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Simpact Cyan 1.0

The models in this study were developed with Simpact Cyan 1.0, an open-source framework for
individual-based modeling of transmission, diagnosis and treatment of HIV [10]. Simpact Cyan 1.0 models
each individual in a population, as well as the sexual relationships between individuals. Birth, mortality, the
formation and break-up of relationships as well as HIV transmission, diagnosis and treatment are represented
by events. The risk that an event takes place at a certain moment is represented by its hazard function.
Simpact Cyan 1.0 implements models in continuous time, i.e. each time an event happens the models are
updated. Also a generic STI co-factor effect on HIV is implemented. Furthermore, parameters can be
changed during the simulation to simulate interventions. More details on Simpact Cyan 1.0 are available
in [11] and from http://www.simpact.org/.

Weibull distribution

In Simpact Cyan 1.0, birth events happen as a result of a conception event. As a consequence, no birth
events can happen in an MSM population. This means that no new individuals can enter the population after
initialization of the simulation. Therefore, the following alternative implementation is used (see Figure S1):

• People are assumed to be born when they have a simulation age of 30 years. In this way, all people
with simulation age < 30 at initialization enter the population during the simulation.

• People become sexually active at a simulation age of 45 years, corresponding to a real age of 15 years.

• The average simulation age for natural mortality is 110 years, corresponding with a real age of 80 years.

In this way, we avoid that the population decreases during the simulation due to natural (non-AIDS)
mortality.

The population pyramid for males from Belgium in 1980
(https://www.populationpyramid.net/belgium/1980/) was used to fit the Weibull survival distribution.
Figure S2 shows the survival distribution for real age and simulation age.
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Figure S1. Real age versus simulation age in this study. The figure shows birth (30 = simulation age, 0
= real age), the age at with a person becomes sexually active (45 = simulation age, 15 =real age) and the
average age for natural mortality, used for fitting the Weibull distribution in Figure S2 (110 = simulation
age, 80=real age).

Figure S2. Weibull survival distribution for real age (left) and simulation age (right).

In the parameter configuration file, this is implemented as

• mortality.normal.weibull.scale = 106

• mortality.normal.weibull.shape = 5

Other parameter settings

Table S1. Parameter settings used for all scenarios in this study. The number of parameters is the same in
all models. Adding or removing parameters from the model is done by setting parameters to a value so that
effects in the model are disabled or not. The parameter names in the first column are directly related to
Simpact Cyan 1.0.

parameter value explanation
mortality.normal.weibull.genderdiff 0 no females in the popula-

tion
population.msm yes homosexual population
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debut.debutage 45 45 = simulation age, 15 =
real age (default)

population.simtime 45 stabilization period of 10
years + 1980− 2015

population.nummen 10,000 population of 10,000 men
population.numwomen 0 no women in the popula-

tion
population.maxevents population.simtime

× popula-
tion.nummen
× 15

The average number of
events per year that can
happen to the same per-
son is 15. The simulation
is stopped when a num-
ber of events equal to pop-
ulation.maxevents is exe-
cuted.

population.eyecap.fraction 0.2 Each men can have sex-
ual contacts with 20% of
all other men. Because of
age-mixing etc, this will be
only max. a few 100 in
practice.

hsv2transmission.hazard.d 0.76 in case of an
STI-cofactor; not
used in case of no
STI co-factor

effect of HIV on STI trans-
mission, for HSV2 risk
ratio = 2.14 [9]; d =
ln(2.14) = 0.76

hivseed.time 10 stabilization period of 10
years

hivseed.type amount a fixed number of seeders
is chosen to start the HIV
infection

hivseed.age.min 45 45 = simulation age, 15 =
real age (equal to the de-
fault debut age)

hivseed.age.max 80 80 = simulation age, 50 =
real age

hivseed.gender male HIV seeders are MSM
hivseed.amount 30 seed of 1% in 1980; start

of HIV in MSM end 70’s -
begin 80’s [13]. In 1980,
about 3000 of of 10,000
men in the simulation have
reached the sexual debut
age of 15 (simulation age
45 years). 1% of 3000 = 30
HIV seeds.

hsv2seed.time 10 in case of an
STI co-factor; -1
in case of no STI
co-factor to disable
HSV2 seeding

stabilization period of 10
years

3/17



hsv2seed.type amount in case of an
STI co-factor; not
used in case of no
STI co-factor

a fixed number of seeders
is chosen to start the STI
infection

hsv2seed.age.min 45 in case of an STI
co-factor; not used
in case of no STI co-
factor

45 = simulation age, 15 =
real age (equal to the de-
fault debut age)

hsv2seed.age.max 80 in case of an STI
co-factor; not used
in case of no STI co-
factor

80 = simulation age, 50 =
real age

hsv2seed.gender male in case of an
STI co-factor; not
used in case of no
STI co-factor

STI seeders are MSM

hsv2seed.amount 330 in case of an
STI co-factor; not
used in case of no
STI co-factor

11% men with HSV2 in
1976 [6]. In 1980, about
3000 of of 10,000 men
in the simulation have
reached the sexual debut
age of 15 (simulation age
45 years). 11% of 3000 =
330 HSV2 seeds.

hivtransmission.param.e1 0.4700036 risk ratio = 1.6;
ln(1.6)=0.4700036 [16]

hivtransmission.param.e2 0.4700036 risk ratio = 1.6;
ln(1.6)=0.4700036 [16]

person.hsv2.a.dist.type fixed in case of an
STI co-factor; not
used in case of no
STI co-factor

person dependent baseline
value for the STI transmis-
sion hazard is a fixed value

person.hsv2.a.dist.fixed.value -2.25 in case of an
STI co-factor; not
used in case of no
STI co-factor

transmission rate (cumu-
lative incidence) = 10%
[4]; risk ratio = -log(1 –
cumulative incidence) =
-log (0.9) = 0.1053605;
ln(0.1053605) = -2.25

mortality.aids.survtime.C 65 parameter C in the for-
mula for survival time [2]
tsurvival = (C/V k

sp) × 10x

where Vsp is the set-point
viral load and x is the
parameter determined per
person allowing some ran-
domness in the formula; re-
sults in survival time of 10-
11 years for AIDS [18]
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mortality.aids.survtime.k -0.2 parameter k in the for-
mula for survival time [2]
(see parameter C); results
in survival time of 10-11
years for AIDS [18]

person.survtime.logoffset.dist.type normal the parameter x in the for-
mula for survival time is
drawn from a normal dis-
tribution

person.survtime.logoffset.dist.normal.mu 0 the normal distribution for
parameter x in the formula
for survival time has mean
0

person.survtime.logoffset.dist.normal.sigma 0.1 the normal distribution for
parameter x in the for-
mula for survival time has
standard deviation 0.1; to
obtain a survival distri-
bution which is approxi-
mately Weibull distributed

person.vsp.model.logdist2d.dist2d.binormalsymm.mean 4.3 the distribution used to
pick set-point viral load
values on a base 10 log-
arithmic scale is a bi-
normal distribution using
the same mean and stan-
dard deviation for the x-
direction as for the y-
direction (default); the pa-
rameters are fitted to the
histogram for MSM in [7];
the mean is 4.3

person.vsp.model.logdist2d.dist2d.binormalsymm.rho 0.31 parameter rho for the cor-
relation between x and
y in the distribution of
set-point viral load; this
parameter represents set-
point viral load heritability
and is taken from [3]

person.vsp.model.logdist2d.dist2d.binormalsymm.sigma 1.3 standard deviation for the
distribution of set-point vi-
ral load; the parameters
are fitted to the histogram
for MSM in [7]

person.vsp.model.logdist2d.usealternativeseeddist yes to use another distribution
than the default to initial-
ize set-point viral load val-
ues when HIV seeding is
triggered
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person.vsp.model.logdist2d.alternativeseed.dist.type fixed person dependent initial
set-point viral load value
is a fixed value

person.vsp.model.logdist2d.alternativeseed.dist.fixed.value 4 value is a bit lower than
the value for 1984 in [8]

formationmsm.hazard.type simple amount of data available is
limited; we take the most
simple form of the forma-
tion hazard to limit the
amount of parameters to
fit

person.art.accept.threshold.dist.fixed.value 1 ART acceptance thresh-
old is 1 (the maximum
value for this parameter)
for each person; willing-
ness to accept treatment
when offered. RIVM re-
ports that in 2017, 95% of
MSM diagnosed and linked
to care were on ART [15]

diagnosis.baseline -1000000 no ART before 1994 [12];
we set this parameter to a
very small number so that
nobody will be treated

person.cd4.start.dist.type lognormal lognormal distribution for
the CD4 value a person has
at the time of infection

person.cd4.start.dist.lognormal.zeta ln

(
mu.cd4√
1+var.cd4

mu.cd42

)
value for location param-
eter zeta of the distribu-
tion for the CD4 value
a person has at the time
of infection; mu.cd4=800;
var.cd4=40000

person.cd4.start.dist.lognormal.sigma
√
ln
(
1+var.cd4
mu.cd42

)
value for scale parame-
ter sigma of the distribu-
tion for the CD4 value
a person has at the time
of infection; mu.cd4=800;
var.cd4=40000

person.cd4.end.dist.type lognormal lognormal distribution for
the CD4 value a person
will have when he dies from
AIDS related causes

person.cd4.end.dist.lognormal.zeta log

(
mu.cd4.end√
1+var.cd4.end

mu.cd4.end2

)
value for location param-
eter zeta of the distribu-
tion for the CD4 value
a person will have when
he dies from AIDS related
causes; mu.cd4.end=20;
var.cd4.end=5
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person.cd4.end.dist.lognormal.sigma
√
log
(
1+var.cd4.end
mu.cd4.end2

)
value for scale parameter
sigma of the distribution
for the CD4 value a per-
son will have when he
dies from AIDS related
causes; mu.cd4.end=20;
var.cd4.end=5

Intervention events

Table S2 summarizes the intervention events for simulating the increased ART coverage since 1994, and the
increase in sexual risk behaviour with ART coverage.

Table S2. Intervention events for simulating the increased ART coverage since 1994, and the increase
in sexual risk behaviour with ART coverage. CD4 treshold: the parameter monitoring.cd4.threshold, if a
person’s CD4 count is below this threshold, he will be offered ART; diagnosis.baseline: baseline value in the
hazard for a diagnosis event; formation alpha 12: the parameter formationmsm.hazard.simple.alpha 12 in the
hazard for a relationship formation event, corresponding to a weight for the number of relationships men
in the relationship have. This parameter only changes for the scenarios with increased risk behaviour. The
behavioural parameter formation alpha 12 is equal to an initial value in the period 1980-1993. From 1994
onwards until 2014, this value is increased with 0.05 every two years to simulate increased risk behaviour over
time in the decade after the introduction of ART. The actual value of the initial value of formation alpha 12
is determined during the model calibration procedure.

year time CD4 threshold diagnosis.baseline formation alpha 12
1994 24 200 -1.5 initial value + 0.05
1996 26 230 -1.25 initial value + 0.1
1998 28 260 -1 initial value + 0.15
2000 30 290 -0.75 initial value + 0.2
2002 32 320 -0.5 initial value + 0.25
2004 34 350 -0.25 initial value + 0.3
2006 36 380 0 initial value + 0.35
2008 38 410 0.25 initial value + 0.4
2010 40 440 0.5 initial value + 0.45
2012 42 470 0.75 initial value + 0.5
2014 44 500 1 initial value + 0.55

Statistical analysis of the parameter space

Methods

For exploring the parameter space, we consider the 10,000 parameter combinations generated by Latin
Hypercube Sampling (LHS) and focus on the top 1% of the lowest values of the GOF statistic (sum of
squared relative errors) and follow the approach described by Castro Sanchez et al. [5]. First, for each
parameter, smoothed density plots of the initial uniform distribution (range as in Table 2) are compared with
smoothed density plots for the distribution of the top 1% solutions. The more peaked the density for the top
1% solutions, the more the parameter is influenced by the data. Second, a classification tree method, called
activity region finder (ARF) [1] is applied to identify regions in the parameter space that have significantly
more top 1% solutions than other solutions. The 10,000 parameter combinations from the LHS are used as
input variables, and a binary output, which is 1 for a top 1% solution and 0 otherwise is used. Third, the
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input-output from the ARF is used to fit generalized additive models (GAM) [17]. For each parameter, the
predicted probability of low sum of relative squared errors is plotted against the value of the parameter. In
this way, we further explore which regions in the parameter space contain a large amount of top 1% solutions.
Finally, the associations between the parameters in the top 1% solution space are calculated using the
Maximal Information Coefficient (MIC) [14].

Model with no STI co-factor and no behavioural change (nSTI-nBC)

The distribution of the top 1% solutions showed the most pronounced peaks for the weight for the age of the
parameters (formation α4) and the parameter c in the HIV transmission hazard (HIV transmission c),
followed by the weight for the number of partners (formation α12) and its assortativity (formation α3)(see
Figure S3).

Figure S3. Analysis of the parameter space for the nSTI-nBC model. Smoothed density plots for the
initial uniform distribution (dashed line) and the distribution of the top 1% solutions (solid line) for the nine
estimated parameters.

When applying ARF, only the weight for the age of the partners (formation α4), the assortativity for the
number of partners (formation α3), the baseline dissolution parmeter (dissolution α0) and the assortativity
for age (formation α5) take part in the classification process. The first split of the classification tree uses the
weight for the age of the partners (formation α4). The next splits use the assortativity for the number of
partners (formation α3) and the baseline dissolution parameter (dissolution α0). Only one region with
significantly more top 1% solutions could be detected, where the weight for the age of the partners
(formation α4) is between 0.3917 and 0.4485.

The results of the GAM (Figure S4) show a high probability of low relative sum of squared errors (SSE)
for positive values of the weight for the age of the partners (formation α4). Lower values of the baseline
formation parameter (formation α0), the weight for the number of partners (formation α12), the assortativity
for age (formation α5) and the baseline parameter for HIV transmission (HIV transmission a) increase the
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probability of low relative SSE. Higher values of the HIV transmission parameters related to viral load (HIV
transmission b and c) increase the probability for low relative SSE.

Figure S4. Analysis of the parameter space for the nSTI-nBC model. Results of the GAM: predicted
probabilities of low relative sum of squared errors (SSE) for the nine estimated parameters.

The three highest values for the MIC were obtained for

1. the weight for the number of partners (formation α12) and the weight for the age of the partners
(formation α4)(MIC = 0.71, negative correlation);

2. the weight for the number of partners (formation α12) and the baseline dissolution parameter
(dissolution α0)(MIC = 0.53, positive correlation);

3. the weight for assortativity for the number of partners (formation α3) and the baseline dissolution
parameter (dissolution α0)(MIC = 0.52, positive correlation).

Model with an STI co-factor and no behavioural change (STI-nBC)

The distribution of the top 1% solutions showed the most pronounced peaks for the weight for the age of the
partners (formation α4) and the parameter c in the HIV transmission hazard (HIV transmission c), followed
by the baseline parameter a in the HIV transmission hazard (HIV transmission a)(see Figure S5).

When applying ARF, only the parameter c in the HIV transmission hazard (HIV transmission c), the
weight for the number of partners (formation α12), the weight for the age of the partners (formation α4) and
the weight for the assortativity related to the number of partners (formation α3) take part in the classification
process. The first split of the classification tree uses the parameter c in the HIV transmission hazard (HIV
transmission c). The next splits use the weight for the number of partners (formation α12) and the weight for
the age of the partners (formation α4). Only one region with significantly more top 1% solutions could be
detected, where the HIV transmission parameter c (HIV transmission c) is between 0.3447 and 0.3481.
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Figure S5. Analysis of the parameter space for the STI-nBC model. Smoothed density plots for the initial
uniform distribution (dashed line) and the distribution of the top 1% solutions (solid line) for the nine
estimated parameters.

The GAM predicted a low relative SSE for positive values of the weight for the age of the partners
(formation α4) and values between 0.2 and 0.5 for the HIV transmission parameter c (HIV transmission
c)(see Figure S6). Lower values of the weight for the number of partners (formation α12), the assortativity
related to the number of partners (formation α3) and the assortativity related to the age of the partners
(formation α5) increase the probability for a low relative SSE. Higher values of the baseline dissolution
parameters (dissolution α0 increase the probability for a low relative SSE.

The three highest MIC values were obtained for

1. the weight for the number of partners (formation α12) and the weight for the age of the partners
(formation α4)(MIC = 0.58, negative correlation);

2. the weight for assortativity related to the number of partners (formation α3) and the weight for
assortativity related to the age of the partners (formation α5)(MIC = 0.45, positive correlation);

3. the weight for the age of the partners (formation α12) and the HIV transmission parameter c (HIV
transmission c)(MIC = 0.42, negative correlation).
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Figure S6. Analysis of the parameter space for the STI-nBC model. Results of the GAM: predicted
probabilities of low relative sum of squared errors (SSE) for the nine estimated parameters.

Model with no STI co-factor and a behavioural change (nSTI-BC)

The distribution of the top 1% solutions showed the most pronounced peak for the weight for the age of the
partners (formation α4), followed by the HIV transmission parameters b and c related to viral load (HIV
transmission b and c)(see Figure S7).

When applying ARF, only the weight for the age of the partners (formation α4) and the weight for the
number of partners (formation α12) take part in the classification process. The first split of the tree uses the
weight for the age of the partners (formation α4). The next splits use the weight for the number of partners
(formation α12). No regions with significantly more top 1% solutions could be detected.

The results of the GAM (Figure S8) show that positive values of the weight for the age of the partners
(formation α4) are associated with a low relative SSE. Higher values of the HIV transmission parameters
related to viral load (HIV transmission b and c) increase the probability for a low relative SSE.

The three highest MIC values were obtained for

1. the weight for the number of partners (formation α12) and HIV transmission parameter c (negative
correlation; MIC = 0.72);

2. HIV transmission parameters a and c (negative correlation; MIC = 0.62);

3. the weight for the number of partners (formation α12) and the weight for the age of the partners
(negative correlation; MIC = 0.61).
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Figure S7. Analysis of the parameter space for the nSTI-BC model. Smoothed density plots for the initial
uniform distribution (dashed line) and the distribution of the top 1% solutions (solid line) for the nine
estimated parameters.
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Figure S8. Analysis of the parameter space for the nSTI-BC model. Results of the GAM: predicted
probabilities of low relative sum of squared errors (SSE) for the nine estimated parameters.

13/17



Model with an STI co-factor and a behavioural change (STI-BC)

The distribution of the top 1% solutions showed the most pronounced peaks for the weight for the age of the
partners (formation α4) and the HIV transmission parameter c (HIV transmission c), followed by the
baseline parameter for relationship formation (formation α0)(see Figure S9.

Figure S9. Analysis of the parameter space for the STI-BC model. Smoothed density plots for the initial
uniform distribution (dashed line) and the distribution of the top 1% solutions (solid line) for the nine
estimated parameters.

When applying ARF, only the weight for the age of the partners (formation α4), the weight for the
number of partners (formation α12) and HIV transmission parameter a take part in the classification process.
The first split of the tree uses the weight for the age of the partners (formation α4). The next splits use the
weight for the number of partners (formation α12) and HIV transmission parameter a. Two regions with
significantly more top 1% solutions could be detected. In the first region the weight for the age of the
partners (formation α4) is between 0.22686 and 0.23041. In the second region the weight for the age of the
partners (formation α4) is between -0.4999 and 0.2268 and the weight for the number of partners (formation
α12) is between -3.497 and -3.465.

The results of the GAM (Figure S10) show that positive values of the weight for the age of the partners
(formation α4) are associated with a low relative SSE. Furthermore, higher values of the baseline formation
parameter (formation α0) and the HIV transmission parameters related to viral load (HIV transmission b
and c) increase the probability for a low relative SSE. Lower values for the weight for assortativity related to
the age of the partners (formation α5) and the baseline dissolution parameter (dissolution α0) increase the
probability for a low relative SSE. For the weight for the number of partners (formation α12), two regions
with higher probability of low relative SSE were observed: a first region where α12 has values between -10
and -8.75, and a second region where α12 has values between -6.25 and -2.5.

The three highest MIC values were obtained for

1. the HIV transmission parameters b and c related to viral load (MIC = 0.65, negative correlation);
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Figure S10. Analysis of the parameter space for the STI-BC model. Results of the GAM: predicted
probabilities of low relative sum of squared errors (SSE) for the nine estimated parameters.

2. the weight for the number of partners (formation α12) and the baseline dissolution parameters
(dissolution α0) (MIC = 0.58, negative correlation);

3. the baseline dissolution parameter (dissolution α0) and the HIV transmission parameter c (MIC = 0.57,
positive correlation).
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Generation of Figure 2

For each of the four scenarios (nSTI-nBC, STI-nBC, nSTI-BC, STI-BC) 100 simulations with the fitted
parameters were run. For each simulation, and for each person with date of seroconvertion between
1980-2015, we determined the first HIV RNA at 9-27 months after seroconvertion (red dots in Figure S11,
each dot represents a person). A curve of the mean log10 SPVL (black line in Figure S11 over time was
generated by fitting a cubic spline through the red dots, in analogy to Figure 1A in Gras et al [8]. This was
repeated for all 100 simulations. Figure 2 in the main text represents the median and interquartile range of
the 100 splines.

Figure S11. First HIV RNA at 9-27 months after seroconversion for each person with date of seroconversion
between 1980 and 2015 (red dots) for a single simulation. Black line: cubic spline fitted through the red dots,
representing the mean log10 SPVL over time.
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