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2

Abstract11

Accurate knowledge of accurate levels of prior population exposure has critical ramifications for12

preparedness plans of subsequent SARS-CoV-2 epidemic waves and vaccine prioritization strategies.13

Serological studies can be used to estimate levels of past exposure and thus position populations in14

their epidemic timeline. To circumvent biases introduced by decaying antibody titers over time,15

population exposure estimation methods should account for seroreversion, to reflect that changes in16

seroprevalence measures over time are the net effect of increases due to recent transmission and17

decreases due to antibody waning. Here, we present a new method that combines multiple datasets18

(serology, mortality, and virus positivity ratios) to estimate seroreversion time and infection fatality19

ratios and simultaneously infer population exposure levels. The results indicate that the average time20

to seroreversion is six months, and that true exposure may be more than double the current21

seroprevalence levels reported for several regions of England.22
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Introduction26

The COVID-19 pandemic has inflicted devastating effects on global populations and economies1.27

Levels and styles of reporting epidemic progress vary considerably across countries2, with cases28

consistently being under-reported and case definitions changing significantly over time. Therefore,29

the scientific and public health communities turned to serological surveys as a means to position30

populations along their expected epidemic timeline, and thus provide valuable insights into31

COVID-19 lethality 3,4. Those prospects were frustrated by apparent rapid declines in antibody levels32

following infection5-7. Population wide antibody prevalence measurements can significantly33

underestimate the amount of underlying population immunity with obvious implications for34

intervention strategy design and vaccine impact measurement.35

Continued research efforts to determine the correlates for protective immunity against disease and36

infection have found that while antibody titers are poor indicators of sustained immunity, cellular37

immunity can play a determinant role in limiting susceptibility to further SARS-CoV-2 challenges in38

previously exposed individuals8,9. Unfortunately, performing T cell assays at scale is technically39

challenging and expensive, which justified the decision to conduct a series of serology surveys (some40

of which are still underway) in many locations globally to provide a better understanding of the41

extent of viral spread among populations10.42

In England, a nationwide survey sampling more than 100,000 adults was performed from 20 June to43

13 July 2020. The results suggested that 13% and 6% of the population of London and England,44

respectively, had been exposed to SARS-CoV-2, giving an estimated overall infection fatality ratio45

(IFR) of 0.90%11. Although corrections were made for the sensitivity and specificity of the test used46
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to infer seroprevalence, declining antibody levels were not accounted for. This is a limitation of the47

approach, potentially resulting in underestimates of the true levels of population exposure12 and an48

overestimate of the IFR.49

50

We now have a much clearer picture of the time dynamics of humoral responses following51

SARS-CoV-2 exposure, with antibody titers remaining detectable for approximately 6 months13,14.52

Commonly used serological assays have a limit of antibody titer detection, below which a negative53

result is yielded. Hence, a negative result does not necessarily imply absence of antibodies, but rather54

that there is a dynamic process by which production of antigen targeted antibodies diminishes once55

infection has been resolved, resulting in decaying antibody titers over time. As antibody levels56

decrease beyond the limit of detection, seroreversion occurs.57

58

We define the seroreversion rate as the inverse of the average time taken following seroconversion59

for antibody levels to decline below the cut-off for testing seropositive. In a longitudinal follow-up60

study, antibodies remained detectable for at least 100 days6. In another study15, seroprevalence61

declined by 26% in approximately three months, which translates to an average time to seroreversion62

of around 200 days. However, this was not a cohort study, so newly admitted individuals could have63

seroconverted while others transitioned from positive to negative between rounds, leading to an64

overestimation of the time to seroreversion.65

66
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Intuitively, if serology were a true measure of past exposure, we would expect a continually67

increasing prevalence of seropositive individuals over time. However, data suggest this is not the68

case16, with most regions in England showing a peak in seroprevalence at the end of May 2020. This69

suggests seroreversion plays a significant role in shaping the seroprevalence curve and that the time70

since the first epidemic peak will influence the extent to which subsequent seroprevalence71

measurements underestimate the underlying population attack size (proportion of the population72

exposed). We argue that the number of people infected during the course of the epidemic can be73

informed by data triangulation, i.e., by combining numbers of deceased and seropositive individuals74

over time. For this linkage to be meaningful, we need to carefully consider the typical SARS-CoV-275

infection and recovery timeline (Figure 1).76

77

Figure 1. Progression of exposed individuals through the various clinical (below the timeline),78

and diagnostic (above the timeline) stages of infection and recovery. Stages marked in grey79

represent events that may happen, with a probability consistent with the darkness of the shade of grey.80

81

82

83

Most individuals, once infected, experience an incubation period of approximately 4.8 days (95%84

confidence interval (CI): 4.5–5.8)17, followed by the development of symptoms, including fever, dry85
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cough, and fatigue, although some individuals will remain asymptomatic throughout. Symptomatic86

individuals may receive a diagnostic PCR test at any time after symptoms onset; the time lag87

between symptoms onset and date of test varies by country and area, depending on local policies and88

testing capacity. Some individuals might, as their illness progresses, require hospitalization, oxygen89

therapy, or even intensive care, eventually either dying or recovering.90

The day of symptoms onset, as the first manifestation of infection, is a critical point for identifying91

when specific events occur relative to each other along the infection timeline. The mean time from92

symptoms onset to death is estimated to be 17.8 days (95% credible interval (CrI): 16.9–19.2) and to93

hospital discharge 24.7 days (22.9–28.1)18. The median seroconversion time for IgG (long-lasting94

antibodies thought to be indicators of prior exposure) is estimated to be 14 days post-symptom onset;95

the presence of antibodies is detectable in less than 40% of patients within 1 week of symptoms onset,96

rapidly increasing to 79.8% (IgG) at day 15 post-onset19. We assume onset of symptoms occurs at97

day 5 post-infection and that it takes an average of 2 additional days for people to have a PCR test.98

Thus, we fix the time lag between exposure and seroconversion, ��, at 21 days, the time lag between99

a PCR test and death, �� , as 14 days, and assume that seroconversion in individuals who survive100

occurs at approximately the same time as death for those who don’t (Figure 1).101

102

Thus, we propose to use population level dynamics (changes in mortality and seroprevalence over103

time) to estimate three key quantities: the seroreversion rate, the IFR, and the total population104

exposure over time. We developed a Bayesian inference method to estimate said quantities, based on105

official epidemiological reports and a time series of serology data from blood donors in England,106
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stratified by region16 – see Materials and Methods for more details. This dataset informed the107

national COVID-19 serological surveillance and its data collection was synchronous with the108

“REACT” study11. The two sero-surveys use different, but comparable, antibody diagnostic tests20.109

While “REACT” used a lateral flow immunoassay (LFIA) test for IgG11, the data presented here110

were generated using the Euroimmun® assay. The independent “REACT” study acts as a validation111

dataset, lending credence to the seroprevalence values used. For example, seroprevalence in London112

was reported by REACT to be 13.0% (12.3–13.6) for the period 20 June to 13 July 2020. In113

comparison, the London blood-donor time series indicated seroprevalence to be 13.3% (8.4–16) on114

21 June 2020.115

We developed a method that combines daily mortality data with seroprevalence in England, using a116

mechanistic mathematical model to infer the temporal trends of exposure and seroprevalence during117

the COVID-19 epidemic. We fit the mathematical model jointly to serological survey data from118

seven regions in England (London, North West, North East (North East and Yorkshire and the119

Humber regions), South East, South West, Midlands (East and West Midlands combined), and East120

of England) using a statistical observation model. For more details on the input data sources,121

mechanistic model and fitting procedure, see the Materials and Methods section. We considered that122

mortality is perfectly reported and proceeded to use this anchoring variable to extrapolate the number123

of people infected 3-weeks prior. We achieved this by estimating region-specific IFRs (defined as124

�� ), which we initially assumed to be time invariant, later relaxing this assumption. The125

identifiability of the IFR metric was guaranteed by using the serological data described above as a126

second source of information on exposure. From the moment of exposure, individuals seroconvert a127
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fixed 21 days later and can then serorevert at a rate, β, that is estimated as a global parameter. We128

thus have both mortality and prevalence of seropositivity informing SARS-CoV-2 exposure over129

time.130

131

Several other research groups have used mortality data to extrapolate exposure and as a result132

provide estimates for IFR. Some IFR estimates were published assuming serology cross-sectional133

prevalence to be a true reflection of population exposure, while others used infection numbers134

generated by mechanistic dynamic models fit to mortality data21. Most recently, sophisticated135

statistical techniques have been used, which take into account the time lag between exposure and136

seroconversion when estimating the underlying population exposure from seroprevalence137

measurements22, with one study also considering seroreversion23. Our method is very much aligned138

with the latter but is applied at a subnational level while using a dataset that has been validated by an139

independent, largely synchronous study.140

141

Results142

Results from the fixed IFR inference method show excellent agreement with serological data (Figure143

2). We found that, after seroconverting, infected individuals remain seropositive for about 176 days144

on average (95% CrI: 159-197) (Table 1, Table S1, and Figure 2—figure supplement 1).145

146

Table 1. Marginal median parameter estimates and 95% CrI for the constant IFR model. β is147

the rate of seroreversion and � denotes the IFR. The estimated median time to seroreversion given148

by 1 � is 176 (95% CrI: 159-197 days).149
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150

Parameters Median (95% CrI)

� 0.0057 (0.0051 - 0.0063)

������� 0.0049 (0.0046 - 0.0063)

�����ℎ���� 0.0080 (0.0073 - 0.0087)

��������� 0.0103 (0.0095 - 0.0112)

�����ℎ���� 0.0094 (0.0087 - 0.0101)

�����ℎ���� 0.0118 (0.0109 - 0.0129)

��������� 0.0085 (0.0079 - 0.0091)

����� 0.0083 (0.0077 - 0.0090)

151

This relatively rapid (approximately six months) seroreversion is similar to other estimates from152

experimental studies13,14, and might explain the reported 83% protection against reinfection within 6153

months of disease in UK patients24. As a consequence of this rapid seroreversion, epidemic154

progression will result in an increasing gap between measured serology prevalence levels and155

cumulative population exposure to the virus. Ultimately, this may mean that more than twice as156

many people have been exposed to the virus relative to the number of people who are seropositive157

(Figure 2), raising questions about the relevance of serological data for informing policy decisions158

moving forward. We also estimated age-independent IFRs for seven English regions (means ranging159

from 0.49% to 1.18% - Table 1) that are in very good agreement with other estimates for England25.160

161

162
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Figure 2. Time course of the SARS-CoV-2 pandemic up to 7 November 2020 for seven regions163

in England. The solid orange circles and black error bars in each regional panel represent the164

observed seroprevalence data and their confidence interval, respectively, after adjusting for the165

sensitivity and specificity of the antibody test. The green and orange lines show the model166

predictions of median exposure and seroprevalence, respectively, while the shaded areas correspond167

to 95% CrI. The regional predicted exposure levels (expressed as the proportion of the population168

that has been infected) as of 17 October 2020 are shown on the map of England.169

170

171
172

The estimated IFRs are noticeably lower for London, which can be explained by differences in173

population age structure across the seven regions considered here. London has a considerably174

younger population than other regions of England, which, associated with increasing severity of175

disease with increasing age26,27, results in a lower expected number of fatalities given a similar176

number of infections. This could be construed as a possible explanation for fluctuations in estimates177

of the country-wide IFR over time25, as outbreaks occur intermittently across regions with different178

underlying IFRs. An alternative interpretation of IFR trends in England is that individuals who are179
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more likely to die from infection (due to some underlying illness or other risk factors) will do so180

earlier. This means that as the epidemic progresses, a selection (through infection) for a decrease in181

average population frailty (a measure of death likelihood once infected) is taking place and,182

consequently, a reduction in the ratio of deaths to infections. To test this hypothesis, we constructed183

an alternative formulation of our modelling approach, whereby the IFR at a specific time is184

dependent on the stage of epidemic progression – Figure 3. It is extremely difficult to extrapolate the185

underlying risk of infection from reported case data due to the volatility in testing capacity. Hence,186

we propose that the optimal metric for epidemic progression is the cumulative test positivity ratio. In187

the absence of severe sampling biases, the test positivity ratio is a good indicator of changes in188

underlying population infection risk, as a larger proportion of people will test positive if infection189

prevalence increases. In fact, it is clear from (Figure 3 – figure supplement 3 that the test positivity190

ratio is a much better indicator of exposure than the case fatality ratio (CFR) or the hospitalization191

fatality ratio (HFR), since it mirrors the shape of the mortality incidence curve. For the time-varying192

IFR, we took the normalized cumulative test positivity ratio time series and applied it as a scalar of193

the maximum IFR value estimated for each region – for more details can be found in the Materials194

and Methods section.195

196

Results from the time-varying IFR model indicate that the population of London might have197

undergone a significant frailty selection process during the first wave of the epidemic and now shows198

a significantly lower IFR compared with March/April 2020 (Figure 3 – figure supplement 2).199

Interestingly, no statistically significant time-dependence on IFR was inferred for any of the200
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remaining regions (Figure 3 – figure supplement 1), suggesting this phenomenon is dependent on age201

structure.202

203

Figure 3. Time course of the SARS-Cov-2 pandemic up to 7 November 2020 for seven regions204

in England for time-varying IFR model. The orange solid circles and black error bars in each205

regional panel represent the observed seroprevalence data and its confidence interval after adjusting206

for the sensitivity and specificity of the antibody test. The green and orange lines show the median207

time-varying IFR model predictions for exposure, and seroprevalence, respectively, while the shaded208

areas correspond to 95% CrI. The regional median predicted exposure levels (expressed as the209

proportion of the population that has been infected) as of 17 October 2020 are shown on the map of210

England.211

212

213

214

We can eliminate exposure levels as the main driver of this process as there is no clear temporal215

signal for IFR for the only other region (North West) with a comparable force of selection (i.e.,216
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similar predicted exposure levels). It seems that in younger populations, with a lower subset of very217

frail individuals, this selection will be more pronounced. Overall, the estimates obtained with both218

models are very consistent, with the estimated credible intervals for the time varying IFR model219

including the median estimated obtained for the fixed IFR model (Figure 3 – figure supplement 1 and220

Table S3).221

222

Discussion223

Given the current polarization of opinion around COVID-19 natural immunity, we realize that our224

results are likely to be interpreted in one of two conflicting ways: (1) the rate of seroreversion is high,225

therefore achieving population (herd) immunity is unrealistic, or (2) exposure in more affected places226

such as London is much higher than previously thought, and population immunity has almost been227

reached, which explains the decrease in IFR over time. We would like to dispel both interpretations228

and stress that our results do not directly support either. Regarding (1), it is important to note that the229

rate of decline in neutralizing antibodies, reflective of the effective immunity of the individual, is not230

the same as the rate of decline in seroprevalence. Antibodies may visibly decline in individuals yet231

remain above the detection threshold for antibody testing6. Conversely, if the threshold antibody titer232

above which a person is considered immune is greater than the diagnostic test detection limit,233

individuals might test positive when in fact they are not effectively immune. The relationship234

between the presence and magnitude of antibodies (and therefore seropositive status) and protective235

immunity is still unclear, with antibodies that provide functional immunity only now being236

discovered13. Furthermore, T cell mediated immunity is detectable in seronegative individuals and is237
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associated with protection against disease8. Therefore, the immunity profile for COVID-19 goes238

beyond the presence of a detectable humoral response. We believe our methodology to estimate total239

exposure levels in England offers valuable insights and a solid evaluation metric to inform future240

health policies (including vaccination) that aim to disrupt transmission. With respect to (2), we must241

clarify that decreasing IFR trends can result solely from selection processes operating at the242

intersection of individual frailty and population age structure. Likewise, the lower IFR in London can243

be attributed to its relatively younger population when compared with populations in the other244

regions of England. In conclusion, a method that accounts for seroreversion using mortality data245

allows the total exposure to SARS-CoV-2 to be estimated from seroprevalence data. The associated246

estimate of time to seroreversion of 176 days (95% CrI: 159-197) lies within realistic limits derived247

from independent sources. The total exposure in regions of England estimated using this method is248

more than double the last seroprevalence measurements. Implications for the impact of vaccination249

and other future interventions depend on the, as yet uncharacterized, relationships between exposure250

to the virus, seroprevalence, and population immunity. To assess vaccination population impact one251

can consider the population at risk to be those individuals who are seronegative, those with no past252

exposure (confirmed or predicted), or those with no T cell reactivity. In this manuscript, we offer an253

extra dimension to the evidence base for immediate decision-making, as well as anticipating future254

information from the immunological research community about the relationship between255

SARS-CoV-2 exposure and immunity.256

257

Materials and Methods258
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Data Sources259

We used publicly available epidemiological data to infer the underlying exposure to SARS-CoV-2260

over time, as described below:261

262

Regional daily death263

The observed daily mortality data for each of 7 English regions (London, North West, North East264

(contains both North East and Yorkshire and the Humber regions), South East, South West, Midlands265

(West and East Midlands combined) and East of England) from January 1st 2020 to November 11th266

2020 relates to daily deaths with COVID-19 on the death certificate by date of death. This267

information was extracted from the UK government’s official Covid-9 online dashboard32 on March268

8, 2021.269

270

Regional adjusted seroprevalence271

Region specific SARS-CoV-2 antibody seroprevalence measurements, adjusted for the sensitivity272

and specificity of the antibody test, were retrieved from Public Health England’s National273

COVID-19 surveillance report16.274

275

Regional case positivity ratios276

Weekly positivity ratios of laboratory confirmed COVID-19 cases for each of 7 English regions were277

obtained from the week 40 and week 45 (2020) Public Health England’s National COVID-19278

surveillance reports16, 33. The first report contains Pillar 1 testing information spanning weeks 5 (2020)279
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to 39 (2020), and Pillar 2 positivity ratios from week 19 up to week 39 (2020). The second report280

presents both Pillar 1 and Pillar 2 testing data from week 27 to week 44 (2020). We took the average281

of both Pillar 1 and Pillar 2 test positivity ratios where both data were available.282

283

Regional population284

Region specific population structures were obtained from the UK Office for National Statistics 2018285

population survey34.286

287

Mechanistic model288

We developed a mechanistic mathematical model that relates reported COVID-19 daily deaths to289

seropositive status by assuming all COVID-19 deaths are reported and estimating an infection290

fatality ratio that is congruent with the observed seroprevalence data. For each region, � = 1, …, 7291

corresponding to London, North West, North East, South East, South West, Midlands and East of292

England respectively, we denote the infection fatality ratio at time � by ��(�) and the number of293

daily deaths by ��(�). While we formulate the model in terms of a general, time-dependent, infection294

fatality ratio, we assume its default shape to be time invariant and later allow infection fatality ratio295

to vary with the stage of the epidemic.296

Using the diagram in Figure 1 as reference, and given a number of observed deaths at time t, ��(�),297

we can expect a number of infections 1
��(�)

��(�) to have occurred de days before. Of these infected298

individuals, ��(�) will eventually die, whilst the remaining 1− ��(�)
��(�)

��(�) will seroconvert from299
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sero-negative to sero-positive. This assumes that seroconversion happens, on average, with the same300

delay from the moment of infection as death.301

Assuming that seropositive individuals convert to seronegative (serorevert) at a rate �, the rate of302

change of the number of seropositive individuals in region �, �� � , is given by:303

���
��

= 1−�� �
�� �

�� � − ��� (1)304

Solving Equation (1), subject to the initial condition �� �0 = 0 where t is time since January 1st,305

2020, gives:306

�� � = �−��
�0

� ��� 1−��(�)
��(�))

��(�)��� (2)307

Discretizing Equation (2) with daily intervals (∆� = 1) gives:308

�� � = �−��
�=�0

� 1−��(�)
��(�)

�����(�)� (3)309

The model-predicted proportion of seropositive individuals in each population, ��(�) , is calculated310

by dividing �� � (Equation (3)) by the respective region population size at time � , �� −311

�=�0

� ��(�)� , where �� is the reported population in region � before the COVID-19 outbreak34:312

�� � = �−�� �� − �=�0

� ��(�)�
−1

�=�0

� 1−��(�)
��(�)

�����(�)� (4)313

This is relatively straightforward when the serology data is already adjusted for test sensitivity and314

specificity as is the case. For unadjusted antibody test results, the proportion of the population that315

would test positive given the specificity (���) and sensitivity (���) can be calculated as316

�� � = ����� � + 1 − ��� 1 − �� � .317

As mentioned earlier, the method that we present in this paper allows for the infection fatality ratio,318

��(�), to be (a) constant or (b) vary over time with the stage of the epidemic:319

(a) For constant infection fatality ratio, we have:320
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α� � = ��

(b) For time-varying infection fatality ratio, we first define the epidemic stage, ��(�) , as the321

normalized cumulative positivity ratio:322

���(�) = �=�0
� ��(�−��)�

�=�0
� ��(�−��)�

(5)323

where ��(�) is the confirmed case positivity ratio at time � in the proportion of individuals324

testing positive for the virus, �� is the average time between testing positive and325

seroconversion (see Figure 1) and � is the total number of days from �0 until the last date of326

positivity data. In this work, we fixed �� = 7 days (see Figure 1 and main text). We assume that327

the infection fatality ratio is a linear function of the normalized cumulative positivity ratio as328

follows:329

��(�) = �� 1 − �� ���(�) (6)330

where �� ∈ 0,1 and �� ∈ 0,1 are coefficients to be estimated. At the start of the epidemic331

when epidemic stage is 0 (see Equation (5)), then ��(�) = ��, whereas when epidemic stage is 1,332

��(�) = �� − �� × �� ≤ �� .333

In Equation (5), ��(�) is taken from the regional weekly test positivity ratios (see Data section),334

converted to daily positivity ratios (taken to be the same over the week).335

336

Once the model is parameterized, we can estimate the total proportion of the population that has been337

exposed, ��, with the following formula:338

�� � − �� = �� − �=�0

� � ��
−1

�=�0

� 1−�� �
�� �

� ��(�) (7)339

where �� is fixed to 21 days (Figure 1).340
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341

Observation model for statistical estimation of model parameters342

We developed a hierarchical Bayesian model to estimate the model parameters � , and present the343

posterior predictive distribution of the seroprevalence (Equation (4)) and exposure (Equation (7))344

over time. Results are presented as the median of the posterior with the associated 95% credible345

intervals (CrI). We assumed a negative binomial distribution35 for the observed number of346

seropositive individuals in region � over time, ��
���(�):347

��
��� � = ��

��� � × �� − �=�0

� �� �� (8)348

where ��
���(�) is the observed seroprevalence in region � over time. Then the observational model is349

specified for region � with observations at times ��1, ��2 . . . , ����:350

��
��� � ~�� �� � , � , � = ��1, ��2 . . . , ���� (9)351

where �� �� � , � is a negative binomial distribution, with mean �� � – given by equation (3)–352

and � is an overdispersion parameter. We set � to 100 to capture additional uncertainty in data353

points that would not be captured with a Poisson or binomial distribution. We assume uninformative354

beta priors for each of the parameters, according to the assumption made for how the infection355

fatality ratio is allowed to vary over time:356

(a) For constant infection fatality ratio, we have � = �� �=1
�=7, � and take priors:357

��~���� 1,1 , �~����(1,1) (10)358

(b) For time-varying infection fatality ratio, we have � = �� �=1
�=7, �� �=1

�=7, � and take priors:359

��~���� 1,1 , ��~����(1,1), �~����(1,1) (11)360
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We use Bayesian inference (Hamiltonian Monte Carlo algorithm) in RStan36 to fit the model to361

seroprevalence data by running four chains of 20,000 iterations each (burn-in of 10,000). We use362

2.5% and 97.5% percentiles from the resulting posterior distributions for 95% CrI for the parameters.363

The Gelman-Rubin diagnostics (��) given in Table S1 and Table S364

2 show values of 1, indicating that there is no evidence of non-convergence for either model365

formulation. Furthermore, the effective sample sizes (���� ) in Table S1 and Table S2 are all more366

than 10,000, meaning that there are many samples in the posterior that can be considered367

independent draws.368
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Figure 2 — figure supplement 1. Marginal posterior distributions for parameters in the516

constant infection fatality ratio model. Vertical lines show median of distribution and grey shaded517

region shows 95% CrI.518

519

520
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Figure 3 — figure supplement 1. Marginal posterior distributions for parameters in the521

time-varying infection fatality ratio model. Vertical lines show median of distribution and grey522

shaded region shows 95% CrI.523

524
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Figure 3 – figure supplement 2. Posterior predictive distribution of time-varying infection526

fatality ratio. Solid line shows median and shaded region 95% CrI.527

528

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 14, 2021. ; https://doi.org/10.1101/2021.01.08.21249432doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.08.21249432
http://creativecommons.org/licenses/by/4.0/


31

Figure 3 —figure supplement 3. Relevant epidemiological metrics in England over the course529

of the pandemic. Top subplot shows COVID-19 cases and deaths (yellow and blue lines,530

respectively) per 100,000 population in England from Feb 5 2020 to Nov 7, 2020. Bottom subplot531

shows the normalized case fatality rate, hospital fatality rate and virus positivity (yellow, blue, and532

green lines, respectively). We assumed fixed time lags of δ� = 14 days between PCR testing and533

death and δℎ = 12 days between PCR testing and hospitalization.534

535
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Table S1. The effective sample size (����) and the Gelman-Rubin diagnostic (R�) for the 8 model536

parameters in the default model (constant infection fatality ratio).537

538

Parameter ���� ��

� 12410 1

������� 18054 1

�����ℎ���� 29625 1

�����ℎ���� 23952 1

�����ℎ���� 28611 1

�����ℎ���� 22006 1

��������� 21334 1

����� 20992 1

539
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Table S2. The effective sample size (����) and the Gelman-Rubin diagnostic (R�) for the 15 model540

parameters in the time-varying infection fatality ratio model.541

542

Parameter ���� ��

� 35229 1

������� 32184 1

������� 26680 1

�����ℎ���� 38159 1

�����ℎ���� 33166 1

�����ℎ���� 24036 1

�����ℎ���� 24430 1

�����ℎ���� 32887 1

�����ℎ���� 29965 1

�����ℎ���� 24430 1

�����ℎ���� 31047 1

��������� 31943 1

��������� 27558 1

����� 24703 1

����� 25506 1

543
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Table S3. Marginal median parameter estimates and 95% CrI for the time-varying infection fatality544

ratio model.545

546

Parameter Median (95%CrI)

� 0.0061 (0.0054 - 0.0068)

������� 0.0054 (0.0048- 0.0063)

������� 0.30 (0.26 - 0.60)

�����ℎ���� 0.011 (0.0095 - 0.012)

�����ℎ���� 0.077 (0.0029 - 0.33)

�����ℎ���� 0.0083 (0.0074 - 0.0098)

�����ℎ���� 0.15 (0.0069 - 0.51)

�����ℎ���� 0.0094 (0.0086 - 0.011)

�����ℎ���� 0.060 (0.0021- 0.26)

�����ℎ���� 0.0013 (0.011 - 0.017)

�����ℎ���� 0.17 (0.0070 - 0.53)

��������� 0.0088 (0.0079- 0.010)

��������� 0.14 (0.0060 - 0.42)

����� 0.0089 (0.0077 - 0.012)

����� 0.18 (0.0080 - 0.57)

548
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