
mapped unobserved infections to each data source. We then compared differences in Rt with the 
demographic and social context of surveillance data over time.  

Our estimates of transmission potential varied for each data source, with the relative inconsistency of 
estimates varying across regions and over time. Rt estimates based on hospital admissions and 
deaths were more spatio-temporally synchronous than when compared to estimates from all test-
positives. We found these differences may be linked to biased representations of subpopulations in 
each data source. These included spatially clustered testing, and where outbreaks in hospitals, care 
homes, and young age groups reflected the link between age and severity of disease. 

We highlight that policy makers could better target interventions by considering the source 
populations of Rt estimates. Further work should clarify the best way to combine and interpret Rt 
estimates from different data sources based on the desired use. 
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Background 

Within six months of its emergence in late 2019, the novel coronavirus SARS-CoV-2 had caused over 
six million cases of disease (Covid-19) worldwide (1). Its rapid initial spread and high death rate 
prompted global policy interventions to prevent continued transmission, with widespread temporary 
bans on social interaction outside the household (2). Introducing and adjusting such policy measures 
depends on a judgement in balancing continued transmission potential with the multidimensional 
consequences of interventions. It is therefore critical to inform the implementation of policy measures 
with a clear and timely understanding of ongoing epidemic dynamics (3,4). 

In principle, transmission could be tracked by directly recording all new infections. In practice, real-
time monitoring of the Covid-19 epidemic relies on surveillance of indicators that are subject to 
different levels of bias and delay. In England, widely available surveillance data across the population 
includes: 1) the number of positive tests, biased by changing test availability and practice, and 
delayed by the time from infection to symptom onset (if testing is symptom-based), from symptom 
onset to a decision to be tested and from test to test result; 2) the number of new hospital admissions, 
biased by differential severity that triggers care seeking and hospitalisation, and additionally delayed 
by the time to develop severe diseases; and 3) the number of new deaths due to Covid-19, biased by 
differential risk of death and the exact definition of a Covid-19 death, and further delayed by the time 
to death. 
 
Each of these indicators provides a different view on the epidemic and therefore contains potentially 
useful information. However, any interpretation of their behaviour needs to reflect these biases and 
lags and is best done in combination with the other indicators. One approach that allows this in a 
principled manner is to use the different data sets to separately track the time-varying reproduction 
number, Rt, the average number of secondary infections generated by each new infected person (5). 
Because Rt quantifies changes in infection levels, it is independent of the level of overall 
ascertainment as long as this does not change over time or is explicitly accounted for (6). At the same 
time, the underlying observations in each data source may result from different lags from infection to 
observation. However, if these delays are correctly specified then transmission behaviour over time 
can be consistently compared via estimates of Rt. 

Different methods exist to estimate the time-varying reproduction number, and in the UK a number of 
mathematical and statistical methods have been used to produce estimates used to inform policy (7–
9). Empirical estimates of Rt can be achieved by estimating time-varying patterns in transmission 
events from mapping to a directly observed time-series indicator of infection such as reported 
symptomatic cases. This can be based on the probabilistic assignment of transmission pairs (10), the 
exponential growth rate (11), or the renewal equation (12,13). Alternatively, Rt can be estimated via 
mechanistic models which explicitly compartmentalise the disease transmission cycle into stages from 
susceptible through exposed, infectious, and recovered (14,15). This can include accounting for 
varying population structures and context-specific biases in observation processes, before fitting to a 
source of observed cases. Across all methods, key parameters include the time after an infection to 
the onset of symptoms in the infecting and infected, and the source of data used as a reference point 
for earlier transmission events (16,17). 

In this study, we used a modelling framework based on the renewal equation, adjusting for delays in 
observation to estimate regional and national reproduction numbers of SARS-Cov-2 across England. 
The same method was repeated for each of three sources of data that are available in real time. After 
assessing differences in Rt estimates by data source, we explored why this variation may exist. We 
compared the divergence between Rt estimates with spatio-temporal variation in case detection, and 
the proportion at risk of severe disease, represented by the age distribution of test positive cases and 
hospital admissions and the proportion of deaths in care homes. 
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Methods 

Data management 

Three sources of data provided the basis for our Rt estimates. Time-series case data were available 
by specimen date of test. This was a de-duplicated dataset of Covid-19 positive tests notified from all 
National Health Service (NHS) settings (Pillar One of the UK Government’s testing strategy)(18) and 
by commercial partners in community settings outside of healthcare (Pillar Two). Hospital admissions 
were also available by date of admission if a patient had tested positive prior to admission, or by the 
day preceding diagnosis if they were tested after admission. Death data were available by date of 
death and included only those which occurred within 28 days of a positive Covid-19 test in any setting. 
All data were publicly available and taken from the UK government source (19,20), and were 
aggregated to the seven English regions used by the NHS. 

To provide context for Rt estimates, we sourced weekly data on regional and national test positivity 
(percentage positive tests of all tests conducted) from Public Health England (21), available as weekly 
average percentages from 10th May. From the same source, we also identified the age distributions 
of cases admitted to hospital and all test-positive cases. Hospital admissions by age were available as 
age bands with rates per 100,000, so we used regional population data from 2019 (22) to approximate 
the raw count.  We separately sourced daily data on the number of deaths in care homes by region 
from March, available from 12th April (23). Care homes are defined as supported living facilities 
(residential homes, nursing homes, rehabilitation units and assisted living units). Data were available 
by date of notification, which included an average 2-3 day lag after the date of death. We also drew on 
a database which tracked Covid-19 UK policy updates by date and area (24). 

Rt estimation 

We estimated Rt using EpiNow2 version 1.2.0, an open-source package in R (13,25,26). This 
package implements a Bayesian latent variable approach using the probabilistic programming 
language Stan (27). To initialise the model, infections were imputed prior to the first observed case 
using a log linear model with priors based on the first week of observed cases. This means that the 
initial observations both inform the initial parameters and are then also fit, which makes the initial Rt 
estimates less reliable than later estimates. This was a pragmatic choice to allow the model to be 
identifiable when only estimating part of the observed epidemic. We explored other parameterisations, 
but these suffered from poor model identification.  For each subsequent time step with observed 
cases, new infections were imputed using the sum of previous modelled infections weighted by the 
generation time probability mass function, and combined with an estimate of Rt, to give the 
prevalence at time t (12). The generation time was assumed to follow a gamma distribution that was 
fixed over time but varied between samples, with priors drawn from the literature for the mean and 
standard deviation (28). 

These infection trajectories were mapped to reported case counts (Dt) by convolving over an 
incubation period distribution and report delay distribution (ξ). We assumed a negative binomial 
observation model for observed reported case counts (Ct), with overdispersion � using an exponential 
prior with mean 1 and mean Dt. We combined this with a multiplicative day of the week effect 
(ω(tmod7)) with an independent effect for each day of the week. We controlled temporal variation 
using an approximate Gaussian process (29) with a squared exponential kernel (GP).  

In mathematical notation: 

�� ~ ���� � GP 
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The length scale and magnitude of the kernel were estimated during model fitting. We used an 
inverse gamma prior for the length scale, optimising shape and scale values to give a distribution with 
98% of the density between 2 and 21 days, and the prior on the magnitude was standard normal.  
Each region was fitted independently using Markov-chain Monte Carlo (MCMC). Eight chains were 
used with a warmup of 1,000 samples and 2,000 samples post warmup. Convergence was assessed 
using the R hat diagnostic. 

We used a gamma distributed generation time with mean 3.6 days (standard deviation (SD) 0.7), and 
SD of 3.1 days (SD 0.8), sourced from (28). Instead of the incubation period used in the original study 
(which was based on fewer data points), we refitted using a log-normal incubation period with a mean 
of 5.2 days (SD 1.1) and SD of 1.52 days (SD 1.1)(30). This incubation period was also used to 
convolve from unobserved infections to unobserved symptom onsets (or a corresponding viral load in 
asymptomatic cases) in the model. When fitting the model, the time interval distributions had 
independent priors placed on the mean and standard deviation of their respective log-normal 
distributions.  
 
We estimated both the delay from onset to positive test (either in the community or in hospital) and 
the delay from onset to death as log-normal distributions using a subsampled Bayesian bootstrapping 
approach (with 100 subsamples each using 250 samples) from given data on these delays.  Our delay 
from date of onset to date of positive test (either in the community or in hospital) was taken from a 
publicly available linelist of international cases (31). We removed countries with outlying delays 
(Mexico and the Philippines). The resulting delay data had a mean of 4.4 days and standard deviation 
(SD) 5.6. Delays for hospital admissions and test positives were treated as having the same delay 
from infection to onset and observation. For the delay from onset to death we used data taken from a 
large observational UK study (32). We re-extracted the delay from confidential raw data, with a mean 
delay of 14.3 days (SD 9.5). There was insufficient data available on the various reporting delays to 
estimate spatially- or temporally-varying delays, so they were considered to be static over the course 
of the epidemic, although we discuss the effects of this assumption. We have also discussed this 
approach more extensively in (25).  

Comparison of Rt estimates 

We compared Rt estimates by data source, plotting each by region over time. To avoid the first 
epidemic wave obscuring visual differences, all plots were limited to the earliest date that any Rt 
estimate for England crossed below 1 after the peak. We also identified the time at which each Rt 
estimate fell below 1, the local minima and maxima of median Rt estimates, and the number of times 
in the time-series that each Rt estimate crossed its own median, before comparing these across 
regions and against the total count of the raw data.  

We investigated correlations between Rt estimates and the demographic and social context of 
transmission. We used linear regression to assess whether the level of raw data count influenced 
oscillations in Rt. We assessed the influence of local outbreaks using test positivity. We used a 5% 
threshold for positivity as the level at which testing is either insufficient to keep pace with widespread 
community transmission (33), or where outbreaks have already been detected and tests targeted to 
those more likely to be positive. We plotted this against raw data and Rt, and also used linear 
regression to test the association. We interpreted results in light of known outbreaks and policy 
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changes. We plotted and qualitatively assessed variation in Rt estimates against the age distribution 
of cases over time, and similarly explored patterns in Rt estimates against the qualitative proportion of 
cases to all deaths. The latter was not assessed quantitatively due to differences in reference dates 
(23). With the exception of fitting the delay from onset to death (held confidentially), code and data to 
reproduce this analysis is available (34). 

Results 
 
[Figure 1] 

Across England, the Covid-19 epidemic peaked at 4,798 reported test-positive cases (on the 22nd 
April), 3,099 admissions (1st April), and 975 deaths (8th April) per day (Figure 1A). Following the peak, 
a declining trend continued for daily counts of admissions and deaths, while daily case counts from all 
reported test-positive cases increased from July and had more than tripled by August (from 571 on 
30th June to 1,929 on 1st September). Regions followed similar patterns over time to national trends. 
However, in the North East and Yorkshire, Midlands, and North West, incidence of test-positive cases 
did not decline to near the count of admissions as in other regions, and also saw a small temporary 
increase during the overall rise in case counts in early August. 

[Figure 2] 

Following the initial epidemic peak in mid-March, the date at which Rt estimates crossed below 1 
varied by both data source and geography (Figure 1B, Figure 2). The first region to cross into a 
declining epidemic was London, on the 26th March according to an Rt estimated from deaths (where 
the lower 90% CrI crossed below 1 on the 24th and the upper CrI on the 28th March). However, the 
data source used to estimate Rt was as important as any regional variation in estimating the earliest 
date of epidemic decline. Rt estimated from hospital admissions gave the earliest estimate of a 
declining epidemic, while using all test-positive cases to estimate Rt took the longest time to reach a 
declining epidemic, in all but one region (East of England). This difference by data source varied by 
up to 21 days in the North East and Yorkshire, where hospital admissions gave a median Rt estimate 
under 1 on the 1st April (90%CrIs 31st March, 2nd April), but the median Rt estimate from test-positive 
cases crossed 1 on only the 22nd April (90%CrIs 1st April, 25th April). 

When not undergoing a clear state change, Rt estimates from all data sources oscillates, with 
oscillations damped when Rt estimates were transitioning to new levels. In England and all NHS 
regions, test-positive cases showed evidence of larger damped oscillations from July when a state 
change occurred to Rt over 1. In England, Rt estimates from test-positive cases increased from 0.99 
(90%CrI 0.94-1.04) on 30th June to 1.37 (90%CrI 1.31-1.1.44) on 27th August. Meanwhile, the timing 
and duration of oscillations did not align between Rt estimates (Figure 1B). In some regions, the 
difference between Rt estimates was consistent over time, such as between Rt from admissions and 
deaths in the South East. In other regions such as the Midlands this was not the case, with the 
divergence between the Rt estimates from test-positive cases, admissions, and deaths each varying 
over time. Rt estimates from test-positive cases were the most likely to differ from estimates derived 
from other data sources across all regions. Across all regions, Rt estimates from deaths had slower 
damped oscillations compared to estimates from test-positive cases or hospital admissions. However, 
oscillations in Rt estimates did not appear to be linked to the level of raw data counts in each source 
(SI Figure 2).  
 
More rapid oscillations in Rt estimates from test-positive cases appeared to be linked to targeted 
testing of case clusters, seen in high test positivity (Table SI2). Both the North East and Yorkshire and 
the Midlands saw more frequent oscillations in Rt estimates from test-positive cases than other 
regions. The Rt estimates from cases crossed its own median 10 times over the time-series in both 
regions, while in all other NHS regions this averaged 6 times, and oscillations in Rt estimates from 
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cases also had a shorter duration in the North East and Yorkshire and the Midlands compared to 
other regions (Table SI1). Across all regions, 84% of weeks with over 5% positivity (N=19) were in the 
North East and Yorkshire and the Midlands (Figure 2A). In these regions, positivity peaked on the 
week of 9th May at 14% and 12% respectively, and overall averaged 6% (95%CI 4.4-7.6%) and 5.9% 
(95%CI 4.6-7.2%, weeks of 10th May to 22nd August) respectively. High test positivity is likely to have 
resulted from targeted testing among known local outbreaks in these regions. In the Midlands, these 
included local restrictions and increased testing across Leicester and in a Luton factory (restrictions 
between 4th and 25th July (35)). In Yorkshire case clusters were detected with local restrictions in 
Bradford, Calderdale, and Kirklees (with restrictions from 5 August (36)). 

In England, a divergence between Rt estimated from cases versus Rt estimated from deaths and 
admissions coincided with a decline in the age distribution among all test-positive cases in England to 
a younger population (Figure SI2A). From mid-April to June, national estimates of Rt from test-positive 
cases remained around the same level as those from admissions or deaths, while after this, cases 
diverged to a higher steady state (Figure 1A). On the 23rd May, the median Rt estimated from cases 
matched that of deaths at 0.83 (both with 90% CrIs 0.78-0.89), but this was followed by a 78 day 
period before the two estimates were again comparable, on 8th August. Over this period the median Rt 
estimate from cases was on average 14% higher (95%CI 12-15%). Meanwhile, the share of test-
positive cases under age 50 increased from under one-quarter of cases in the week of 28th March 
(24%, N=16,185), to accounting for nearly three-quarters of cases by 22nd August (77%, N=6,733). 
While the percentage of test-positive cases aged 20-49 increased consistently from April to August, 
the 0-19 age group experienced a rapid increase over mid-May through July, increasing by a mean 
1% each week over May 9th through August 1st (from 4% of 18,774 cases to 14.8% of 5,017 cases).  

Similarly, Rt estimates from admissions in England oscillated over June through July, potentially 
linked to the age distribution of hospital admissions. From 0.92 (90%CrI 0.87-0.98) on the 11th June, 
Rt estimated from admissions fell to 0.8 (90%CI 0.75-0.85)) on the 27th June. In contrast, this 
transition was not observed in the Rt estimate based on test-positive cases (Figure 1A). Older age 
groups dominated Covid-19 hospital admissions, where 0-44 years never accounted for more than 
12.8% of hospital-based cases (a maximum in the week of 22nd August, N=690; Figure SI2B). While 
the proportion of hospital admissions aged 75+ remained steady over May through mid-June, this 
proportion appeared to oscillate over July through August (standard deviation of weekly percentage at 
6.1 over June-August, compared to 5.4 in months March-May). These variations were not seen in the 
proportion aged 70+ in the test-positive case data, which saw a continuous decline from 30% at the 
start of June to 7% by August. 

Rt estimated from either admissions or deaths experienced near-synchronous local peaks across 
regions over April and May. We compared this Rt estimated from deaths with its source data and a 
separate regional dataset of deaths in care homes. In the South East and South West, the Rt 
estimates from deaths rose over April, with a peak in early May. In the South West, the median Rt 
estimate from deaths increased by 0.04 from 22nd April to 7th May (from 0.8 (90%CrI 0.72-0.88) to 
0.84 (90%CrI 0.76-0.95)); and by 0.06 from the 17th April to 4th May in the South East (from 0.82 
(90%CrI 0.77-0.9) to 0.88 (90%CrI 0.72-0.88)). In both these regions, this early May peak in Rt 
estimates from deaths coincided with similarly rising Rt estimates from hospital admissions, while the 
reverse trend was seen in Rt estimates from cases. In all regions, care home deaths peaked over the 
22nd-29th April (by date of notification; Figure SI3). This was later than regional peaks in the raw count 
of all deaths in any setting (which peaked between the 8th-16th April, by date of death), even 
accounting for a 2-3 day reporting lag. This meant that the proportion of deaths from care homes 
varied over time, where in the South East and South West, deaths in care homes appeared to 
account for nearly all deaths for at least the period mid-May to July.  

Discussion 
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We estimated the time-varying reproduction number for Covid-19 over March through August across 
England and English NHS regions, using test-positive cases, hospital admissions, and deaths with 
confirmed Covid-19. Our estimates of transmission potential varied for each of these sources of 
infections, and the divergence between estimates from each data source was not consistent within or 
across regions over time, although estimates based on hospital admissions and deaths were more 
spatio-temporally synchronous than compared to estimates from cases. We compared differences in 
Rt estimates to the extent and context of transmission and found that the difference between Rt 
estimated from cases, admissions, and deaths may be linked to uneven rates of testing, the changing 
age distribution of cases, and outbreaks in care home populations.  

Rt estimates varied by data source, and the extent of variation itself differed by region and over time. 
Following the initial epidemic peak in mid-March, the date at which Rt estimates crossed below 1 
varied by both data source and geography, following which Rt estimates from all data sources varied 
when not undergoing a clear state change. The differences in these oscillations by data source may 
indicate different underlying causes. This implies that each data source was influenced differently by 
changes in subpopulations over time. 
 
Increasingly rapid oscillations in Rt estimates from test-positive cases were associated with higher 
test-positivity rates. Increasing test-positivity rates could be an indication of inconsistent community 
testing, with the observation of an initial rise in transmission amplified by expanded testing and local 
interventions where a cluster of new, mild cases has been identified (18). This targeted testing may 
drive regionally localised instability in case detection and resulting Rt estimates but may not reflect 
changes in underlying transmission. This is a limitation of monitoring epidemic dynamics using test-
positive surveillance data in areas where testing rates vary across the population and over time. This 
also suggests that Rt estimates from admissions may be more reliable than that from all test-positive 
cases for indicating the relative intensity of an epidemic over time (37). 

We hypothesised that variations in Rt estimates were also related to changes in the age distribution of 
cases over time, because age is associated with severity (38,39). If each data source represented a 
different sample of this age-severity gradient, and transmission also varied by age or severity, Rt 
estimates from each source would diverge. Early in the epidemic, tests were largely limited to hospital 
settings, and disproportionately represented healthcare workers compared to the general population. 
This sampling bias would be reflected in the Rt from test-positive cases. The early peak in Rt could 
then represent a substantial separate route of transmission in healthcare settings, in a wave of 
nosocomial infections (40). If healthcare workers were less susceptible to severe disease than those 
older than working age, an early peak in Rt estimated from test-positive cases would not have been 
represented in Rt estimated from hospital admissions or deaths. Meanwhile, either hospital 
admissions or deaths data would be more representative of sampling a separate route of transmission 
among the general population. If infections spread through the general population later than 
nosocomial infections, then the timing of peaks in Rt estimates from each data source would not have 
matched. 

From late spring, outbreaks in care homes may have contributed to a divergence between Rt 
estimates from test positive cases and other data sources. All regions saw a near-synchronous local 
peak in Rt estimated from hospital admissions over spring, which was not seen in Rt estimated from 
test-positive cases. This may have reflected the known widespread regional outbreaks in care homes. 
The care home population is on average older and more clinically vulnerable than the general 
population, while also being less likely to appear for community testing (41,42). Increased 
transmission in care homes would then be seen in an increased Rt from hospital admissions, but not 
observed in an Rt from test-positive cases. 

Similarly, the age-severity gradient may have impacted transmission estimates later in the epidemic 
when community testing became more widely available. We found that from June onwards, Rt 
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estimates from all test-positive cases appeared to increasingly diverge away from Rt estimates from 
admissions and deaths, transitioning into a separate, higher, steady state. This was followed by the 
observed age distribution of all test-positive cases becoming increasingly younger, while the age 
distribution of admissions remained approximately level. Because of the severity gradient, this 
suggested the Rt estimates from all test-positive cases and admissions were more biased by the 
relative proportion of younger cases and older cases respectively than the Rt estimates from 
admissions or deaths.  

Our analysis was limited where data or modelling assumptions did not reflect underlying differences in 
transmission. Rt estimates can become increasingly uncertain and unstable with lower case counts. 
Further, estimated unobserved infections were mapped to reported cases or deaths using two delay 
distributions: the time from infection to test in the community or hospital, and a longer delay from 
infection to death. Mis-specification of the priors would have created bias in the temporal distribution 
of all resulting Rt estimates, with estimated dates of infection and Rt incorrectly shifted too much or 
little in time compared to the true infection curve, and decreased accuracy of Rt estimates (43).  

We used the same distribution priors for both delays after symptom onset to positive test, and to 
hospital admission. This may be inaccurate where cases with mild symptoms take longer to present 
for testing than severe cases presenting for hospital admission, or vice versa. The difference between 
the two delays over time may also have varied, with a possible decrease in delay to reported tests 
when mass community testing became available over the summer. This would have had a differential 
impact on the accuracy of Rt estimates over time in either direction, which could explain some of the 
oscillations in Rt estimates from test-positive case data compared to hospital admissions. We had no 
data over time on delays from symptom onset to reporting in each data source with which to test this 
hypothesis. However, we have mitigated some of the impact of this by using a sub-sampled bootstrap 
of the available delay data when estimating the delay distribution priors. This inflated the uncertainty 
of these priors in line with the hypothesis that they varied over time. This adjustment may be 
conservative if the delay distributions are stable over time. 

Spatial dependence in delay distributions may also have contributed to their mis-specification and 
increased uncertainty in Rt estimates. We observed that the variation in Rt estimates from admissions 
and deaths often showed comparable levels and patterns in oscillations over time but were out of 
phase with each other. This may have been due to using data sources from different populations for 
each delay estimate. To estimate the delay between symptom onset to either a positive test or 
hospitalisation, we used a linelist of all patients publicly reported globally, which had a mean delay 5.4 
days (SD 5.6). This varied only slightly from an early estimate in the UK epidemic, where the delay 
from onset to hospitalisation had a mean 5.14 days (SD 4.2) in confidential Public Health England 
(FF100) data (44). Meanwhile, the same global public linelist contained few records with delay from 
onset to death, with mean 11.4 (SD 16.5). We compared this to confidential UK data from an 
observational study which had mean delay 14.3 days (SD 9.5) (32).  

Comparing each type and source of delay, we judged the benefits of using open data to outweigh the 
minor observed spatial variation of the delay from onset to test or admission, although at the expense 
of increased uncertainty. However, we judged the difference in delay from onset to death in the UK 
compared to public (international) data was sufficiently meaningful to justify using confidential UK data 
in order to maintain accuracy of the Rt estimate from deaths. The difference in geographic source of 
delay distributions should not have substantially altered our conclusions about discrepancies between 
central estimates of Rt from either test-positives or admissions, compared to Rt estimated from 
deaths. However, using the international public linelist for the delay to test or admission may have 
introduced additional uncertainty around the respective Rt estimates, compared to greater accuracy 
(reduced uncertainty) in estimates of Rt from deaths based on a UK-specific delay distribution. 
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The data sources themselves may also have been inaccurate or biased, which would change the 
representation of the population we have assumed here. For example, we excluded data from other 
nations of the UK (Wales, Scotland and Northern Ireland) in our analysis, as these differed in both 
availability over time and in data collection and reporting practices (19,45). English regional data may 
also contain bias where new parts of the population might be under focus for testing efforts, or the 
population characteristics of hospital admissions from Covid-19 may have changed over time with 
changes in clinical criteria or hospital capacity for admission. This would mean that an Rt estimate 
from these data sources would represent different source populations over time, limiting our ability to 
reliably compare against Rt estimates from other data sources. Where possible we highlighted this by 
comparing Rt estimates to known biases and changes in case detection and reporting. 

Our approach is unable to make strong causal conclusions about varying transmission, and 
assumptions about sampling and the representation of subpopulations remain implicit. Alternatively, 
varying epidemics in subpopulations could have been addressed with mechanistic models that 
explicitly consider transmission in different settings and are fitted to multiple data sources. However, 
these require additional assumptions, detailed data to parameterise, and may be time-consuming to 
develop. In the absence of data, the number of assumptions required for these models can introduce 
inherent structural biases. Our approach contains few structural assumptions and therefore may be 
more robust when data are sparse, or information is required in real-time. 

We conclude that when estimating Rt, the choice of data source should be guided by the policy 
context in which the estimates will be used and interpreted. This work highlights that there is no clear 
superior choice of data source, while Rt estimates are sensitive to assumptions about the underlying 
population of each data source. This means that both producers and users of Rt estimates should 
understand relevant biases in the data source’s population sampling strategy, such as by community 
case detection or patient severity, before drawing conclusions about transmission in the population as 
a whole. 
 
We also recommend presenting concurrent Rt estimates jointly, rather than pooling estimates of Rt 
from different data sources. Pooling estimates would both suffer from unclear weighting and lose 
useful information about variation in subpopulation transmission. Although the reconstruction of the 
underlying transmission process from the reporting processes is robust, it is unclear how weights 
would be assigned based on likelihood to estimates from different data sources. Further, the variation 
in concurrent Rt estimates provides more information about population transmission than any single 
estimate, when considered in light of the sampling biases of each data source. This additional 
information can be useful to identify transmission intensity by subpopulation where access to high 
quality disaggregated data may not be available in real time. While this can be difficult to interpret 
without specific knowledge of population structure and dynamics, this information would be lost 
altogether in a single or pooled estimate of Rt. In contrast, if policy were to be based on either a single 
or an averaged Rt estimate, it would be unclear what any recommendation should be and for whom.  

Future work could explore systematic differences in the influence of data sources on Rt estimate by 
extending the comparison of Rt by data source to other countries or infectious diseases. Additionally, 
work should also clarify the potential for comparing Rt estimates in real-time tracking of outbreaks and 
explore the inconsistencies in case detection over time and space, where a cluster of cases leads to a 
highly localised expansion of community testing, creating an uneven spatial bias in transmission 
estimates. These findings may be used to improve Rt estimation and identify findings of use for 
epidemic control. Based on the work presented here we now provide Rt estimates, updated each day, 
for test positive cases, admissions, and deaths in each NHS region and in England. Our estimates are 
visualised on our website, are available for download, and are produced using publicly accessible 
code (46,47). 
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Tracking differences by data source can improve understanding of variation in testing bias in data 
collection, highlight outbreaks in new subpopulations and indicate differential rates of transmission 
among vulnerable populations, and clarify the strengths and limitations of each data source. Our 
approach can quickly identify such patterns in developing epidemics that might require further 
investigation and early policy intervention. Our method is simple to deploy and scale over time and 
space using existing open-source tools, and all code and estimates used in this work are available to 
be used or re-purposed by others. 
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Figure 1. Epidemic dynamics across (A) England and (B-H) seven English National Health Service 
regions, 5th April through 27th August 2020. A1-H1: Daily counts of confirmed cases by data source, 
as centred seven day moving average. Counts marked with crosses indicate dates within weeks 
which averaged >5% test positivity (positive / all tests per week). Vertical dotted line indicates the start 
of national mass community testing on 3rd May. A2-H2: Estimates of Rt, (median, with 50% (darker 
shade) and 90% (lightest shade) credible interval), derived from each data source. Data sources 
include all test-positive cases, hospital admissions, and deaths with a positive test in the previous 28 
days. 
 
  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 18, 2021. ; https://doi.org/10.1101/2020.10.18.20214585doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.18.20214585
http://creativecommons.org/licenses/by/4.0/


 

14 

 

Figure 2. Dates on which Rt estimate crossed 1 after first epidemic peak, median and 90% credible 
interval, by data source for England and seven NHS regions. 
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