
Clinical Knowledge Extraction via Sparse Embedding 

Regression (KESER) with Multi-Center Large Scale Electronic 

Health Record Data 

 

Chuan Hong1,2, Everett Rush3, Molei Liu4, Doudou Zhou 5, Jiehuan Sun6, Aaron Sonabend4, 

Victor M. Castro7, Petra Schubert2, Vidul A. Panickan1, Tianrun Cai2,7, Lauren Costa2, Zeling 

He7, Nicholas Link2, Ronald Hauser8, J. Michael Gaziano1,2,9, Shawn N. Murphy7, George 

Ostrouchov3, Yuk-Lam Ho2, Edmon Begoli3, Junwei Lu2,4, Kelly Cho1,2,9, Katherine P. Liao*1,2,9, 

Tianxi Cai*1,2,4 with the VA Million Veteran Program# 

 

1Harvard Medical School, Boston, MA, USA; 

2VA Boston Healthcare System, Boston, MA, USA; 

3Department of Energy, Oak Ridge National Lab, Oak Ridge, TN USA 

4Harvard T.H. Chan School of Public Health, Boston, MA, USA; 

5 University of California, Davis, CA, USA MA, USA; 

6University of Illinois at Chicago, IL, USA; 

7Mass General Brigham, Boston, MA, USA; 

8West Haven VA Medical Center, West Haven, CT, USA 

9Brigham and Women's Hospital, Boston, MA, USA; 

 

*Liao and Cai contributed equally. 

#Part of this research is based on data from the Million Veteran Program, Office of Research 

and Development, Veterans Health Administration, and was supported by award #MVP000.  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 13, 2021. ; https://doi.org/10.1101/2021.03.13.21253486doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2021.03.13.21253486


ABSTRACT 

Objective: The increasing availability of Electronic Health Record (EHR) systems has created 

enormous potential for translational research. Even with a working knowledge of EHR, it is 

difficult to know all the relevant codes related to a phenotype due to the large number of codes 

available.  Traditional data mining approaches often require the use of patient-level data, which 

hinders the ability to share data across institutions to establish a cooperative and integrated 

knowledge network. In this project, we demonstrate that multi-center large-scale code 

embeddings can be used to efficiently identify relevant features related to a disease or condition 

of interest.  

Method: We constructed large-scale code embeddings for a wide range of codified concepts, 

including diagnosis codes, medications, procedures, and laboratory tests from EHRs from two 

large medical centers. We developed knowledge extraction via sparse embedding regression 

(KESER) for feature selection and integrative network analysis based on the trained code 

embeddings. We evaluated the quality of the code embeddings and assessed the performance of 

KESER in feature selection for eight diseases. Besides, we developed an integrated clinical 

knowledge map combining embedding data from both institutions. 

Results: The features selected by KESER were comprehensive compared to lists of codified data 

generated by domain experts.  Additionally, features identified automatically via KESER used in 

the development of phenotype algorithms resulted in comparable performance to those built upon 

features selected manually or identified via existing feature selection methods with patient-level 

data. The knowledge map created using an integrative analysis identified disease-disease and 

disease-drug pairs more accurately compared to those identified using single institution data.   

Conclusion: Analysis of code embeddings via KESER can effectively reveal clinical knowledge 

and infer relatedness among diseases, treatment, procedures, and laboratory measurement.  This 

approach automates the grouping of clinical features facilitating studies of the condition.  KESER 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 13, 2021. ; https://doi.org/10.1101/2021.03.13.21253486doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.13.21253486


bypasses the need for patient-level data in individual analyses providing a significant advance in 

enabling multi-center studies using EHR data. 

INTRODUCTION 

The adoption of electronic health record (EHR) systems has simultaneously changed clinical 

practice and expanded the breadth of biomedical research.  For clinical research studies, EHR 

data are used alone or integrated with other established data sources such as registries, genomic 

data from biobanks, and administrative databases1–7. EHR clinical data typically includes 

diagnostic billing codes, laboratory orders and results, procedure codes, and medication 

prescriptions.  These comprehensive longitudinal data allow for studies to examine a broad range 

of hypotheses.  However, this wealth of data also raises challenges in selecting and creating EHR 

features among thousands of options relevant to the study or condition of interest.  Most current 

studies manually select individual EHR features and map specific EHR codes to represent each 

feature, requiring input from clinical and informatics experts. In addition to being susceptible to 

subjective bias, this manual, time-consuming process cannot be scaled for projects requiring 

multiple phenotypes. 

Moreover, sharing algorithms across institutions often requires performing this manual process to 

identify institution-specific codes and coding patterns in collaborative or replication studies.  One 

potential solution is to create large-scale clinical knowledge networks, providing information 

about the dependency structure across different EHR elements, thereby providing information 

about the relationship of conditions and codes at a particular institution as well as equivalent 

codes across institutions.  These data would no longer be associated with individual patient data 

and could be readily shared, facilitating multi-center collaborations. 
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Creating a clinical knowledge network using EHR data requires two major advancements.  First, 

a general approach is needed to integrate the different types of structured data efficiently, also 

referred to as codified data, available in EHR.  Codified EHR data includes ICD (International 

Classification of Disease) codes8,9 for disease conditions, LOINC (Logical Observation 

Identifiers Names and Codes)10 for laboratory tests, CPT (Current Procedural Terminology)11 and 

CCS (Clinical Classifications Software)12 for procedures, as well as RxNorm13 and NDC 

(National Drug Code) for medications.  Approaches for extracting knowledge from codified EHR 

data using machine learning algorithms have been proposed in recent years14–16. However, these 

algorithms focused on a specific task and required training with patient-level EHR data. Second, 

establishing a highly cooperative and shareable clinical knowledge network across institutions 

requires methods that can ensure data privacy. Existing approaches for data mining require 

patient-level EHR data, posing significant administrative challenges for data sharing across 

research groups and institutions.  

To overcome these challenges, we propose to transform EHR data into embedding vectors17, thus 

uncoupling the data from the individual patient.  The downstream machine learning tasks would 

use the embeddings vector as summary data rather than individual patient data.  Our use of 

embedding in this study refers to projecting an EHR code into another representation space.  In 

the past decade, embedding vectors have been successfully derived for clinical concepts with 

textual data and various sub-domains of codified EHR data18–24. These embeddings were 

primarily derived for specific applications and not for the creation of knowledge networks. In 

addition, most existing word embedding algorithms tuned the key hyper-parameters, e.g., the 

appropriate dimension of the embedding vectors, to optimize a specific downstream task. For 

example, the Code2Vec19 tuned the embedding dimension via clustering task, and the 

Med2Vec21 chose the dimension via future code prediction. However, this approach may limit the 

applicability of the learned embedding vectors to other downstream tasks.  This study aims to 
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develop a Knowledge Extraction pipeline via Sparse Embedding Regression (KESER) with EHR 

data from two large healthcare systems.  We present methods to derive embedding vectors using 

multiple types of codified EHR data at scale. Here, we choose the hyperparameters to ensure the 

general quality of the embedding vectors and retain embedding vectors with higher dimensions to 

further enable users to fine-tune optimal dimensions for their specific tasks. We also investigate 

to what extent the dimensions affect the performance of different tasks. With embedding vectors 

from both institutions, we fit graphical models via sparse regression to construct knowledge 

networks that encode relatedness among features.  We then demonstrate how these knowledge 

networks can select potential features in the development of an algorithm to identify patients with 

specific phenotypes using EHR data.  Furthermore, we demonstrate that the knowledge network 

trained via integrative analysis of embedding data from both institutions outperforms those 

trained with a single institution's data.   

RESULTS 

The KESER procedure includes four key steps outlined in Figure 1: (i) data pre-processing; (ii) 

creating embedding vectors via representation learning using co-occurrence data and pointwise 

mutual information; (iii) feature selection at a single site via sparse regression; (iv) building a 

knowledge network across multiple sites via an integrative sparse regression and node-wise 

graphical model.   

Data Pre-Processing  

We used EHR data from two large hospital systems, the VA Corporate Data Warehouse (CDW) 

and Mass General Brigham (MGB). After aggregating four codified data domains (i.e., diagnosis, 

procedures, lab measurements, and medications) into PheCode, CCS, RxNorm, LOINC codes, 
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and manual lab concepts, and applying frequency control, we finally obtained a total of 9,211 

codes at VA and 5,507 at MGB. 

Creating and Validating Embedding Vectors 

We obtained embeddings by performing singular value decomposition (SVD) on the shifted 

positive pointwise mutual information (SPPMI) matrix, known as the SVD-SPPMI algorithm.  

 

Known Relation Benchmark relation pairs. To select optimal hyper-parameters and evaluate the 

performance of the trained embeddings along with the proposed KESER algorithms, we collected 

a set of known relationship pairs from Wikipedia, PheCode hierarchy, https://www.drugs.com/, 

MEDRT, SNOMED-CT, and manual annotations. The total numbers of curated relation pairs 

across all available sources that can be mapped to MGB and VA, as shown in Table S1 of the 

Supplementary Materials, are 15326 and 15224.  

Optimal Dimensions of Derived Embeddings. We obtained the initial embedding dimensions by 

retaining 95% of the variation in the SVD (d95%), resulting in 1800 for MGB and 2900 for VA, as 

shown in Figure S1 of the Supplementary Materials. We further evaluate strategies for choosing 

optimal embedding dimensions and the degree to which embedding dimensions may affect the 

performance of detecting similar concepts and related concepts. We chose the dimensions by 

maximizing either (a) the signal to noise ratio (SNR); or (b) the area under the receiver operating 

characteristic curve (AUC) associated with pairs with known relations against random pairs, as 

detailed in Methods. The dimensions selected to maximize AUC (dauc) tend to be lower than to 

those selected to maximize SNR (dsnr) and selected dimensions are generally lower for assessing 

similarity compared to those for relatedness.  For optimizing similarity assessment, (dauc, dsnr) 

were chosen as (300, 1000) at MGB and (500, 1800) at VA. For detecting relatedness, (dauc, dsnr) 

were chosen as (1800, 1800) at MGB and (2300, 2800) at VA, close to their corresponding d95%.  
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Optimal Window Size and k. We conducted additional sensitivity analyses using different 

window size and k to construct the co-occurrence matrices based on a total of about 70K patients 

from MGB Biobank. When varying window sizes from 7, 30 up to 60 days and k from 1, 5, up to 

10, we observed that the embedding quality is the best when k = 1 but is not sensitive to the 

choice of window size (Table S2 of the Supplementary Materials).  

Performance of Derived Embeddings in Assessing Similarity and Relatedness. Table 1 

summarizes the overall accuracy of between-vector cosine similarities in detecting known 

similarity and relatedness relationships with embedding vectors derived from either SVD-SPPMI 

or GloVE25. We focus on GloVE trained with dimension 50 and 100 since the GloVE algorithm 

did not converge at higher dimensions. For detecting similar pairs, the SVD-SPPMI based cosine 

similarities attained an AUC of 0.839 at MGB and 0.888 at VA with dimensions set at dauc. By 

thresholding cosine similarities to classify pairs as similar with cut-off chosen to maintain false 

positive rate (FPR) of 0.05 and 0.10, these classifications yielded sensitivities of 0.593 and 0.669 

at MGB and 0.679 and 0.772 at VA. For the relatedness, the cosine similarities based on SVD-

SPPMI embeddings at d95% achieved AUC of 0.868 at MGB and 0.862 at VA, sensitivities of 

0.608 and 0.717 at MGB and 0.582 and 0.688 at VA at FPR=0.05 and 0.10. Compared to GloVE, 

embeddings derived via SVD-SPPMI achieved similar AUCs but higher sensitivities. As shown 

in Table S2 of the Supplementary Materials, the accuracy is overall fairly high in assessing most 

types of relationships including may cause, differential diagnosis, complications, and symptoms 

with AUC close to 0.9. The accuracy is lower in detecting risk factors and similar drugs with 

AUC close to 0.8. Although assessed using different knowledge sources, these observed levels of 

accuracy are similar to those previously reported based on embedding vectors trained for natural 

language processing (NLP) concepts20. 
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Performance of Derived Embeddings in Mapping codes across institutions. Similar to language 

translation, we learned orthogonal transformation between embedding vectors across the two 

institutions to enable mapping of a given VA code to the corresponding MGB code 26. As 

summarized in Table S3 of the supplementary Materials, the top-1 and top-5 accuracy of code 

mapping is around 38% and 67% for VA medication codes → RXNORM and around 42% and 

74% for PheCode → PheCode using embeddings of dimension dauc. The code mapping accuracy 

is fairly comparable when using a larger dsnr. The observed code mapping accuracy is comparable 

to the translation accuracy between different languages reported in the literature 26 27.  

Knowledge Extraction via KESER 

The KESER approach was developed to select features by using embeddings trained within a 

specific healthcare center, as well as by leveraging embeddings from multiple healthcare centers 

while incorporating between-site heterogeneity.  

 

Performance of KESER in Detecting Known Relationships. In Table 2, we summarize the 

average sensitivities and FPR of KESER integrative knowledge extraction using embedding data 

from both MGB and VA (KESERINT) in detecting known associations. For comparison, we also 

provide results based on KESER performed using MGB data only (KESERMGB) and using VA 

data only (KESERVA). The integrative analysis based on KESERINT attained a sensitivity of  

0.660 in detecting known related pairs, while maintaining FPR below 5%. The KESERINT 

algorithm attained accuracy substantially higher than those from KESER algorithms trained with 

single institution data and the accuracy is generally higher using embeddings from SVD-SPPMI 

compared to those from GloVE.  
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Performance of KESER in Identifying Drugs of Rheumatoid Arthritis (RA). The performance 

of KESERINT, KESERMGB, and KESERVA using embeddings obtained by GloVE or SVD-SPPMI 

in detecting 16 medications commonly used to treat RA is summarized in Table 3. Out of the 16 

medications, using embedding from SVD-SPPMI at d95%, the numbers of drugs selected by 

KESERMGB, KESERVA and KESERINT were 16, 14 and 16, respectively, yielding a sensitivity of 

1.00, 0.88 and 1.00. Sensitivity in detecting these medications based on lower dimensional 

embeddings from SVD-SPPMI or GloVE are generally lower. For example, the sensitivity ranged 

from 0.41 to 0.53 based on GloVE at d=100 and from 0.82 to 0.94 based on SVD-SPPMI at 

d=500.  

Validation of KESER using Real World EHR Phenotyping. We conducted KESER feature 

selection for 8 diseases: coronary artery disease (CAD), type I diabetes mellitus (T1DM), type II 

diabetes mellitus (T2DM), depression, rheumatoid arthritis (RA), multiple sclerosis (MS), 

Crohn’s disease (CD) and ulcerative colitis (UC). Figure 3 shows KESER-selected features for 

RA and UC. Results for the remaining six diseases are summarized in Figures S2-S9 in the 

Supplementary Materials. Since the goal of the feature selection is to achieve high sensitivity, i.e., 

to identify many of the potentially important features, less emphasis should be placed on the 

magnitude of the sparse regression coefficients. The results were largely consistent with clinical 

knowledge. For RA, the five most important codes were tofacitinib, tocilizumab, golimumab, 

abatacept and methotrexate, all current therapies for RA. Other selected features include 

differential diagnoses for RA (e.g. juvenile rheumatoid arthritis, osteoporosis, psoriasis) and lab 

tests for diagnosing or monitoring RA (e.g. cyclic citrullinated peptide, c-reactive protein and 

erythrocyte sedimentation rate). Inflammatory bowel disease (IBD) comprises two subtypes, CD 

and UC.  For UC, top features selected by KESER consisted of treatments currently used to treat 

the condition.  While vedolizumab is used in both UC and CD, golimumab is indicated for UC 

and not CD (Figure S9). UC features also include CD and noninfectious gasteroenteritis as 
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differential diagnoses as well as important procedures such as colonoscopy, proctoscopy and 

colorectal resection.  

Using codified EHR data from 68,213 MGB Biobank participants, we compared the performance 

of two supervised phenotype algorithms, the adaptive LASSO (aLASSO) and random forest 

(RF), trained with existing feature selection strategies to those trained with KESER-selected 

features. Those existing feature selection strategies included the main PheCode of the disease 

only (PheCode), all features (FULL), or informative features selected manually or extracted using 

unsupervised algorithms such as SAFE15. The accuracies of the aLASSO phenotyping algorithms 

trained with different feature sets are summarized in Figure 4 and more detailed comparisons 

including the RF results are given in Figure S10 of the Supplementary Materials. Given the same 

feature set, the RF algorithms generally performed slightly worse than the aLASSO algorithms in 

part due to overfitting. The relative performance of the RF algorithms trained with different 

feature sets is similar to those from aLASSO. The algorithms generally attained higher 

performance using embeddings from SVD-SPPMI than those from GloVE. The results are quite 

similar when using KESERINT versus KESERMGB and hence using MGB embedding information 

may be sufficient for phenotyping at MGB. Hence we focus our discussions below on the 

aLASSO algorithms and for KESER, we focus on KESERMGB with SVD-SPPMI embeddings for 

brevity. Across the 8 phenotypes, phenotyping algorithms trained via aLASSO with KESERMGB-

selected features attained higher AUCs and F-scores than those based on PheCode alone or using 

FULL features, and similar AUCs as those trained with SAFE features. On average, the AUC of 

KESERMGB with SVD-SPPMI based algorithms was 0.052, 0.144 and 0.007 higher than those 

based on PheCode, FULL and SAFE features. The average F-score of KESERMGB based 

algorithms was 0.173, 0.157 and 0.013 higher than those based on PheCode, FULL and SAFE 

features.  The 95% confidence intervals of the accuracies associated with algorithms trained with 
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KESER-selected features are similar to the SAFE features, while those of the FULL features and 

main PheCode alone are substantially wider.  

Knowledge Mapping by Performing Node-wise KESER 

We summarized the clinical knowledge network, namely a knowledge mapping,  by performing 

node-wise KESER across all PheCode and RxNorm (https://github.com/celehs/KESER).  Figure 

5 is a screenshot of the webAPI, given a specific target drug, RxNorm 214555 for etanercept. 

The node-wise knowledge extraction aims to find the neighborhood codes related to the target 

code etanercept. Figure 5(A) displays codes connected to etanercept from KESERINT, which 

consists of 36 PheCodes, 49 RxNorm codes, 3 CCS codes and 15 lab codes.  Confirmed by 

domain experts, the results were largely consistent with clinical knowledge. For example, 

diseases commonly treated by etanercept, such as sacroiliitis, juvenile rheumatoid arthritis, RA, 

ankylosing spondylitis, were selected by the knowledge network. Drugs, procedures and lab tests 

usually used together with etanercept, such as methotrexate, arthrocentesis, HLAB27, and CRP, 

were also selected. Figures 5(B) and 5(C) display the local network based on KESERVA and 

KESERMGB. We observed four lab codes uniquely identified by VA and nine lab codes uniquely 

identified by MGB. The discrepancy of the local networks at VA and RPDR lies only in lab 

codes.  This is expected because the majority of the lab codes are unique to the site, resulting in 

high cross-site heterogeneity in lab coding. By integrating data from both sites, KESERINT is able 

to achieve higher accuracy in reflecting clinical knowledge.  

These results demonstrate that KESER can successfully select informative and clinically 

meaningful features that can be used effectively for phenotyping and other downstream analyses.  
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DISCUSSION 

The KESER approach efficiently summarizes patient-level longitudinal EHR data into hospital-

specific embedding data and enables extraction of clinical knowledge based only on summary 

level data. This summary data generated based solely on relationships between codes, and 

clusters related codes together, which provides ready information on features that may be 

important for identifying or studying different phenotypes. The KESER approach enables 

assessment of conditional dependency between EHR features by performing sparse regression of 

embedding vectors without requiring additional patient level data. In this paper we demonstrate 

the advantage of integrative analyses across sites in detecting known associations.  Ultimately, we 

believe this innovation provides a potential solution for barriers facing the much-needed multi-

center collaborative studies using EHR data.   

The majority of EHR-based clinical studies are performed entirely behind the firewalls of 

individual institutions.  Collaborations across centers typically require that each institution 

perform analyses individually with results compared across institutions.  However, coding 

behaviors, disease management and strategies, and healthcare delivery patterns28 can vary across 

different healthcare systems. For example, at VA, medication procedures (such as infliximab-

injection) are coded as HCPCS procedure codes, while at MGB, they are coded as local 

medication codes that directly map to RxNorm. At VA, the majority of patients are male, and 

thus the pattern of diseases or treatments may differ from MGB where females are the majority. 

Variations between the two institutions were observed when validating the embedding vectors 

compared against known PheCode-RxNorm pairs (Table 1).  While the knowledge derived from 

the embedding vectors captures all the relevant RA treatments at both VA and MGB, the weights 

of the individual treatments differed slightly between the two healthcare systems (Figure 3).  

Among the top-50 weighted treatments, there are 36 same concepts obtained from both healthcare 
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systems. At VA methotrexate had the largest coefficient compared to tofacinitib at MGB.  

Integrating the data from both systems improves the robustness of the identified relationships and 

accounts for the heterogeneity of data in each system.  Notably, since the embedding vectors 

contain no patient data, the integration of these data can be performed outside of each system.     

Embedding vectors also provide information on highly related groups of codes.  Unlike ICD 

codes which have established groupings and hierarchies, lab codes are much less standardized, 

and no established grouping structure can be used at scale for research studies.  As an example, 

for the inflammatory marker C-reactive protein (CRP), potential lab codes include, 

LOINC:11039-5 (crp), LOINC:30522-7 (crp, high sens, cardio), and LOINC:X1166-8 (crp 

(mg/L)). Additionally, at both VA and MGB, individual labs within each institution also had 

unique lab codes that do not map to the LOINC codes.  The embedding vectors derived from the 

co-occurrence matrices enable grouping of codes based on the similarity between the vectors, 

thus allowing the use of grouped lab codes in research studies.   

We also addressed the need to tailor the dimension of embedding vectors to the goals of a 

particular study.  Currently, there is no clear evidence regarding how to select the optimal 

dimension for analyses using embeddings.  Existing embedding-based approaches usually use a 

300-dimension word embedding GloVE25 or a 500-dimension CUI embedding for cui2vec20.  We 

demonstrate that different dimensions may be preferred for different tasks. Lower dimensions 

appear to be better suited for the task of identifying near synonymous concepts or translations 

while higher dimensions are needed for assessing relatedness and embedding regression aiming 

to optimize feature selection and building knowledge networks. While lower dimensions may be 

useful for many downstream tasks such as code mapping between institutions, we recommend 

keeping embedding vectors at high dimensions for dissemination to enable better assessment of 

relatedness while allowing users to further truncate to lower dimensions for other tasks.  
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In this paper, we derived embeddings via SVD-SPPMI, considered in the literature as equivalent 

to the skip-gram algorithm with negative sampling (SGNS)17. Computationally, the SVD-SPPMI 

approach is substantially more efficient than SGNS as it does not need to conduct the negative 

sampling which is computationally intensive especially when the number of codes is massive. 

Due to both IRB and computational constraints, we are only able to derive embeddings from 

SVD-SPPMI and GloVE which only require summary data and but not SGNS. We find that SVD-

SPPMI derived embeddings generally have more robust performance compared to those from 

GloVE which also appears to suffer from convergence issues when fitting for higher dimensions, 

possibly due to the sparsity of the SPPMI matrices.   

The embedding vectors provide not only a method to share and analyze data, but also an 

opportunity to develop an integrated clinical knowledge network with input from many 

institutions.  This network allows us to visualize the node-wise relationships between a target 

code (e.g., a PheCode or a RxNorm) and its neighborhood codes: PheCode, RxNorm, CCS and 

Labs (Figure 5). By leveraging information from both sites, the integrative network covers all 

available knowledge and consists of a more comprehensive pool of neighborhood codes 

compared with local networks.  

Finally, using KESER, this knowledge network can be updated over time to study relationships 

between emerging conditions and their relationships with existing conditions, across multiple 

healthcare systems.  This is particularly relevant for future studies on the impact of the COVID-

19 pandemic. There is still a lack of knowledge in fundamental aspects of COVID-19, such as the 

development, management and treatment of the disease, and how those aspects differ across 

different sites and countries. Therefore, creating an integrated clinical knowledge map of codified 

data for COVID-19 will be of great interest. This knowledge map can be then used to facilitate 

the classification of COVID-19 patients with selected features. As an exploratory analysis, we 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 13, 2021. ; https://doi.org/10.1101/2021.03.13.21253486doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.13.21253486


constructed two separate co-occurrence matrices and derived embeddings via the SVD-SPPMI  

using all EHR data up to Nov, 2020 from 30K COVID+ patients at MGB and 100K COVID+ 

patients at VA. As a proof of concept, we identified clinical concepts most related to the COVID 

code. As shown in Figure S11 of the Supplementary Materials, the results are encouraging in that 

the top selected codes include the highly important laboratory tests for monitoring COVID 

progression (e.g. D-dimer, CRP, Ferritin) and medications for managing COVID patients (e.g. 

norepinephrine often used as first line vasoactive, cefepime for managing bacteria pneumonia 

complications, tocilizumab, dexamethasone and remdesivir) as well as related diagnoses and 

complications (e.g. viral pneumonia, respiratory insufficiency, shock, and kawasaki disease).  

In conclusion, KESER provides an approach allowing investigators to integrate patient level data 

as embedding vectors from multiple EHR systems for downstream analyses.  We provide an 

example of using the knowledge network to automatically provide features that may be important 

for phenotyping, without requiring additional patient level data. This innovation will facilitate 

multi-center collaborations and bring the field closer to the promise of creating distributed 

networks for learning across institutions while maintaining patient privacy.   

 

METHODS 

We highlight three key innovations detailed below in the methods.  First, we provided an 

approach to integrate four domains of codified data, ICD, CPT, laboratory codes, and 

medications, from two large hospital systems.  Second, we applied a data driven approach to 

specify the dimension of embedding vectors.  Third, we developed a method to use embedding 

vectors rather than patient-level data as the input into a sparse graphical model.   
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Data Pre-Processing  

Data Sources. The VA Corporate Data Warehouse (CDW) aggregates EHR data from over 150 

VA facilities into a single data warehouse. It contains clinical, financial, and administrative records 

for over 23 million unique individuals (1999-2019). The CDW supports both business operations 

and research. A total of 12.6 million patients with inpatient and outpatient codified data from at 

least 1 visit were included for this analysis. We defined outpatient visit to include services from all 

VA outpatient stop codes. There are over 500 outpatient stop codes that cover a wide range of 

services such as emergency department visits, therapy and primary care. We first extracted records 

from the CDW. We then grouped each patient’s records together in ascending chronological order. 

Codes occurring multiple times for the same patient within the same day are counted once per day. 

The resulting files were stored using parquet, a columnar storage format. The parquet file format 

was well suited to storing this data compactly while also allowing parallel processing. 

Mass General Brigham (MGB), formerly Partners Healthcare, is a Boston-based non-profit 

healthcare system anchored by two tertiary care centers, Brigham and Women’s Hospital (BWH) 

and Massachusetts General Hospital (MGH). The Research Patient Data Registry (RPDR) of 

MGB is a research copy of the electronic health records of BWH and MGH with over 1 billion 

visits containing diagnoses, medications, procedures, and laboratories information. The patient 

population included 2.5 million patients with at least 3 visits spanning more than 30 days.  The 

analysis included coded data from all inpatient, outpatient and emergency department visits 

between 1998 and 2018. We used the same format as VA described above to store patient visit 

level data for processing.   

Code Roll-up. We gathered four domains of codified data including diagnosis, procedures, lab 

measurements, and medications from VA and MGB EHRs. Since multiple EHR codes can 

represent the same broad concept, (e.g. acute myocardial infarction (MI) of anterolateral wall and 
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acute MI of inferolateral wall are separate codes that describe the same concept of MI), we rolled 

individual codes to a code representing a general concept.  ICD codes were aggregated into 

PheCodes to represent more general diagnoses, e.g., MI rather than acute MI of inferolateral wall, 

using the ICD-to-PheCode mapping from PheWAS catalog (https://phewascatalog.org/phecodes). 

We utilized multiple levels of granularity of PheCode, including integer level, one-digit level and 

two-digit level. To reduce the effect of collinearity, when conducting KESER regression, for 

phenotypes with multiple levels of PheCode, we only included one-digit level PheCodes.  

For procedure codes, including CPT-4, HCPCS, ICD-9-PCS, ICD-10-PCS (except for medication 

procedures), we assigned CCS categories based on the clinical classification software (CCS) 

mapping (https://www.hcup-us.ahrq.gov/toolssoftware/ccs_svcsproc/ccssvcproc.jsp). For 

medication codes, we aggregated the local medication codes at VA and MGB to the ingredient 

level RxNorm codes29.  

For laboratory measurements, due to the difference in coding systems between VA and MGB, we 

created a code dictionary for each site. At VA this was done by grouping local lab codes to 

manually annotated lab concepts or LOINC codes, as well as individual lab codes that have not 

been annotated but occurred in at least 1000 patients. At MGB, all local lab codes were 

aggregated into group and a LOINC code was assigned to each. Since embeddings cannot be 

trained well for very low frequency codes, we only included codes occurring >1000 times at 

MGB and >5000 times at VA. The different thresholds were used because VA has a larger 

population and larger number of codes than MGB. A total of 9,535 codes (1776 PheCodes, 1561 

RxNorms, 5974 Labs and 224 CCS groups) at VA and 5,245 codes (1772 PheCodes, 1238 

RxNorms, 1992 Labs and 243 CCS groups) at MGB passed the frequency control. 
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Creating Embedding Vectors  

We obtained embeddings by performing singular value decomposition (SVD) on the shifted 

positive pointwise mutual information (SPPMI) matrix, known as the SPPMI-SVD algorithm.  

This approach provided embeddings considered as efficient and equivalent to those derived from 

the skip-gram algorithm with negative sampling17,20,30,31.  

Co-occurrence Matrix. We first constructed code co-occurrence matrices as described in Beam et 

al14. For any given patient, we scanned through each of their codes as a target code. For any given 

target code occurring at time t, denoted by 𝑤𝑡, we counted all codes occurring within 30 days of 𝑡 

as co-occurrences with 𝑤𝑡. The total numbers of co-occurrences for all possible pairs of codes are 

aggregated over all target codes within each patient and then across all patients, yielding the co-

occurrence matrix, denoted by ℂ = [∁(𝑤, 𝑐)]. Although only codes that occur after the target code 

are considered, this is the same as finding co-occurring codes within 30 days of the target code 

(i.e. between -30 and 30 days), owing to the symmetry of the data. Thus, given a target phenotype 

𝑤 (e.g, PheCode 714.1 for RA), we assume the context codes vocabulary 𝒱𝐶(𝑤) are the codes co-

occurred with the target word within a 30-day window. This step requires considerable 

computational resources and a detailed algorithm for efficiently computing the co-occurrence 

matrix was created for this study (https://github.com/rusheniii/LargeScaleClinicalEmbedding).  

Since our sparse regression procedures (described in later sections) require selection of tuning 

parameters, we constructed two separate co-occurrence matrices at each site. At VA, from the 

12.6 million patients, we used data from 11.6 million patients to create a training matrix ℂ𝑡
VA and 

data from the remaining 1 million patients to create a validation matrix ℂ𝑣
VA

 . At MGB, we used 

half of the patients to create training and the other half to create validation matrices, respectively 

denoted by ℂ𝑡
MGB

 and ℂ𝑣
MGB. 
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Embedding via SVD of the SPPMI matrix. We calculate the SPPMI matrix as: 

SPPMI(𝑤, 𝑐) = max {log
𝐶(𝑤,𝑐)

𝐶(𝑤,∙)𝐶(𝑐,∙)
− log(𝑘) , 0}      (1) 

with the negative sample 𝑘 set as 1 (i.e. no shifting), where 𝐶(𝑤, ∙) is the row sum of 𝐶(𝑤, 𝑐). 

For each given SPPMI, we obtain its first d-dimensional SVD as 𝕌𝑑diag(𝜆1, … , 𝜆𝑑)𝕌𝑑
𝑇  and then 

construct the d-dimensional embedding vectors as 𝕍𝑑, where 𝕍𝑑 = 𝕌𝑑diag(√𝜆1, … , √𝜆𝑑 ).  

Knowledge Extraction via Sparse Embedding Regression (KESER)  

We propose to infer conditional dependency among the clinical codes based on the conditional 

dependency among their corresponding embedding vectors. To provide a rationale for this 

framework, we note that the skip-gram model with negative sampling16 directly encodes the 

marginal dependency between the target code 𝑤 and its context code 𝑐 via the covariance 

between their respective embedding vectors 𝑽𝑤 and 𝑽𝑐 with 

logit ℙ(Target code w and context code c co-occurs |𝑤, 𝑐) = 𝑽𝑤
𝑇 𝑽𝑐 .     (2) 

This motivates us to model the conditional distribution of the target code 𝑤 and other codes by 

imposing a Gaussian distribution on the embedding vectors and inferring the dependency via a 

Gaussian graphical model on top of the skip-gram model. Specifically, in the 𝑚𝑡ℎ healthcare 

center, we assume that the embedding vector of code 𝑤, 𝑽𝑤
(𝑚)

, follows a conditional vector-

valued Gaussian distribution centered at the linear combination of its context word vectors, i.e., 

𝑽𝑤
(𝑚)
|𝑽𝑐
(𝑚) for 𝑐 ≠ 𝑤~ 𝒩( ∑𝑐≠𝑤𝐵𝑤𝑐

(𝑚)𝑽𝑐
(𝑚), 𝜎𝑚

2 I𝑑)    (4) 

for 𝑚 = 1,…𝑀, where 𝐵𝑤𝑐
(𝑚)

 encodes the conditional dependency between codes 𝑤 and 𝑐, with 

𝐵𝑤𝑐
(𝑚)

= 0 if 𝑽𝑤
(𝑚)

 is independent of 𝑽𝑐
(𝑚)

 given all other code vectors. For symmetry, we assume 
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𝐼(𝐵𝑤𝑐
(𝑚)

=0) =𝐼(𝐵𝑐𝑤
(𝑚) = 0) for all target words w and the context c. Figure 2 visualizes the two-

layer hierarchical structure of our model. The sparsity structure of 𝔹(𝑚) = [𝐵𝑤𝑐
(𝑚)] enables us to 

infer about the relatedness among different features for the 𝑚𝑡ℎ healthcare center, which can be 

used for both feature selection and learning a knowledge graph.  

Site-Level Feature Selection. Due to the heterogeneity of the coding patterns across healthcare 

centers, feature selection can be done using embeddings trained within a specific healthcare 

center. For the 𝑚𝑡ℎ center, we select features important for a specific target phenotype w (e.g, 

PheCode 714.1 for RA) by performing an elastic net penalized regression32 of 𝑽𝑤
(𝑚)

 against 

{𝑽𝑐
(𝑚)
, 𝑐 ≠ 𝑤}. We first perform an initial screening based on marginal cosine similarity and 

consider codes in Ω0.05
(𝑚) = {𝑐: cos(𝑽𝑤

(𝑚), 𝑽𝑐
(𝑚)) ≥ 𝜌0.05, 𝑐 ≠ 𝑤} for further selection, where 𝜌0.05 

is the upper 5th percentile of the cosine similarity among randomly selected pairs. Since the cosine 

similarity distribution varies across different relationship types (e.g. PheCode-PheCode versus 

PheCode-RXNORM), we recommend choosing 𝜌0.05 within each relationship types. Then we 

estimate 𝑩𝑤
(𝑚) = {𝐵𝑤𝑐

(𝑚), 𝑐 ≠ 𝑤} as  

argmin
𝑩𝑤
(𝑚)  {‖

𝑽𝑤
(𝑚)

∥𝑽𝑤
(𝑚)

∥𝟐
− ∑ 𝐵𝑤𝑐

(𝑚) 𝑽𝑐
(𝑚)

∥𝑽𝑐
(𝑚)

∥𝟐𝑐∈Ω0.05
(𝑚) ‖

2

2

+ 𝜆𝑚1∑
|𝐵𝑤𝑐
(𝑚)

|

|cos(𝑽𝑤
(𝑚)

,𝑽𝑐
(𝑚)

)|
𝑐≠𝑤 + 𝜆𝑚2∑ (𝐵𝑤𝑐

(𝑚))2𝑐≠𝑤 } 

(5) 

for some tuning parameters 𝜆𝑚1, 𝜆𝑚2 > 0 to be selected. Features with 𝐵𝑤𝑐
(𝑚)

 estimated as non-

zero are deemed as important for the phenotype 𝑤 in the 𝑚𝑡ℎ healthcare center. These selected 

features can be used for downstream analysis such as developing phenotyping algorithms for a 

target phenotype. See Appendix A of the Supplementary Materials for details on the tuning of 

𝜆𝑚1 and  𝜆𝑚2. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 13, 2021. ; https://doi.org/10.1101/2021.03.13.21253486doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.13.21253486


 

Integrative Knowledge Network. To learn a knowledge network that encodes relatedness among 

diseases, procedures, medications, and laboratory tests, we propose to leverage embedding data 

from multiple healthcare centers while incorporating between-site heterogeneity. Specifically, the 

conditional dependency structure, as measured by the support of 𝔹(𝑚) = [𝐵𝑤𝑐
(𝑚)] in model (4), are 

similar across healthcare centers, although the magnitude may differ. Since not all codes are 

present in all centers, we set 𝐵𝑤𝑐
(𝑚) = 0 for all 𝑐 ∉ Ω0.05

(𝑚)
. Our goal is to identify the support 𝕊 =

[∑ |𝐵𝑤𝑐
(𝑚)|𝑚 ≠ 0] via an integrative analysis of the M sets of embedding data 𝕍(∙) = {𝕍(𝑚), 𝑚 =

1,… ,𝑀}. Specifically, for each w, we estimate 𝑩𝑤
(∙)
= {𝑩𝑤

(𝑚) = (𝐵𝑤𝑐
(𝑚), 𝑐 ∈ Ω0.05

(𝑚) ),𝑚 = 1,… ,𝑚} 

via an integrative least squared regression with a mixture of ridge and group sparse penalty as 

argmin
𝑩𝑤
(∙)

{
 

 
∑ ‖

𝑽𝑤
(𝑚)

∥ 𝑽𝑤
(𝑚) ∥𝟐

− ∑ 𝐵𝑤𝑐
(𝑚) 𝑽𝑐

(𝑚)

∥ 𝑽𝑐
(𝑚) ∥𝟐

𝑐∈Ω0.05
(𝑚)

‖

2

2

𝑀

𝑚=1

+∑ {𝜆1√
∑ (𝐵𝑤𝑐

(𝑚)
)
2
 𝐼(𝑐∈Ω0.05

(𝑚)
)𝑀

𝑚=1

𝑚𝑎𝑥2{𝐼(𝑐∈Ω0.05
(𝑚)

)|cos(𝑽𝑤
(𝑚)

,𝑽𝑐
(𝑚)

)|:𝑚=1,2,…,𝑀}∑  𝐼(𝑐∈Ω0.05
(𝑚)

)𝑀
𝑚=1𝑐∈∪𝑚=1

𝑀 Ω0.05
(𝑚)

+ 𝜆2∑ (𝐵𝑤𝑐
(𝑚))

2
 𝐼(𝑐 ∈ Ω0.05

(𝑚) )
𝑀

𝑚=1
}

}
 

 
  (6) 

where 𝜆1 and 𝜆2 are two tuning parameters. Through the group lasso penalty, we are able to 

borrow signals from all M systems and select the important features that appear in multiple 

sites more efficiently compared with site-specific sparse regression. A complete knowledge 

network can be established by performing node-wise integrative analysis for each code. See 

Appendix A of the Supplementary Materials for details on the tuning of 𝜆1 and 𝜆2. 
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Tuning parameter selection in this setting differs from standard regression in that the d-

dimensional embedding vectors are not d independent realizations of random variables and hence 

it is not appropriate to perform cross-validation directly over the embedding vectors. We instead 

constructed embedding vectors using a training SPPMI matrix and a validation SPPMI matrix, 

trained with non-overlapping patients, within each healthcare system as described above. See 

Appendix A of the supplementary materials for a detailed description of the implementation of 

both KESER feature selection and construction of knowledge network. Source code for 

implementation can be found at https://github.com/celehs/KESER.   

Evaluation and Validation  

Evaluation with Known Relation Pairs. To tune hyperparameters and evaluate the performance 

of the trained embeddings as well as KESER algorithms, we collected a set of known disease-

disease (PheCode-PheCode) pairs from Wikipedia and PheCode hierarchy, disease-drug 

(PheCode-RxNorm) pairs from https://www.drugs.com/ and MEDRT, drug-drug (RxNorm-

RxNorm) pairs from SNOMED-CT, and lab-lab pairs from manual annotation. We performed 

named entity recognition33 on the entity pairs extracted from the knowledge sources and mapped 

these pairs to the text strings of the codified concepts from MGB and VA. Only a small fraction 

of the extracted known relationship pairs can be mapped directly to the EHR codified concepts 

due to their difference in encoding and representation.  

Evaluation of Hyper-parameters. There are several hyper-parameters that may impact the 

quality of the embeddings including embedding dimension d, window size, and shifting 

parameter k. Due to computational constraints, we performed sensitivity analyses to evaluate how 

window size and k impact the embedding quality using the MGB Biobank consisting of EHR data 

from about 70K patients. We derived embeddings with co-occurrence matrices constructed with 

window size ranging from 7, 30 up to 60-days, and k ranging from 1, 5, to 10.  To select the 
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dimension d, we first initialized the dimensions by retaining 95% of the variation in the SVD, 

denoted by d95%. Subsequently, we considered two data-driven strategies for optimizing the 

dimension up to d95% by maximizing (i) the signal to nose ratio (SNR); and (ii) the AUC, where 

SNR(𝑑) = 𝑊𝑑/𝑆𝑑,  𝑊𝑑 and 𝑆𝑑 are the average cosine similarity among all pairs with known 

relationships and among all random pairs. For similarity, we used the PheCode hierarchy for 

tuning optimal dimensions and defined pairs as similar if they shared the same integer to 

calculate the SNR and AUC. For relatedness, we used 10% of the known related PheCode-

PheCode pairs from Wikipedia and PheCode-RxNorm pairs from https://www.drugs.com/ and 

MEDRT to tune the dimension and used the remaining known related pairs for validation.  

 

Performance of Derived Embeddings and KESER in Detecting Known Relationships. We 

evaluated the quality of the derived embedding vectors by quantifying their accuracy in detecting 

known similar pairs (RxNorm-RxNorm and Lab-Lab) and related pairs (PheCode-PheCode, 

PheCode-RxNorm), and evaluated the KESER algorithm by quantifying its power in detecting 

known related pairs as described above. For each type of relation, since a vast majority of pairs 

are unrelated, we randomly sampled a large number of pairs within each type of relationships to 

obtain the reference distribution for unrelated pairs. For each type of relationship, we obtained the 

cosine similarity of the embedding vectors between known pairs and between random pairs. We 

first calculated the area under the AUC as an overall accuracy summary. We then reported the 

sensitivity of detecting related pairs by thresholding cosine similarities to achieve a false positive 

rate (FPR) of 0.01, 0.05 or 0.10. We also evaluated the performance of the KESER for feature 

selection at each site and integrative feature selection at both sites. We report the sensitivities in 

detecting known related PheCode-PheCode and PheCode-RxNorm pairs, that is the proportion of 

pairs detected by KESER among all known pairs. 
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Performance of Derived Embeddings in Cross-institution Code Mapping. The trained 

embeddings at MGB and VA can be used to map codes across the two institutions via orthogonal 

transformation similar to language translation26. Specifically, let 𝕍(VA) and 𝕍(MGB) denote 

embedding vectors for codes that are common to both institutions. We may find an orthogonal 

matrix ℚ to minimize the distance between 𝕍(MGB) and 𝕍(VA)ℚ as in Smith et al (2017)26. We 

used 1823 codes (223 CCS, 178 LOINC, 698 PheCode and 724 RXNORM) that are common to 

MGB and VA to train ℚ. The test set consists of 1000 PheCodes that are common to both 

institutions but not included in the training set as well as a set of manually curated 251 VA local 

medication code → RXNORM mappings. We evaluate the quality of the cross-institution 

mapping based on the top-1, top-5 and top-10 accuracy calculated based on the test set. We 

performed the code-mapping with embeddings of dimensions chosen both via AUC and SNR.  

 

Performance of KESER in Identifying of Drugs of Rheumatoid Arthritis (RA).  Patients with 

RA are treated with disease modifying anti-rheumatic drugs (DMARDs), treatments that can 

prevent progression of RA. A list of 16 RA treatments approved prior to 2017 were manually 

curated by domain experts and grouped into two categories: 1) DMARDs currently in use, 2) RA-

related drugs used in conjunction with DMARDs. We reported sensitivities in detecting the RA-

related drugs using KESER against this manually curated list. 

Performance of KESER in a Real World EHR Phenotyping Research Application. One 

downstream application of feature selection is to develop supervised phenotyping algorithms for 

classifying disease status with these selected features. Supervised algorithms are typically 

developed using a training dataset consisting of gold standard labels and observations on a given 

set of candidate features34. Existing phenotyping algorithms have considered various approaches 

to selecting candidate features including the main PheCode of the disease only (PheCode), all 

features (FULL), or informative features selected manually or extracted using unsupervised 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 13, 2021. ; https://doi.org/10.1101/2021.03.13.21253486doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.13.21253486


algorithms such as SAFE15. Using codified EHR data from 68,213 MGB Biobank participants, we 

compared the performance of supervised phenotype algorithms trained with these existing feature 

selection strategies to those trained with KESER-selected features. We trained and validated 

phenotyping algorithms for 8 phenotypes: coronary artery disease (CAD), type I diabetes mellitus 

(T1DM), type II diabetes mellitus (T2DM), depression, rheumatoid arthritis (RA), multiple 

sclerosis (MS), Crohn’s disease (CD) and ulcerative colitis (UC), based on gold standard labels 

manually curated on an average of 545 patients for each disease. For each phenotype, the labeled 

set was randomly sampled from a filter positive set consisting of patients with at least one relevant 

PheCode. We corrected for overfitting via.632 bootstrap, a smoothed version of cross validation35.   

All phenotyping algorithms were trained by fitting adaptive LASSO penalized logistic regression 

models and random forest models and validated on the subset of labeled patients with at least one 

PheCode for each disease. We evaluated the accuracy of the phenotyping algorithms based on their 

area under the receiver operating characteristic curve (AUCROC), the area under the precision-

recall curve (AUCPRC) as well as the F-score of the corresponding binary classifiers with threshold 

values set such that the percentage of patients classified as positive matches the disease prevalence. 

In addition, we obtained the confidence interval by bootstrap resampling. The phenotyping 

algorithms were only trained and validated in the filter positive set, since the negative predictive 

values of the filters are nearly 100% 36. 
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Figure 1. Overview of KESER procedure. 

 

Figure 2. The left panel describes the key steps for learning the embedding vectors: we conduct 

singular vector decomposition (SVD) on the SPPMI. The right panel describes the statistical 

model: the embedding vectors follow a Gaussian graphical model where each node of the graph is 

represented by the vectors. 
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Figure 3. Word cloud for KESERMGB selected features of Rheumatoid Arthritis (RA) and 

Ulcerative Colitis (UC). The size of the words are proportional to the absolute coefficients from 

the embedding regression.   

 

(a) RA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(b) UC 

 

 
 

 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 13, 2021. ; https://doi.org/10.1101/2021.03.13.21253486doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.13.21253486


Figure 4. Comparison of AUCROCs, AUCPRCs and F-scores with gold standard labels for 

adaptive lasso phenotyping algorithms for 8 diseases using the main PheCode only (PheCode), all 

features (FULL), SAFE selected features (SAFE), KESERMGB and KESERINT selected features 

based on SVD-SPPMI embeddings as well as KESERMGB and KESERINT selected features based 

on GloVE embeddings. F-scores are calculated at the cutoff points with the estimated prevalence 

equal to the population prevalence. The bootstrap based 95% confidence intervals (bars) are 

shown. 
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Figure 5. Clinical knowledge network for Etanercept learned based on (A) KESERINT; (B) KESERVA; (C) KESERMGB. 
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Table 1. AUCs and sensitivity at FPR = 0.01, 0.05 and 0.10 of between-vector cosine similarity 

in detecting known similar pairs (RxNorm-RxNorm and Lab-Lab) and related pairs (PheCode-

PheCode; PheCode-RxNorm) with embeddings trained via SVD-SPPMI at different choices of 

dimensions d. 

 
 Relation 

Type 

Embedding 

 

AUC Sensitivity 

FPR=0.01 FPR=0.05 FPR=0.1 

Method d MGB VA MGB VA MGB VA MGB VA 

Similar GloVe 50 0.869 0.860 0.425 0.386 0.603 0.620 0.686 0.704 
 

  100 0.876 0.855 0.433 0.391 0.614 0.588 0.681 0.680 
 

SVD 100 0.831 0.857 0.390 0.268 0.559 0.499 0.626 0.646 
 

  500 0.842 0.888 0.467 0.403 0.607 0.679 0.673 0.772 
 

  dsnr
(1000,1800) 0.837 0.870 0.473 0.408 0.602 0.631 0.670 0.738 

 
  dauc

(300,500) 0.839 0.888 0.455 0.403 0.593 0.679 0.669 0.772 

    d95%
(1800,2900) 0.836 0.868 0.465 0.386 0.601 0.638 0.677 0.734 

Related GloVe 50 0.873 0.805 0.275 0.198 0.538 0.384 0.659 0.505 

    100 0.876 0.828 0.286 0.247 0.542 0.435 0.672 0.558 

  SVD 100 0.854 0.817 0.205 0.197 0.498 0.410 0.647 0.538 

    500 0.864 0.854 0.304 0.291 0.589 0.543 0.705 0.660 

    dsnr
(1800,2800) 0.868 0.861 0.357 0.325 0.620 0.584 0.716 0.686 

    dauc
(1800,2300) 0.868 0.862 0.352 0.333 0.608 0.582 0.717 0.687 

    d95%
(1800,2900) 0.868 0.862 0.352 0.333 0.608 0.582 0.717 0.688 

 

 

Table 2. Sensitivity and FPR of KESERMGB (MGB), KESERVA (VA) and KESERINT (INT) in 

detecting known related pairs using embedding vectors trained via GloVE or SVD-SPPMI at 

various dimensions.   
  

Embedding 

Method 

  Sensitivity FPR 

Dimension MGB VA INT MGB VA INT 

GloVE 100 0.399 0.356 0.438 0.021 0.030 0.038 

SVD 100 0.345 0.240 0.352 0.017 0.019 0.026 

  500 0.453 0.368 0.526 0.021 0.022 0.035 

  d95% (1800,2900) 0.531 0.489 0.628 0.027 0.027 0.042 
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Table 3. Sensitivities of KESERMGB (MGB), KESERVA (VA) and KESERINT (INT) in detecting 

two categories (CAT) of RA related medications. CAT=1 for DMARDs in use and CAT = 2 for 

other drugs often used to manage RA patients.  

 

 

    GloVe  SVD   

  d = 100 d = 100 d=500 d = d95% 

med CAT  MGB VA INT MGB VA INT MGB VA INT MGB VA INT 

abatacept 1 0 0 0 1 0 1 1 1 1 1 1 1 

anakinra 1 0 0 0 0 0 1 1 1 1 1 1 1 

rituximab 1 0 0 0 0 0 0 0 1 1 1 1 1 

tocilizumab 1 1 0 1 0 1 1 1 1 1 1 1 1 

tofacitinib 1 0 0 0 1 0 1 1 1 1 1 1 1 

adalimumab 1 0 1 0 1 0 0 1 0 1 1 1 1 

certolizumab 1 0 0 0 0 0 0 1 0 1 1 1 1 

etanercept 1 1 1 1 0 0 1 1 1 1 1 1 1 

golimumab 1 0 0 0 1 0 0 1 1 1 1 1 1 

infliximab 1 0 0 0 0 1 1 1 1 1 1 1 1 

leflunomide 1 1 1 1 1 1 1 1 1 1 1 1 1 

hydroxychloroquine 1 1 1 1 1 0 1 1 1 1 1 1 1 

sulfasalazine 1 1 1 1 0 0 0 0 1 1 1 1 1 

methotrexate 1 1 1 1 0 1 1 1 1 1 1 1 1 

methylprednisolone 2 1 1 1 0 0 1 0 0 0 1 0 1 

prednisone 2 0 1 0 0 0 0 1 1 1 1 1 1 

folic acid 2 1 1 0 1 0 1 1 1 1 1 0 1 

Sensitivity 0.471 0.529 0.412 0.412 0.235 0.647 0.824 0.824 0.941 1 0.882 1 
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