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Abstract  

 

Lockdowns imposed to stem the spread of COVID-19 massively disrupted the daily 

routines of many worldwide, but studies to date are mostly confined to observations 

within a limited number of countries, based on subjective reports and survey from 

specific time periods during the pandemic. We investigated associations between 

lockdown stringency and objective sleep and resting-heart rate measures in 113,000 

users of a consumer sleep tracker across 20 countries from Jan-Jul 2020. With 

stricter lockdown measures, midsleep times were universally delayed, particularly on 

weekdays, while midsleep variability and resting heart rate declined. These shifts 

(midsleep: +0.09 to +0.58 hours; midsleep variability: –0.12 to –0.26 hours; resting 

heart rate: –0.35 to –2.08 bpm) correlated with the severity of lockdown across 

different countries and highlight the graded influence of mobility restriction and social 

isolation on human physiology.  

 

Keywords: sleep health, resting heart rate, lockdown stringency, multi-country, 

wearables. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 17, 2021. ; https://doi.org/10.1101/2021.03.15.21253668doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.15.21253668
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3

Introduction 

Sans social obligations, sleep-wake timings are determined by the interaction 

between an individual’s circadian clock and the timing of natural light exposure 1,2. 

However, in most industrialized societies, organized work with its complex web of 

values and activities have insidiously and incrementally transformed our natural 

sleep patterns. Modern-day workers are likely to go to bed later, sleep less regularly 

and get exposed to greater stress than their predecessors 3-5.  

 

Recent lockdowns imposed around the world to contain the spread of COVID-19 

resulted in massive disruption of daily routines surrounding work and face-to-face 

social interactions 6-8. In theory, closure of workplaces and schools as well as sports, 

entertainment and social hubs should free up much time for neglected uses of time, 

including sleep. Work-from-home arrangements can afford individuals more latitude 

to adopt their preferred sleep-wake timings 9. In turn, this could reduce variability in 

sleep timing that, when high, has been linked to poor sleep quality, impaired health 

and well-being as well as metabolic abnormalities 10-14. On the other hand, being in a 

state of lockdown might cause anxiety and depression for many, reducing the 

amount of sleep obtained 15. In addition, reduced morning light exposure and 

increased evening light exposure from screens could lead to progressive delays in 

chronotype 16 and a loss of circadian rhythm entrainment 17. Perhaps as a 

consequence of the aforesaid factors that push sleep in opposite directions, reports 

of sleep behavior during the lockdown suggest only modest gains in sleep time 15,18-

23 and are mixed depending on region/demographic surveyed.     
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To date, studies documenting COVID-19 pandemic changes in sleep behavior and 

their potential health implications have largely been confined to observations within a 

country or a limited number of countries 6-8,18,20,22,24-32. As prevailing social norms and 

the severity of lockdowns differ across countries, the generalizability of such reports 

is unclear. Additionally, most studies have utilized questionnaires in which baseline 

data was inferred from participant recollection past sleep habits. Finally, few studies 

have followed the temporal evolution of sleep through both lockdown and the lifting 

of restrictions.  

 

To fill these gaps in our understanding of sleep behavior throughout this challenging 

period, we analyzed nocturnal sleep behavior and resting heart rate of ~113,000 

users of the Oura ring sleep tracker from Jan – Jul 2020, using an equivalent period 

in 2019 as a baseline control. The Oura ring is a novel multisensor device that uses 

motion, heart-rate and temperature sensors to detect sleep/wake states 

(https://ouraring.com/). It has been validated in various population groups with sleep-

wake detection performance comparable to that of research grade actigraphy and 

polysomnography 33-37. This tracker allowed for large streams of longitudinal data to 

be collected during this period with minimal user effort, enabling analysis from a pre-

pandemic baseline period, through lockdowns and lifting of restrictions in the 20 

countries, spanning regions in North America, Europe, Asia and Oceania. 

 

We sought to (a) assess how two critical sleep parameters were influenced by 

pandemic-related lockdown and subsequent partial lifting of restrictions, (b) 

determine the extent to which these sleep parameters were influenced by the 

severity of lockdown measures and (c) relate how alterations in sleep behaviour 
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affected resting heart rate, an indicator of cardiovascular health. To optimize clarity 

and utility of sleep data from a public health perspective, we focused on average 

mid-sleep time and sleep variability. The former provides a compact measure that is 

influenced by later bed and wake times linked to academic and health outcomes 

38,39, while the latter is an indicator of irregular sleep/wake patterns - also associated 

with negative health and cognitive outcomes independently of sleep duration 

10,12,40,41. Lockdown stringency was assessed using scores extracted from the Oxford 

Government Response Tracker 42, which considers factors such as school and 

workplace closures, cancellations of public events and gatherings and closures of 

public transport.  

 

Results 

Regional and Global Trends in Sleep and Resting Heart Rate 

Data was obtained from randomly selected Oura users for two equivalent periods in 

2019 and 2020. Sample size, mean age and mean BMI values by country of 

included users are detailed in Table S1. Only countries with a minimum of 500 users 

were included in subsequent analyses.  

 

Midsleep time as well as resting heart rate showed weekday-weekend differences 

whereby weekends were associated with later midsleep time as well as higher 

resting heart rate (Figure 1). Comparing data collected on the same day in 2020 and 

2019, it is evident that when lockdowns were most severe across 20 countries, 

midsleep time shifted later, midsleep variability decreased and resting heart rate 

decreased. Inspection of sleep duration trends in 2020 also indicated that most 

countries showed increases during the months of Mar-May 2020 compared to Jan 
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2020 (ie, before lockdowns occurred; Figure S1A). Later weekday midsleep times 

were contributed by delayed bedtimes and commensurately more delayed wake 

times (elevated troughs of orange relative to blue midsleep time courses in Figure S1 

B-C), reduced the weekday-weekend difference in midsleep times, in turn reducing 

midsleep variability.  

 

Lockdown Stringency Modulates Changes in Sleep and Resting Heart Rate 

Mirroring the heterogeneity in the severity of lockdowns, the shifts in midsleep time 

and sleep regularity differed widely across countries as evidenced by the high 

heterogeneity I2 statistic (>75%). Forest plots (Figure 2) depict country-level, month-

by-month trends in the lockdown related shifts in midsleep time, midsleep variability 

and resting heart rate obtained by comparing monthly averages of data from 

comparable days in 2020 and 2019. Pooled effects derived from a random effects 

meta-analyses representing global changes by month are shown below each forest 

plot. In general, the largest shifts in midsleep time (+0.09 to +0.58 hours), midsleep 

variability (–0.12 to –0.26 hours) and resting heart rate (–0.35 to –2.08 bpm) 

occurred in April and May show when most countries imposed their strictest 

lockdown measures. Conversely the gradually lifting of restrictions from around June 

was accompanied by a return to patterns recorded in the previous year.  

 

Multilevel modelling revealed that the extent to which sleep timings and resting heart 

rate shifted during the pandemic’s most pressing early months, could be largely 

explained by the severity of the stringency index (Figure 3 and Tables S2-S4). 

Marginal R2 values increased from 0.02, 0.18 and 0.28 in baseline models to 0.56, 

0.60 and 0.57 for midsleep time, midsleep variability and resting heart rate 
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respectively when stringency index was included a predictor in the model. For each 

unit increase in stringency index, midsleep time was delayed by 0.96 min, midsleep 

variability decreased by 0.46 min and resting heart rate decreased by 0.06 bpm.  

 

Changes in Sleep Patterns Predict Changes in Resting Heart Rate 

Finally, in models predicting 2020-2019 changes in resting heart rate associated with 

changes in midsleep time, midsleep variability and absolute sleep duration, we found 

that while each of the three variables significantly predicted resting heart rate in 

separate models, the model fit was significantly improved when all three predictors 

were included in the model (marginal R2 = 0.75, Table 1). In this model (Model 5), 

midsleep variability was also shown to be the strongest predictor of resting heart 

rate, wherein an hour increase in the standard deviation of midsleep variability 

predicted a 5.12 increase in bpm, while an hour increase in midsleep time only 

predicted a 1.25 decrease in bpm. Sleep duration in 2020 also no longer significantly 

predicted resting heart rate changes in Model 5 (Table 1). The final model fit using 

Model 5 was fitted to each country (Figure 4). It was evident that the fitted curves 

mirrored the trends of changes in midsleep variability observed in each country. 

 

Discussion 

In all 20 countries across 4 continents, objective data obtained over successive 

years showed that pandemic-related lockdowns delayed sleep midpoint, reduced 

sleep variability and reduced resting heart rate as a function of the prevailing 

lockdown severity. Favorable resting heart rate decreases were most strongly 

related to reduction in sleep variability even after accounting for sleep duration. 
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Although these changes were generalized across geographies and cultures, they 

unwound with easing of lockdowns.  

 

Later timing of sleep has been associated with higher rates of metabolic dysfunction 

and cardiovascular disease 43-46. while deviations from normal bedtimes have been 

shown to elevate resting heart rate 47. There is also a risk that absence or 

attenuation of social cues together with reduced morning light exposure and 

increased evening light exposure from screens could lead to a loss of circadian 

rhythm entrainment 17. However, freed from the usual obligations to wake up earlier 

than preferred during lockdown and removal of commuting time, the negative effects 

of later bedtimes were partially made up for by later wake times and reduced 

weekday-weekend sleep timing differences, with resultant gains in sleep regularity – 

results similarly echoed in prior work 18,20,22. The latter can have positive effects on 

cardiometabolic health 40 possibly reflected here in reduced resting heart rate. While 

a lower resting heart rate is most often associated with higher physical fitness, 

studies examining physical activity following lockdown have found declines of up to 

40% 48,49, making improved fitness an unlikely contributor in this context. Instead, our 

data indicated that at the country-level, sleep variability alone explained 70% of the 

variance in resting heart rate. 

 

Both sleep variability and resting heart rate tended to drop most in countries where 

the strictest lockdown measures were implemented (e.g. Singapore). Conversely, 

Sweden had relatively lenient lockdown measures, and the impact on sleep and 

resting heart rate changes were smaller. On a month-to-month level, the time 

courses of resting heart rate were closely correlated with those of midsleep 
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timing/variability across multiple countries. Of particular interest, the lifting of 

restrictions was accompanied by a rise in midsleep variability accompanied by a 

corresponding uptick in resting heart rate.  

 

Our analysis also critically compared equivalent days across successive years. Raw 

measures in individual countries contain weekday-weekend, holiday and seasonality 

effects (e.g. in 2019) whereby weekends and holidays are associated with later sleep 

midpoints and higher resting heart rates. Conversely, summer is associated with 

later sleep midpoints, but with reduced sleep variability and lower resting heart rate. 

Seasonality effects are modulated by residential latitude and are phase-opposite in 

the Southern Hemisphere (Australia, New Zealand) compared to the Northern 

Hemisphere, while being practically absent in equatorial countries like Singapore 50. 

Seasonality effects were in fact, modulated during the lockdown, with an apparent 

advance in the appearance of summertime in the Northern hemisphere and apparent 

prolongation of summertime in the South.  

 

The benefits of improving sleep on health have economic impact and are 

increasingly recognized 51. A large, time-use study suggested that interventions to 

increase sleep should concentrate on delaying morning start time for work and 

educational activities, increasing sleep opportunities and reducing commute times 52. 

Creating greater opportunity for sleep by working from home and giving workers 

some flexibility in sleeping according to preferred schedules 53 could yield benefits to 

both productivity and sleep health if properly implemented 9,54. To realize sustained 

improvements in sleep behavior, a critical area to address is the erosion of 

boundaries between work and home life, and a growing expectation for workers to 
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be ‘always on’ and reachable using information and communications technology 55,56. 

For example, in France, there are laws governing the ‘right to disconnect’, to protect 

employees from having to engage in work-related electronic communications beyond 

working hours 56.  

 

The explosive expansion of video-conferencing have made functional home-based 

work and learning widely accessible – something unlikely had the current pandemic 

occurred just two decades ago. The precipitous growth in remote work and learning 

was reflected in a 10%-60% rise in internet traffic within OECD countries during the 

early lockdown period in Mar-Apr 2020 57. The National Bureau of Economic 

Research found that for over 3 million users across 16 metropolitan areas, COVID-

19 related mobility restrictions lengthened workdays by 48.5 min from the sending of 

emails outside regular working hours 58. One network service provider reported an 

increase of 1-3 work hours per day in the US, UK, France, Spain, Canada and the 

Netherlands. In lieu to time saved from not having to commute, some started work 

earlier but ended at their habitual time 59. Outside work, online gaming platforms and 

social media activity also increased 60. Facebook reported increases of 100% on 

voice over internet calls and 50% in text messages on WhatsApp, Facebook 

Messenger and Instagram platforms during lockdown. For those with young children, 

adapting to home-based learning may also have displaced work time later. Some 

workers could also deliberately procrastinate sleep to regain a sense of control of 

personal time use. Together, these new daily routines could have contributed to 

progressively delayed midsleep timing. Future studies, supplemented by tools like 

ecological momentary assessments, would do well to understand heterogeneity in 

individual reactions to the blurring of work/non-work boundaries merits, and to 
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include a wider demographic, particularly shift workers and lower income persons 

who live outside urban centers. 

 

While this study highlights strengths of being able to rapidly and remotely assess the 

impact of various intervention policies on sleep and resting heart rate, there are a 

few limitations to consider. (1) Only sleep periods between 4-12 hours were 

analyzed. Shorter sleep periods could increase in frequency with work from home 

arrangements, but is challenging to detect and distinguish from other brief periods of 

sedentary behavior, e.g. sitting in bed reading a book or watching television. (2) 

Oura users typically come from middle to upper class households who could be 

more cushioned by the impact of COVID-19 and have flexible work arrangements. 

(3) Sleep quality measures were not obtained, which could be affected by anxiety 

from the impending loss of jobs or contracting the disease. However, one study 

showed unchanged or even improved sleep quality during the lockdown, particularly 

once shift workers and individuals who showed symptoms of COVID-19 were 

excluded from the analyses 5. (4) As these data were extracted from a large 

wearable database, we were not able to obtain information about occupations, shift 

work status, free vs. work days or caregiving responsibilities of these users. Those 

with additional childcare responsibilities due to school closures or have had a 

member of the household fall ill might also have had to work late hours in order to 

catch up on work. Not-withstanding these limitations, our model based on stringency 

indices was able to capture >50% of the variance in sleep and resting heart rate 

measures, indicating that it is a key predictor of sleep and resting heart rate trends 

during this period. 
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In sum, the use of large-scale wearable data revealed consistent and geographically 

widespread nature of the correlation between lockdown severity and shift to delayed 

but more regular sleep with reductions in resting heart rate measures. These findings 

should spur governments to consider the secondary health impact of various policies 

and interventions during this period and beyond.  

 

Methods 

Dataset 

Data from 2019 was used as the reference year, representing a typical annual cycle 

and seasonal variation, for example, in terms of holidays, amount of light/daylength, 

and incidence of influenza-like illnesses. In order to ensure alignment by day of the 

week between 2019 and 2020, days were shifted before further computations were 

conducted. Due to the extra leap day in 2020, data was shifted by one day in Jan 

and Feb 2020 and by two days in Mar-Jul. Local timestamps for each country and 

time zone were also utilized, which included shifts that reflect daylight savings start 

(Mar-Apr in the Northern Hemisphere, Sep-Oct in the Southern Hemisphere) and 

end points (Apr in the Southern Hemisphere, Sep-Nov in the Northern Hemisphere). 

Paired differences between matching days in 2019 and 2020 for users who had valid 

data in both timepoints were then computed and included in subsequent analyses.  

 

Each valid sleep period was defined as the longest sleep episode for each day, with 

time in bed between 4-12 hours. Three major variables were then extracted for each 

of these sleep periods: (1) Midsleep time was computed as the midpoint between 

bedtime and wake time, representing a proxy for circadian phase/chronotype 61 (2) 

Midsleep variability was computed using a rolling 7-day standard deviation of 
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midsleep times, representing a proxy for sleep regularity, and (3) Resting heart rate 

which was computed as an average of 5-min heart rate measures during the sleep 

period. Average resting heart rates <30 bpm and >100bpm were removed as these 

were likely to represent physiologic or device anomalies. Due to an algorithm update 

in the spring of 2019 that affected computation of sleep duration by delaying 

bedtimes and advancing wake times, this could not be compared between years, 

however, absolute sleep duration in 2020 was included as an additional variable in 

time-varying models predicting resting heart rate.  

 

Age and BMI information was self-reported by users upon app registration, and 

entered into models as potential covariates. This study was exempt from review by 

the National University of Singapore Institutional Review Board, as analysis involved 

the use of datasets stored without identifiers.  

 

Computation of Stringency Index 

Publicly available measures of restriction severity were extracted from the Oxford 

COVID-19 Government Response Tracker,42 focusing on 7 subscales believed to be 

most reflective of movement controls. These scales consisted of (1) school closures 

[0-3], (2) workplace closures [0-3], cancellation of public events [0-2], restrictions on 

public gatherings [0-4], closures of public transport [0-2], stay-at-home requirements 

[0-3] and restrictions on internal movements [0-2]. These 7 subscales were summed 

up into a single stringency index [range: 0-19] and a mean value was computed for 

every month from January to July for each country. 

 

Quantification of Regional and Global Trends in Sleep and Resting Heart Rate 
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Changes in sleep and resting heart rate measures were derived for each month 

within each country separately, by first computing differences between equivalent 

days in Jan–Jul 2019 and 2020, and then averaging these differences by month. To 

estimate global (pooled) changes, separate random-effects meta-analyses by month 

were conducted for each predictor of interest – midsleep time, midsleep variability 

(standard deviation of the midsleep time over a 7-day rolling window) and resting 

heart rate. Meta-analyses were conducted using the R package ‘metafor’ 62. As there 

was evidence of high statistical heterogeneity between country estimates by month 

(Cochrane’s Q; P < .05, I2 > 75%), pooled estimates were weighted by the inverse 

variance of estimators for each country plus the estimated variance between 

countries.  

 

Quantification of the Effect of Lockdown Stringency on Changes in Sleep and 

Resting Heart Rate 

In order to quantify the effect of lockdown stringency on the heterogenous changes 

in sleep and resting heart rate patterns across countries, we ran multilevel growth 

curve models (MLMs) based on a sequential model-building approach. Multilevel 

models account for correlations between months within each country by allowing 

each country to have its own intercept. A null or baseline model is first constructed, 

and subsequent models consisting of the baseline model + additional explanatory 

variables were added sequentially to assess if the more complex model improved 

the overall model fit using a likelihood ratio test with degrees of freedom equal to the 

number of extra parameters. A significant likelihood ratio test indicates that the extra 

parameters improved the fit of the model to the data.  
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For each of the variables of interest (midsleep time, midsleep variability, resting heart 

rate), baseline MLMs (Model 1) were first estimated using country as a random 

intercept, month as a fixed effect, and a first-order autoregressive term. The latter 

was included to account for the nature of correlated time points in the repeated 

variable (month). Finally, in Model 2, we included the average lockdown stringency 

index by month as a time-varying factor to Model 1, in order to examine the overall 

effect of lockdown stringency on sleep and resting heart rate measures.  

 

Quantification of the Effect of Changes to Sleep Patterns on Changes to 

Resting Heart Rate 

To test our hypothesis that changes to sleep patterns (midsleep time and midsleep 

variability) would lead to associated changes in resting heart rate, we conducted 

further MLM analyses with changes in resting heart rate as the dependent variable 

and changes in midsleep time and changes in midsleep variability as explanatory 

variables. Sleep duration in 2020 was also included as an additional variable of 

interest in this model.  A baseline MLM (Model 1) with a random intercept, month as 

fixed effect, and first-order autoregressive structure was first constructed. Age and 

BMI were entered as covariates, but were subsequently removed as they did not 

significantly improve the baseline model. Next, in Models 2-4, sleep duration in 2020, 

changes to midsleep time and changes to midsleep variability were added as time-

varying predictors in separate models. Finally, in Model 5, all three sleep measures 

were entered in at the same time to assess the independent contributions of each 

predictor in the model.  

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 17, 2021. ; https://doi.org/10.1101/2021.03.15.21253668doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.15.21253668
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16

All MLMs were estimated using the full information maximum likelihood method and 

performed using the nlme package in R (version 3.6.1). Marginal and conditional R2 

values for mixed models are calculated based on 63. Notably, the marginal R2 only 

takes into account the variance of the fixed effects, while the conditional R2 takes 

both fixed and random effects into account. 
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Figure 1. Sleep patterns and resting heart rate measures by country.  
(a) Midsleep time, (b) Midsleep variability and (c) Resting heart rate from Jan to Jul 
2020 (orange curves), compared to Jan-Dec 2019 (purple curves). Dates in 2019 
were shifted in order to ensure a matching by day of the week. Daylight savings time 
(social clocks shifted later by 1h) began in March in select countries of the Northern 
Hemisphere, and ended in April in Australia and New Zealand (social clocks shifted 
earlier by 1h), explaining sudden shifts in midsleep time and variability on these 
dates. 
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Figure 2. Forest plots of the average change in midsleep time, midsleep 
variability and resting heart rate by month and country. The size of the colored 
squares is proportional to the sample size of each country while whiskers indicate 
the mean and 95% confidence interval of the estimated difference between 2020 and 
2019 by month (Jan-Jul). The overall pooled effect across countries for each month 
is represented by the colored diamonds below each plot.  
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Figure 3. Prediction of changes in sleep patterns and resting heart rate by 
lockdown stringency. Plots for fitted models (green curves) across 20 countries 
estimating changes in (a) Midsleep Time, (b) Midsleep Variability and (c) Resting 
heart rate using lockdown stringency as a predictor. Observed mean differences 
between 2020 and 2019 (blue dots), lockdown stringency (black line) and predictions 
without lockdown stringency in the model (red dashed line) are also shown for 
comparison. 
  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 17, 2021. ; https://doi.org/10.1101/2021.03.15.21253668doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.15.21253668
http://creativecommons.org/licenses/by-nc-nd/4.0/


 29

 
Figure 4. Prediction of changes in resting heart rate by changes in sleep 
patterns. Plots showing final fitted models (green curves) across 20 countries 
predicting changes in resting heart rate (2020-2019) using changes in midsleep time, 
changes in midsleep variability, and sleep duration in 2020 as time-varying 
predictors in the same model. Observed mean differences between 2020 and 2019 
(blue dots) and predictions without sleep variability in the model (blue dashed line) 
are also shown for comparison. Sleep variability was found to be the strongest 
predictor of resting heart rate and is shown here in orange solid line for visualization 
purposes. 
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Table 1. Model fit statistics predicting changes in resting heart rate.  
 

 Model 1 Model 2 Model 3 Model 4 Model 5 
 

Fixed Effects β (SE)      

Intercept 0.18 
(0.10) 

5.85 
(2.07)** 

0.38 
(0.08)*** 

0.64 
(0.07)*** 

–1.18 
(1.26) 

Month –0.15 
(0.02)*** 

–0.14 
(0.03)*** 

–0.13 
(0.02)*** 

–0.08 
(0.02)*** 

–0.08 
(0.01)*** 

Sleep Duration (hr) — –0.82 
(0.30)** — — 0.27 

(0.18) 

Δ Midsleep (hr) — — 
–2.38 

(0.29)*** — 
–1.25 

(0.28)*** 

Δ Midsleep 
Variability (hr) — — — 6.21 

(0.50)*** 
5.12 

(0.55)*** 

Random Effects σ2 (SE)      

Intercept 0.00 
(0.06) 

0.00 
(0.09) 

0.00 
(0.03) 

0.01 
(0.02) 

0.01 
(0.01) 

Residual 0.23 
(0.07) 

0.26 
(0.10) 

0.15 
(0.04) 

0.08 
(0.02) 

0.07 
(0.01) 

Number of Parameters 5 6 6 6 8 
Model Comparison      

AIC 140.31 136.42 87.73 41.62 26.11 
Likelihood Ratio (χ2) a — 5.88* 54.57* 100.69*** 120.20*** 
Marginal R2 0.28 0.31 0.52 0.70 0.75 
Conditional R2 0.28 0.31 0.52 0.73 0.79 

Notes: Unstandardized fixed and random effects and model fit statistics for five 
multilevel models predicting change in resting heart rate (bpm) from change in sleep 
patterns. Model 1 represents the baseline model while Models 2-4 included 
additional predictors for sleep duration (Model 2), change in midsleep time (Model 3) 
and change in midsleep variability (Model 4). Finally, Model 5 included all three 
additional predictors to assess the independent contributions of each predictor in the 
model.  
a Likelihood ratio value is based on comparison to Model 1 
* P < .05, ** P < .01, *** P < .001 
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