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Abstract

Three key elements are the drivers of Aedes-borne disease: mosquito infestation, virus circulating, 

and susceptible human population. However, information on these aspects are not easily available in 

low- and middle-income countries. We analysed data on factors that influence one or more of those 

elements to  study the first  chikungunya epidemic in Rio de Janeiro city in 2016. Using spatio-

temporal models, under the Bayesian framework, we estimated the association of those factors with 

chikungunya notified cases by neighbourhood and week. To estimate the minimum temperature 

effect in a non-linear  fashion, we used a transfer function considering an instantaneous effect and 

propagation of a proportion of such effect to future times. The sociodevelopment index and the 

proportion of green areas were included in the model with time-varying coefficients, allowing us to 

explore how their associations change throughout the epidemic. There were 13627 chikungunya 

cases in the study period. The sociodevelopment index presented the strongest association, inversely 

related with the risk of cases. Such association was more pronounced in the first weeks, indicating 

that socioeconomically vulnerable neighbourhoods were affected first and hardest by the epidemic. 

The  proportion  of  green  areas  effect  was  null  for  most  weeks.  The  temperature  was  directly 

associated with the risk of chikungunya for most neighbourhoods, with different decaying patterns. 

The temperature effect persisted longer  where the epidemic was concentrated. In such locations, 

interventions should be designed to be continuous and to work in the long term. We observed that 

the role of the covariates change over time. Therefore, time-varying coefficients should be widely 

incorporated when modelling Aedes-borne diseases. Our model contributed to the understanding of 

the  spatio-temporal  dynamics  of  an  urban  Aedes-borne  disease  introduction  in  a  tropical 

metropolitan city. 
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Author Summary

Viruses transmitted by the  Aedes  mosquitoes represent a major public health concern.  With the 

abundance of the mosquito and susceptible human population, the entry of new Aedes-transmitted 

virus brings the risk of large epidemics. The first-ever chikungunya epidemic in Rio de Janeiro city,  

Brazil,  happened  in  2016.  We  used  information  neighbourhood  information  on  environment, 

socioeconomic status, and weekly temperature,  to study the disease spread within the city.  Our 

results  show that  better  socioeconomic status play a major  role  in  preventing the disease,  with 

poorer  areas  being  affected  first  and  harder  by  the  epidemic.  This  highlights  that  improving 

socioeconomic  and  sanitary  conditions  are  essential  for  Aedes-borne  diseases  prevention  and 

control.  The temperature  increased  the  risk of  chikungunya cases,  and this  effect  persisted  for 

longer in areas where the epidemic was concentrated. This indicates that interventions should be 

designed to be long-lasting in such locations. Our results contribute to understanding better the 

dynamics of a first urban  Aedes-borne disease epidemic in a tropical metropolitan city, with the 

potential to help design better interventions for disease prevention and control.
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Introduction

The first  chikungunya virus  (CHIKV) epidemic  in  Rio de  Janeiro  city,  the  second most 

populated  city  in  Brazil  and  its  leading  tourist  destination,  occurred  in  2016  [1].  CHIKV  is 

transmitted to humans by the same vectors as dengue viruses (DENV), the Aedes mosquitoes [2]. 

Vector-control  activities have not prevented Rio de Janeiro from being endemic for dengue for 

years, nor from having experienced large dengue epidemics every three to four years, in general [3–

5]. 

For a chikungunya epidemic to occur, three main elements are necessary, represented by the 

blue area in Fig 1: mosquito population, susceptible human population, and the virus circulating [6–

8].  The  Ae.  aegypti mosquito  is  present  all  over  the city  of  Rio de  Janeiro,  facilitating  a  new 

arbovirus  is  established.  Because  CHIKV  and  DENV  belong  to  different  families,  previous 

immunity to DENV does not cross-react with CHIKV, and the population of Rio de Janeiro can be 

considered equally naïve to CHIKV before 2016. Therefore, given the presence of the mosquito 

population and susceptible human population, the occurrence of local CHIKV transmission in Rio 

de Janeiro was conditioned by the entry of the virus. Once the virus is circulating and established, 

how it will spread within the city depends on multiple factors. As a consequence, some areas of the 

city will experience the epidemic at different times, and will also have different attack rates. 
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Fig 1. A theoretical model for a chikungunya epidemic in a given region. Direct associations 

are  represented  by  black  arrows  and  indirect  associations  by  red  arrows.  The  blue  area 

includes the necessary elements for the epidemic to occur.

Reliable  data  regard to  the intra-urban level  of  vector  population,  the susceptible  human 

population over time, and  the entry time of the virus in each location are necessary to understand 

the  spatio-temporal  dynamics  of  an  epidemic.  However,  these  data  are  not  usually  available. 

Alternatively, measured factors – such as temperature, socioeconomic and environmental factors – 

indirectly associated with the number of chikungunya cases (represented by red arrows in Fig 1) can 

be used as proxies. These factors have a direct effect (represented by black arrows in Fig 1) on the 

necessary elements for an epidemic to occur (inside the blue area), which are unmeasured.  The 

temperature  varies  with  time,  and  also  present  different  effects  on  the  epidemic  over  time. 

Socioeconomic and environmental characteristics take long periods to show important changes and 

can be considered fixed during the period of an epidemic. However, the way these factors impact 

the number of cases can change as the epidemic progresses, i.e., with time-varying effects.
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The  temperature  affects  the  Ae.  aegypti population,  the  virus,  and  the  mosquito-virus 

interaction  [9].  Ideal  temperature  conditions  accelerate  all  stages  of  the  mosquito  life  cycle, 

increasing  the  population  in  the  long  term.  In  the  short  term,  the  temperature  influences  the 

mosquito activity as well as the  length of the virus incubation period, with maximal transmission 

occurring around 26–29°C [10]. Regarding the environment, the Ae. aegypti mosquitoes are highly 

adapted to urban settings, and the level of urbanisation is inversely correlated with the proportion of 

green  areas  [11].  The  socioeconomic  status  impacts  the  mosquito  population  as  disorderly 

urbanisation and inadequate sanitary conditions favour the presence of the mosquito most common 

reproduction site:  containers filled with water  found inside or in the surroundings of domiciles 

[12,13]. Furthermore, high population densities favour the contact between the mosquito and the 

human, increasing the chance of infection and transmission [14].

In the last decades, models that take into account the spatial dependency structure of the 

cases  have  been  applied  to  better  estimate  covariates’ association  with  Aedes-borne  diseases 

epidemics  [15–18].  The application  of  spatial  models  for  intra-urban settings  is  growing more 

recently  [19–22].  These model types, as the intrinsic conditional autoregressive (ICAR) models 

[23], are built under the assumption that adjacent areas share similar characteristics. The inclusion 

of a latent spatial random effect accounts for both the spatial structure and unmeasurable factors 

[24]. The inclusion of time-varying coefficients allows us to explore how the effect of the covariates 

change  throughout  the  epidemic.  The  temperature  is  usually  included  in  statistical  models  for 

Aedes-borne diseases in a linear  fashion and with a pre-defined lag. We propose to estimate the 

temperature effect in  a non-linear  framework using a  transfer function,  including an immediate 

effect and a memory effect that propagates to future times. Another advantage of using a transfer 

function is that the estimation of the lag of the effect is data-driven [25].

We used this methodological approach (ICAR models with time-varying coefficients and a 

transfer function) to identify how temperature, socioeconomic and environmental factors are related 
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to the space-time progression of an Aedes-borne disease epidemic in an intra-urban setting. The first 

chikungunya  epidemic  in  Rio  de  Janeiro,  a  large  tropical  city  with  environmental  and 

socioeconomic disparities,  presents ideal conditions to this end.

Methods

Study site

Rio de Janeiro is the second-largest city in Brazil, with 6,3 million inhabitants (2010), and its 

primary tourist destination. Rio’s area is of 1204 km², with 160 neighbourhoods grouped into four 

large  regions  (Downtown,  South,  North  and West).  These  regions  are  subdivided in  10  health 

districts called programmatic areas: area 1.0 (Downtown region); areas 2.1 and 2.2 (South region); 

areas 3.1, 3.2, 3.3 (North region); and areas 4.0, 5.1, 5.2 and 5.3 (West region) (Fig 2). 

Fig 2. Rio de Janeiro city by programmatic areas and neighbourhoods, 2010, Brazil.

With three mountain massifs and 84 km of beaches,  Rio has a diverse geography that is 

directly  associated with the history of occupation and with socioeconomic disparities  [26].  The 

Downtown region is the historical, commercial and financial centre of the city, with many cultural 
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establishments. The South region is the most popular tourist destination, with famous beaches and 

wealthy neighbourhoods. In the North region, there are very large slums (“favelas”) and nearly 27% 

of the population, almost 2.4 million people, live in such communities  [27]. The West region has 

more heterogeneous characteristics among its  neighbourhoods,  being the area 5.1 more densely 

populated, areas 5.2 and 5.3 less urbanised, and area 4.0 wealthier. 

Data

Chikungunya cases

Data on chikungunya cases were obtained from the Notifiable Diseases Information System 

(SINAN) via the Rio de Janeiro Municipal Secretariat of Heath and are publicly available [28].

We  analysed  notified  cases  of  chikungunya  (confirmed  by  laboratory  or  clinical-

epidemiological criteria) occurring in Rio de Janeiro municipality between January and December 

2016, by week and neighbourhood of the patient’s residence. 

Case definitions follow the Ministry of Health protocols. A suspected case of chikungunya is 

defined as a patient with sudden fever of over 38.5°C and severe arthralgia or arthritis not explained 

by other conditions, and who either lives in endemic areas or has visited one up to two weeks before 

the onset of symptoms or has an epidemiological link with a confirmed case. A confirmed case is a 

suspected  case  with  at  least  one  positive  specific  laboratory  test  for  CHIKV or  confirmed  by 

clinical-epidemiological criteria [29].

Socioeconomic data

To characterise the socioeconomic status, we obtained the sociodevelopment index data by 

neighbourhood from the Instituto Pereira Passos [30]. This index is based on eight indicators from 

the 2010 Demographic Census: 1) the percentage of domiciles with adequate water supply; 2) the 

percentage  of  domiciles  with  adequate  sewage;  3)  the  percentage  of  domiciles  with  garbage 

collection;  4) the average number of toilets  per  resident;  5) the percentage of illiteracy among 
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residents  between  10  and  14  years  old;  6)  per  capita  income  of  the  domiciles,  expressed  as 

minimum wages; 7) the percentage of domiciles with per capita income up to one minimum wage, 

and 8) the percentage of domiciles with per capita income greater than five minimum wage. The 

sociodevelopment index is calculated as the arithmetic average of the normalised indicators (each 

ranging from 0 to 1, being 0 the worst socioeconomic condition and 1, the best) [30]. 

We also obtained data on the population by neighbourhood from the Instituto Pereira Passos 

[31].

Environment and temperature data

Land use data for the city of Rio de Janeiro were obtained from the Instituto Pereira Passos 

as a shapefile [32]. We created the category “green areas” by aggregating: agricultural areas, areas 

with swamps and shoals, areas with tree and shrub cover, and areas with woody-grass cover. After 

that, we calculated the proportion of green areas for each neighbourhood (Fig 4B). 

Temperature information for 2016 was obtained from 38 meteorological weather stations in 

Rio de Janeiro, from five different meteorological and environmental institutes.  The institutes are 

the Brazilian National Institute of Meteorology  [33], the Brazilian Airspace Control Department 

[34],  the  Rio  de  Janeiro  State  Environmental  Institute  [35],  the  Rio  de  Janeiro  Municipal 

Environmental  Secretariat  [36] and  the  Alerta  Rio System  [37].  All  measurements  are  made 

according to the recommendations of the World Meteorological Organization  [38]. The institutes 

make their meteorological data publicly available, being that the frequency of measurements of the 

first four organisations is hourly, while the  Alerta Rio System measurements are made every 15 

minutes. 

From the temperature measurements, we computed the daily maximum, minimum and mean 

temperature. We also evaluated the availability of daily data in terms of missing measurements. The 

daily records that had more than 60% of missing measurements were excluded. We decided to use 

the minimum temperature as  in tropical climates it  acts  as a limiting factor for the  Ae. aegypti 
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activity and population  [39,40].  We then obtained the minimum temperature for each week and 

station, and, to obtain the minimum temperature by neighbourhood, we applied universal kriging. 

Briefly,  kriging is  a method that uses a sample of data points to estimate the value of a given 

variable over a continuous space  [41]. First, we interpolated the minimum temperature to a grid 

with each unit measuring 500m x 500m. The grid with the meteorological weather stations locations 

is displayed in  the S1 Fig. Then we obtained the minimum temperature of the neighbourhood by 

calculating the average of the minimum temperature of the grid units whose centroids were within 

the boundaries of the neighbourhood.

To process and organise the environmental data, we used R version 3.6.1 [42] and packages 

sf [43], geoR [44] and tidyverse [45]. 

Statistical analysis

We used the Stan platform  [46,47] to fit spatio-temporal models, more specifically ICAR 

models,  to  a  dataset  consisting  of  neighbourhoods  counts  of  chikungunya  cases,  exploring  the 

relationship with sociodevelopment index, the proportion of green areas and minimum temperature. 

Let Yi,t be the counts of chikungunya cases at neighbourhood i = 1, 2, …, n = 160, and week t = 1, 2, 

… , T, where Y i ,t∼Poisson(μi ,t) .  We explored different structures for μi,t, presented in the S1 

Appendix along with each Watanabe-Akaike information criterion (WAIC) [48]. The model selected 

based on the WAIC has the following structure: 

log (μ i ,t)= log (e i)+β0+ X 'iβk , t+U i ,t +ϕi

U i ,t=ρiU i , t−1+ζ iTemperaturei ,t (1)

The  latent  spatial  effect  is  represented  by  ɸ,  which,  a  priori,  follows  a  conditional 

autoregressive distribution  [23]; that is,  the conditional distribution of each  ɸi follows a normal 

distribution  whose  mean and variance  depend  on the  neighbourhood structure  wij.  Assuming a 

binary neighbourhood structure, where wij=1 if areas i and j share borders and 0 otherwise, each ɸi 
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follows a conditional normal distribution whose mean is equal to the average of its neighbours, and 

its variance is inversely proportional to the number of neighbours di, that is:

p(ϕi∣ϕi∼ j)=N (
∑
i∼ j

ϕi

di

,
σ

2

d i
) (2)

The expected number of chikungunya cases at neighbourhood i (ei) represents the number of 

cases that would have been observed if there were no differences in the incidence of cases across 

time and space:

e i=(
∑
i=1

n

∑
t=1

T

Y i ,t

∑
i=1

n

populationi

populationi)/T (3) ,

β0 is the intercept, X’i represents a vector of k covariates and βk,t is the coefficient of covariate k in 

week  t.  We decided to  allow for time-varying coefficients for the covariates to explore if  their 

association with the number of cases vary as the epidemic progresses. The covariates included in 

the X’i vector were sociodevelopment index and proportion of green areas. The proportion of green 

areas showed a skewed distribution. Therefore, this variable was transformed to the cubic root. We 

also fitted models including the population density. However, the 90% credible interval (CI) of the 

population  density  coefficient  included  0  for  most  weeks,  and  the  inclusion  of  this  variable 

increased the WAIC . Therefore, the population density was not considered in the final model.

We estimated the temperature effect in a non-linear  fashion using a transfer function (Ui,t), 

considering that the temperature has an immediate effect (ζi) and that a proportion (ρi) of this effect 

propagates to future times. This proportion ρi is called memory effect and we considered it to be any 

value between 0 and 1 [25]. To combine and visualise both effects of the temperature, we obtained 

the impulse response function of the temperature for each neighbourhood. This function expresses 

the  effect  of  a  1  unit  increase  in  the  temperature  of  one  week  propagating  in  time  [25]. The 

temperature was standardised. 
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The models were fitted under the Bayesian framework using the Stan platform [46,47] to run 

four  chains  of  10000 iterations  each where the  first  5000 were the  warmup.  Relatively vague, 

proper prior distributions  were used. We visually inspected the chains and used the R-hat statistic to 

check convergence  [46,49]. Model validation was performed by comparing the fitted number of 

cases (mean and 90% CI) with the observed number of cases [48]. It is worth mentioning that we 

also  fitted  models  that  considered  the  reparametrisation  of  the  Besag-York-Mollié  (BYM2)  as 

proposed by Riebler et al.  [50]. However, the random component was over 90% spatial, and the 

unstructured effect 90% CI included zero for all neighbourhoods.

For the statistical analysis, we used R version 3.6.1 [42] and packages  RStan [51] and loo, 

which was used to obtain the WAIC [52]. The R script and models codes in Stan are available at 

https://github.com/laispfreitas/ICA  R_chikungunya   [53]. Maps and graphs were created using QGIS 

version 3.12 [54] and ggplot2 version 3.2.0 [55].

Ethics Statement

This study was approved by the Research Ethics Committee of Escola Nacional de Saúde 

Pública Sergio Arouca (ENSP) – Fundação Oswaldo Cruz, approval number 2.879.430. Informed 

consent  was  not  required  as  this  is  a  study  using  secondary  data  and  the  data  were  analysed 

anonymously.

Results

Between January and December 2016, 13,627 cases of chikungunya were notified in the city 

of Rio de Janeiro, corresponding to an incidence of 21.6 cases per 10,000 inhabitants. The number 

of cases peaked at week 17/2016, with 1118 chikungunya cases (Fig 3A). The cumulative number 

of cases by neighbourhood ranged from 0 (Grumari, area 4.0) to  721 (Realengo, area 5.1). The 

highest incidence was found in Catumbi (area 1.0), of 211.0 cases per 10,000 inhabitants (Fig 3B). 
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Fig 3. Notified chikungunya cases by week (A) and chikungunya cases cumulative incidence 

per 10,000 inhabitants by neighbourhood (B), January to December 2016, Rio de Janeiro city, 

Brazil.

The mean sociodevelopment index was 0.6080, ranging from 0.282 in Grumari (area 4.0) to 

0.819 in Lagoa (area 2.1). Higher sociodevelopment indexes were observed in the areas 2.1 and 4.0 

(Fig 4A). Fifteen neighbourhoods did not have any green areas, mostly located in areas 1.0, 3.1, 3.2 
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and 3.3 (Fig 4B). Alto da Boa Vista (area 2.2) presented the highest percentage of green areas, of 

90.4%.  The average  minimum temperature  was  19.9 °C,  ranging from 10.7 °C in  Campo dos 

Afonsos (area 5.1) to 26.1 °C in Cidade Nova (area 1.0). Neighbourhoods in the east coastal region 

of Rio had higher temperatures on average (Fig 4C). The temperature decreased in the city around 

week 17, starting to increase again around week 35 (Fig 4D).

Fig 4. Sociodevelopment index in 2010 (A), percentage of green areas in 2015 (B), minimum 

temperature  (ºC)  average  in  2016  by  neighbourhood  (C)  and  boxplot  of  the  minimum 

temperature (ºC) by neighbourhood and week (D), Rio de Janeiro city, Brazil.

Due to the small numbers of chikungunya cases at the beginning of 2016, we decided to 

model the cases starting at week 9, when the number of cases in the city exceeded 50 for the first  

time. 

The  posterior  summary  (mean  and  90%  CI)  of  the  time-varying  coefficients  for 

sociodevelopment index and proportion of green areas is  presented in Fig 5. The sociodevelopment 

index presented a strong protective effect at the beginning of the epidemic. The sociodevelopment 
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index effect was inversely associated with the epidemic curve: as the number of cases increased, the 

protective  effect  decreased,  remaining  almost  constant  during  the  peak  of  the  epidemic,  and 

increasing again once the number of cases started decreasing. The effect of the sociodevelopment 

index was null during the peak of the epidemic (around week 17). The proportion of green areas 

effect included 0 in the 90% CI in most of the weeks. However, when the spatial component was 

not included in the model, it presented a protective effect (Fig C in S2 Fig). 

Fig  5.  Time-varying  coefficients  (in  the  log  scale,  mean  and  90%  credible  interval)  for 

sociodevelopment index (SDI) (A) and proportion of green areas (B) for a spatial model  for 

chikungunya cases from weeks 9 to 52 2016 and controlling for minimum temperature, Rio de 

Janeiro city, Brazil.

The latent spatial structure has a clear trend of positive spatial effects in areas where the 

epidemic was concentrated (areas 1.0, 2.2, the mainland part of 3.1, 3.2, 3.3 and 5.1) and negative 

spatial  effects  in less affected areas (Fig 6).  The inclusion of the covariates in  the final model 
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decreased the spatial effects in 102 of the 160 neighbourhoods compared to the model with only the 

spatial effect (S3 Fig).

Fig  6.  Chikungunya  cases  mean  spatial  effects  (in  the  log  scale)  controlling  for 

sociodevelopment index, proportion of green areas, and minimum temperature, weeks 9 to 52 

2016, Rio de Janeiro city, Brazil.

The posterior distributions (mean and 90% CI) of the instantaneous and memory effects of 

the minimum temperature are displayed in Fig 7. For most neighbourhoods (113/160, or 70.6%) the 

instantaneous  effect  of  the  temperature  increased  the  risk of  chikungunya cases  (Fig 7A).  The 

instantaneous temperature effect, however, was in general small, reaching its maximum in Catumbi 

(area 1.0), where the temperature relative risk was 2.28 (90%CI 2.07-2.53). The memory effect (Fig 

7B) represents the propagation in time of the instantaneous effect. Therefore, in neighbourhoods 

where the instantaneous temperature effect was null, the memory effect is irrelevant. 
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Fig 7. Minimum temperature instantaneous effect (in the same week) (A) and memory effect 

(B)  on  chikungunya  cases  (in  the  log  scale)  by  neighbourhood,  mean  and  90%  credible 

interval, controlling for sociodevelopment index and proportion of green areas, and the latent 

spatial effect, weeks 9 to 52 2016, Rio de Janeiro city, Brazil.

The  combined  effect  of  the  minimum temperature,  represented  by  the  impulse  response 

function,  presented  three  patterns.  These  patterns  are  exemplified  with  nine  selected 

neighbourhoods in Fig 8: null effect (Fig 8 first row), rapid decay of the effect (second row), and 

slow decay of the effect (third row). The impulse response functions for all neighbourhoods are 

available in the S4 Fig.
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Fig 8. Impulse response function of the minimum temperature effect on chikungunya cases 

over time, posterior mean and 90% credible interval,  controlling for sociodevelopment index 

and proportion of green areas, and the latent spatial effect, in selected neighbourhoods, Rio de 

Janeiro city, Brazil.

The impulse response function is represented in time and space in Fig 9 and S1 Video. The 

first map depicts the mean temperature instantaneous relative risk, the impulse. The following maps 

show the propagation of the impulse on subsequent weeks. When the temperature relative risk is 

null (90% CI includes the 1), the neighbourhood is depicted blank. The strong memory effect in 
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some neighbourhoods (Fig 7B) is observed by the persistence of the temperature effect for several 

weeks  after  the  impulse.  However,  such  effect  declines  to  values  very  close  to  1.  These 

neighbourhoods were concentrated in the areas 1.0, 2.2, mainland 3.1, 3.2, 3.3 and 5.1.  

Fig 9. Minimum temperature instantaneous effect on chikungunya cases and its propagation 

in  time  by  neighbourhood  in  selected  weeks,  controlling  for  sociodevelopment  index  and 

green areas  proportion, and the latent spatial effect, Rio de Janeiro city, Brazil.

The mean estimated chikungunya relative risk increased rapidly in the first weeks, peaking at 

week 17 and then decaying progressively (S2 Video and Fig 10). The decrease in the chikungunya 

relative risk coincided with the decrease in the minimum temperature in the city (Fig 4D). High 

relative risks for chikungunya were mostly observed in the areas 1.0, 2.2, 3.1, 3.2, 3.3 and 5.1. The 

neighbourhoods of the remaining areas presented chikungunya relative risks below 1 for almost the 
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entire study period. The classification of the neighbourhoods in terms of chikungunya relative risk 

considering the 90% CI is available in the S5 Fig.

Fig  10.  Posterior  mean  chikungunya  relative  risk  by  neighbourhood  in  selected  weeks, 

controlling  for  sociodevelopment  index,  proportion  of  green  areas,  and  minimum 

temperature, and the latent spatial effect, Rio de Janeiro city, Brazil. 

Discussion

In  this  study,  we  estimated  the  associaton  of  socioeconomic  status,  environment,  and 

temperature  with  the  spatio-temporal  distribution  of  the  first  chikungunya  epidemic  in  Rio  de 

Janeiro city. The sociodevelopment index and the proportion of green areas were included in the 

model  with  time-varying  coefficients,  allowing  us  to  explore  how  the  effects  of  these  factors 

changed throughout  the  epidemic.  The temperature  was  included  in  the  model  in  a  non-linear 

fashion using a transfer function, considering that the temperature has an immediate effect and that 
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a proportion of this effect propagates to future times. To our knowledge, this is the first time a 

transfer function is applied for temperature when modelling Aedes-borne diseases. 

The sociodevelopment index was inversely associated with the risk of chikungunya in all 

models  (Fig  5A,  Figs  A and  B in  S2 Fig).  In  fact,  the  sociodevelopment  index presented  the 

strongest effect in the models, which strengthens the hypothesis of chikungunya being a disease of 

social determination. This index is composed of sanitary conditions indicators, among others, and 

poor sanitary conditions are known to favour the reproduction of the Ae. aegypti  mosquitoes. The 

association of low socioeconomic locations with increased risk of chikungunya was also found in a 

study in French Guiana  [56] and in a study in Barraquilla,  a Colombian city  [21].  Our results 

indicate that poor neighbourhoods were affected first and hardest by the chikungunya epidemic, 

highlighting the importance of vector control activities in socioeconomically vulnerable locations. 

When the spatial dependency was not included in the model, the proportion of green areas 

was  negatively  associated  with  the  number  of  chikungunya  cases (Fig  C  in  S2  Fig).  Such 

association was observed for dengue in São Paulo,  where low vegetation cover areas presented 

higher dengue incidence rates [22]. However, with the inclusion of the spatial component, the effect 

of the proportion of green areas moved towards the null. This is possible due to spatial confounding, 

which happens when covariates that are spatially smooth are collinear with spatial random effects 

[57]. In Rio de Janeiro, the majority of the green areas are in the mountain massifs (Fig 2), which 

trespasses different neighbouring borders. 

The  temperature  was  associated  with  an  increase  in  the  risk  of  chikungunya  in  most 

neighbourhoods.  In  our  models,  we  assumed  that  the  temperature  presents  an  effect  that  is  a 

combination of an instantaneous effect and of a proportion of this  that  propagates  in time (the 

memory  effect).  Although  the  instantaneous  association  is  relatively  low  across  the  different 

neighbourhoods, it can persist for a long period of time for some of the districts. This was only 

possible  because  we  allowed  the  parameters  present  in  the  transfer  function  to  change  across 
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neighbourhoods. Different areas experiencing heterogeneous temperature effects for  Aedes-borne 

diseases were also observed in previous studies [58,59]. The inclusion of space-varying coefficients 

for the temperature improved the fitting of our models. 

 The instantaneous association represents the effect of the temperature on the activity of the 

mosquito, human behaviour and the mosquito-virus interaction. The biting rate of the  Ae. aegypti 

increases  with  the  temperature  until  around  35  °C  [10],  and  people  become more  exposed  to 

mosquitoes in warm temperatures. The temperature also accelerates the virus extrinsic incubation 

period in the mosquito, and transmission was estimated to peak around 28.5 °C [10]. On the other 

hand, the temperature affects the population of mosquitoes by increasing fecundity, egg-to-adult-

survival, development rate and lifespan  [10]. This effect is not only on the same week but also 

accumulates in time, which is captured by the memory effect.

Interestingly, the CHIKV epidemic in Rio de Janeiro in 2016 did not reach the whole city,  

with high-risk areas mostly concentrated in the North and Downtown regions. The decrease in the 

number of cases coincided with the drop in the minimum temperature, around week 17 (Fig 3A and 

4D). These two observations combined suggest that the epidemic was interrupted not because of 

susceptible human population depletion in the city, but because the drop in temperature caused a 

reduction in the transmission in such a way that the epidemic was not sustained. It is important to 

note that although the number of cases diminished substantially, there were still chikungunya cases 

being  reported  until  the  end  of  the  year.  Rio  de  Janeiro  is  a  tropical  city,  and  the  minimum 

temperature rarely is below the minimum temperature needed for transmission to occur, of 13.5 °C 

[10].  A previous  study  conducted  in  the  city  showed  that  the  Ae.  aegypti population  varies 

seasonally,  but  the  mosquito  is  endemic  all  over  the  year  [60].  This  could  explain  the  long 

persistence of the temperature effect in time in some neighbourhoods (Fig 9 and S1 Video).    

The  application  of  spatial  models  considering  intra-urban  scenarios  is  still  growing  for 

Aedes-borne  diseases.  Our  study  identified  high-risk  neighbourhoods  for  the  first  chikungunya 

22

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 18, 2021. ; https://doi.org/10.1101/2020.06.08.20125757doi: medRxiv preprint 

https://doi.org/10.1101/2020.06.08.20125757
http://creativecommons.org/licenses/by/4.0/


epidemic in Rio de Janeiro city, which concentrated mostly in the North and Downtown regions 

(Fig 10 and S2 Video). Such regions were already identified as high-risk locations for dengue [61]. 

In  our  previous  study,  neighbourhoods  from  these  regions  were  more  likely  to  constitute 

simultaneous clusters for dengue, Zika and chikungunya [62]. These regions have a combination of 

factors that favours the  Ae. aegypti’s ecology and transmission of diseases: low vegetation, low 

socioeconomic  status  and  increased  temperature  (Fig  4).  Vector  control  activities  should  be 

prioritised and intensified in the identified high-risk areas, as they also appear to be the first ones 

affected by the epidemic. Additionally, the long persistence of the temperature effect (Fig 9 and S1 

Video)  and  a  small  number  of  cases  even  after  the  decline  of  the  epidemic,  indicate  that  the 

mosquito  continues  to  circulate  and  to  transmit  the  disease  throughout  the  year.  Therefore, 

interventions must be designed to be continuous and to work in the long term in these locations. 

Our  study has  some limitations.  As  for  any study using  secondary  data  on  Aedes-borne 

diseases, there is an uncertainty on the diagnosis of the reported cases as well as under-reporting. It  

is important to consider that, in the same year, the city was also experiencing dengue and Zika 

epidemics [62]. Because of the association between Zika and severe congenital manifestations, the 

disease  awareness  around  Zika  may  have  improved  the  reporting  rates  [63].  However,  the 

simultaneous occurrence of three arbovirus epidemics may have impaired the differential diagnosis, 

as  they  cause  similar  symptoms.  Another  limitation  is  the  spatial  unit.  We  analysed  the  data 

aggregated at  the neighbourhood level.  Although the data  are more reliable  at  this  spatial  unit, 

smaller  areas  inside  the  same  neighbourhood  can  present  different  socioeconomic  and 

environmental  characteristics.  Finer scales  such as  census tracts  should be considered in  future 

studies. Finally, an important limitation is the assumption that the chikungunya risk is related to the 

neighbourhood of residence, while some people may get infected in other locations. 

The model here presented has the potential  to be applied to other cities and other urban 

Aedes-borne diseases. Mosquito population information is expensive to collect and often unreliable. 
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Therefore not depending on such data is a strength of our model. Another strength is the application 

of a transfer function to estimate the non-linear effect of the temperature and its duration. By using 

temperature, socioeconomic status and proportion of green areas data as proxies of the key elements 

of  CHIKV  transmission,  our  model  contributed  to  understanding  better  the  spatio-temporal 

dynamics of the first chikungunya epidemic in a tropical metropolitan city. Importantly, our results 

indicate that even considering the environment and the temperature, the socioeconomic status plays 

a major role in affecting the incidence and distribution of a first Aedes-borne disease epidemic in a 

large city. This strengthens the importance of improving sanitary conditions and taking measures to 

diminish social inequality as necessary actions to control and prevent Aedes-borne diseases. 
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S1  Fig.  Meteorological  weather  stations  (red  dots)  in  the  500m  X  500m  grid  and 

neighbourhoods, Rio de Janeiro city, Brazil.

S1  Appendix.  Models  structures  explored  to  estimate  μi,t and  each  Watanabe-Akaike 

information criterion (WAIC).

S2  Fig.  Time-varying  coefficients  (in  the  log  scale,  mean  and  90% credible  interval)  for 

sociodevelopment index (SDI) (A,B) and proportion of green areas (C,D) without (model 1) 

and with (model 2) spatial dependency, for chikungunya cases from weeks 9 to 52 2016, Rio de 

Janeiro city, Brazil.

S3 Fig. Correlation between the spatial effects (in the log scale) of Model 0 versus Model 4,  by 

neighbourhood, weeks 9 to 52 2016, Rio de Janeiro city, Brazil.

S4 Fig.  Impulse response of the minimum temperature,  posterior mean and 90% credible 

interval, by neighbourhood, Rio de Janeiro city, Brazil.  
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S1  Video.  Minimum  temperature  instantaneous  effect  on  chikungunya  cases  and  its 

propagation  in  time  by  neighbourhood,  controlling  for  sociodevelopment  index  and 

proportion of green areas, and the latent spatial effect, Rio de Janeiro city, Brazil.

S2  Video.  Posterior  chikungunya  relative  risk  by  neighbourhood,  controlling  for 

sociodevelopment index, proportion of green areas and minimum temperature, and the latent 

spatial effect, weeks 9 to 52 2016, Rio de Janeiro city, Brazil. 

S5 Fig. Classification of the chikungunya relative risk by neighbourhood in selected weeks 

based on the 90% credible interval (controlling for sociodevelopment index, proportion of 

green areas and minimum temperature,  and the latent spatial effect),  Rio de Janeiro city, 

Brazil. Risk: 90%CI >1. Protection: 90%CI <1. None: 90%CI includes 1.
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