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Amidst the continuing spread of COVID-19, real-time data analysis and visualization remain crit-

ical to track the pandemic’s impact and inform policy making. Multiple metrics have been considered

to evaluate the spread, infection, and mortality of infectious diseases. For example, numbers of new

cases and deaths provide measures of absolute impact within a given population and time frame, while

the effective reproduction rate provides a measure of the rate of spread. It is critical to evaluate multi-

ple metrics concurrently, as they provide complementary insights into the impact and current state of

the pandemic. We describe a unified framework for estimating and quantifying the uncertainty in the

smoothed daily effective reproduction number, case rate, and death rate in a region using log-linear

models. We apply this framework to characterize COVID-19 impact at multiple geographic resolu-

tions, including by US county and state as well as by country, demonstrating the variation across

resolutions and the need for harmonized efforts to control the pandemic. We provide an open-source

online dashboard for real-time analysis and visualization of multiple key metrics, which are critical to

evaluate the impact of COVID-19 and make informed policy decisions.

Introduction

The SARS-CoV-2 virus initially spread through local transmission in the Wuhan province of China and

rapidly developed into a global pandemic with over 109 million documented cases worldwide as of 15

February 20211. Various epicenters have emerged over the course of the pandemic on multiple continents,

significantly impacting countries in Europe such as Italy and the United Kingdom and states in the United

States such as New York and Florida, at various points in time. Efforts have been made in previous studies to
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understand transmission and spread, both at the individual level using contact tracing and at the population

level using government and health department data. Nonetheless, the disease has continued to spread

and resurge in previously affected regions due to persistent circulation of variants and emergence of new

variants, to the detriment of the healthcare system, economy, and general welfare. Vaccination efforts have

been broadening in order to control the pandemic’s spread; however, significant efforts including non-

pharmaceutical interventions are still needed to mitigate continued risks and achieve global herd immunity

to COVID-192,3. The continual impact and spread of COVID-19 thus requires continued monitoring and

tracking to manage the response to and impact of the pandemic. In this work, we present an analytical

framework and online dashboard providing multiple metrics for daily tracking of COVID-19 spread and

impact.

Many reports and web-based tools, often implemented as interactive dashboards, have been developed to

track absolute measures of COVID-19 impact4. Multiple governmental bodies have implemented trackers to

provide testing, case, death and hospitalization counts; research groups have also implemented tools, such as

the Johns Hopkins University Center for Systems Science and Engineering COVID-19 Dashboard1, which

provides daily case and death counts at multiple geographic levels and is broadly accessed by the research and

general community. In addition to counts, case and death rates valuably provide the case and death impact by

accounting for population size and allow for comparison across regions differing in population size. These

absolute measures indicate the present and cumulative state of the pandemic.

There are many metrics for assessing COVID-19 spread that are valuable in assessing impact and guiding

containment efforts; thus, a single metric such as case rate should not be used in isolation. A key, dynamic

measure of the pandemic’s spread is the effective reproduction number, Rt . It is a time-dependent measure of

how fast the pandemic is spreading and is defined as the average number of people who become infected from

an infectious person. This metric on the transmission rate is therefore a relative measure on the multiplicative

scale. The effective reproductive number has been estimated in pandemic-affected populations5,6,7, with

estimates ranging from as low as 0.3 when estimated after stringent centralized quarantine in Wuhan, China

to over 5 when estimated around the period of disease introduction in Germany; Rt has been estimated as

2-2.5 in the United States. Existing and former tools incorporating Rt are limited to a small set of geographic

levels. Such tools include Rt.live, which provided up-to-date estimation by US state based on a generative

model8, Epiforecasts, which provides estimation based on an adjusted EpiEstim model9, and a site providing

COVID-19 R estimation for California10 using the Wallinga-Teunis method11. These tools have provided
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location- and metric-specific insight but are hence limited to specific geographic regions and metrics, which

do not completely capture the manifold impact of COVID-19.

It is essential to accurately track transmission in real time across geographic domains, nationally and

globally, in order to monitor circulating and newly infected cases towards containing the pandemic. As

demonstrated in the United States, where the pandemic had notable early impact on coastal states with

increasing impact throughout the middle of the country into the fall and the winter, different trends may occur

in different locations. This can be a result of multiple features, such as government policies, seasonal weather,

and demographic aspects. It is thus valuable to have unified approaches to estimating metrics across locales.

As the pandemic continues to have significant and renewed impact across locales amidst changing

non-pharmaceutical intervention measures and increasing vaccination rollout, accurate, real-time metrics for

assessing the evolving spread are critical. We developed the Visualizing COVID-19’s Effective Reproduction

Number (Rt) website (http://metrics.covid19-analysis.org), which uses a daily data feed to apply a

flexible log-linear model to estimate multiple epidemiological measures for assessing COVID-19 impact:

the daily effective reproduction number, case rate, and death rate. We use aggregated case and death counts

to characterize the spread of the COVID-19 pandemic at the county, state, and country levels. This tool

provides daily reporting of estimated metrics in the form of an interactive dashboard implemented in R Shiny,

with open-source code provided. In contrast to existing tools, our dashboard allows for the quantification,

visualization, and comparison of a set of metrics on COVID-19 spread across multiple geographic resolutions.

This tool is informative for regularly assessing COVID-19 spread, evaluating the impact of public health

interventions and vaccination efforts introduced to reduce disease transmission, and motivating disease

containment approaches.

Results

The present analysis includes data from 1 March 2020 to 15 February 2021; at the end of this period there

were a total of 109 million reported cases globally. We evaluate the effective reproductive rate, case rate, and

death rates across the globe and within the United States over this period for which sufficient cases were

observed to allow stable estimation (Methods).
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Reporting multiple metrics over time demonstrates impacts in trends

We used a log-linear regression model to estimate the effective reproductive rate, case rate, and death rate

of SARS-CoV-2 (see statistical model, Methods), and report in visualizations including maps. To assess

the pandemic’s spread and impact, we estimated metrics at county, state, and national levels. We note that

estimates require sufficient case counts in order to report a stable value. Figure 1 shows seasonal snapshots

corresponding to the effective reproductive rate on 1 April 2020, 15 July 2020, 1 November 2020, and

15 February 2021. This figure demonstrates the dynamic nature of Rt , showing that rates of spread have

fluctuated over time. We observe the trajectory of spread from Asia to Europe, Africa, and the Americas; this

has been evidenced by the evolution of the disease tracked via genetic COVID-19 strains. These snapshots

demonstrate that many continents were impacted in Spring 2020, with higher rates concentrating in Europe,

Asia, and Africa at the country level in Summer 2020.

We further investigate the spread at two levels in the United States: states (Figure 1) and counties (Figure

4). In the US, states initially impacted in the spring demonstrated lower rates in Summer 2020 whereas Fall

2020 estimates indicate continued rates of spread across most states, decreasing in Winter 2021. Figure 2

further shows state-level measures, and demonstrates that there is a temporal ordering and complementary

information provided by the three metrics. In particular, one can observe that in the Mid Atlantic region (New

Jersey, New York, and Pennsylvania), Rt estimates primarily ranged from 1.00 to 1.50 from October through

December 2020. This indicates that the disease was continuing to spread actively during this period, which

corresponded to an increase in case rates continuously above 250 per million from November 2020 onwards,

and a subsequent peak in death rates. Each of these metrics taken alone do not indicate the complete impact

and potential for response; however, they collectively demonstrate that efforts during this period permitted

epidemic-level spread which led to increased case and death rates.

Aggregate metrics can obscure trends at finer geographic resolutions

Many tools report metrics at a singular geographic resolution, such as at the country or state level. Given

the population of 328 million in the United States and differences throughout the country in aspects such

as demographics, health care access, population density, and pandemic response, it is understood that the

pandemic’s impact has varied over time in the US. There is a significant amount of spatial variation in

estimated metrics across geographic units, as demonstrated in Figures 1-3, where it is evident that state-level
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measures obscure more local trends in cases and spread. For instance, the rates at the US-level do not fully

reflect regional differences at/within states. Figure 2 demonstrates state-level daily effect reproductive rate,

case rate, and death rate grouped by census region. Regions such as New England with significant early

impact are highlighted, while the Mountain and West North Central has sustained impact in later months. This

suggests that the impact of the pandemic is heterogeneous across finer geographic levels, further suggesting

that responses and interventions should also be targeted accordingly. Subnational units are provided for

additional countries on the web resource.

In Figure 3a, the different trajectories of four US states are illustrated. While Florida demonstrated greater

impact around the summer months, earlier impact in New York and later impact in South Dakota was clear.

This illustrates that reporting at higher aggregate levels can obscure trends that can allow for more targeted

interventions. At the county level, Figure 4 explores the trajectory of New York. The counties surrounding

New York City experienced the most impact early on with Rt estimates regularly above 1.00, with improved

containment state-wide in the summer of 2020. There was, however, rising spread in some upstate and

western counties of New York in the fall of 2020, beyond that of the NYC region. This further illustrates

heterogeneity in pandemic spread, even with a state. Given that strategies and resources are provisioned from

multiple levels of governance and more generally that geographic units do not function in isolation, this

demonstrates that accurate tracking requires study at multiple geographic resolutions.

Daily reporting allows for real-time tracking

We leverage data from multiple reporting sources that have been aggregated and retrieved daily (see study

data, Methods). To provide daily reporting, we evaluated metrics at multiple geographic resolutions from

March 2020 to February 2021 in the present study, with real-time metrics available in the web resource. It is

essential to provide regularly updated reporting in order to allow for corresponding action, while accounting

for the fact that there can be case and death reporting delays and differences by weekday. Thus, we apply a

framework that smoothly models the time-varying metrics from fitted estimates by using a B-spline for time

and accounting for overdispersion on aggregated case and death data (see study data, Methods).
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Discussion

In this study, we perform a multi-resolution analysis of the transmission of SARS-CoV-2. We focus contribu-

tions on the estimation and evaluation of Rt , as it is a key measure of disease spread and allows for tracking

the pandemic trajectory. The use of cases and deaths alone do not fully characterize the pandemic’s spread

for reasons such as difficulty in attributing deaths specifically to the virus, lack of reliability, or lag in counts.

Thus, the effective reproduction number is an imperative measure to reduce in order to limit transmission and

manage resources such as hospital beds12.

There are significant implications for the reduction of Rt at across all levels. As demonstrated through

the multi-level assessment of spread in the United States, evaluating spread at an aggregate state level can

obscure trends occurring more locally, such as at the county level. While country and state level estimates

can broadly characterize an area’s current impact, the reproduction rate is demonstrably heterogeneous. The

importance of reduction is key given evidence of the impact of lack of access to care and over-extension of

hospitals.

Many existing sites provide timely COVID-19 analyses; however, most are limited in scope to a particular

analytic and geographic focus. Our tool critically provides a comprehensive and real-time suite of tracking

and analyses at different geographical resolutions, including country, state and county levels. This is valuable

as multiple metrics and considerations are necessary for providing a complete evaluation of the impact and

status of the COVID-19 pandemic at each geographic resolution. Further, other tools oftentimes present data

and analyses for specific geographic areas and thus are only relevant to particular communities. The software

described here provides insights across multiple geographic levels globally.

Non-pharmaceutical interventions (NPI) have been implemented across societies to varying degrees in

order to reduce transmission and control the spread of the pandemic; these measures have included social

distancing, travel restrictions, and screening measures. Different interventions have varying effectiveness;

similarly, currently approved vaccines have varying efficacy and are still being evaluated for their ability to

block viral transmission3,13. Timely reporting of Rt permits the evaluation of NPIs and vaccination efforts,

and comparison across locales. Previous studies have analyzed the impact of various NPIs and systemic

features in China and Europe6,14, and recent studies have analyzed the impact of vaccination programs15.

The value of different sets of interventions and vaccination programs can be continually assessed using our

unified framework.
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There are multiple limitations of this work, including those attributable to the nature of a study performed

on aggregated open data sources. Individual level data is not currently available to the public, limiting

analyses to data that demonstrate features such as reporting lag over weekends due to testing and business

operations and incomplete reporting due to governmental and clinical structure. Further, there are multiple

potential modes of transmission, including symptomatic, presymptomic, asymptomatic and environmental

transmission16, which cannot be sufficiently studied without individual level data. A critical feature is that

the analyses are limited to confirmed cases; there has been demonstrated limitations in access to testing and

varying accuracy that has differed over time, which likely manifests as under-reported affected cases. The

estimated reproductive numbers are valid if unascertaimnment rate does not change over time dramatically.

Relatedly, there is documented spread from asymptomatic and subclinical cases that would not be captured

by formal reporting through lack of testing.

Dashboards and web tools have provided a critical resource for the general public and policy makers

during the pandemic. We provide multiple metrics to encourage the consideration of multiple, complementary

measures to make informed decisions regarding interventions, behaviors and vaccination. The multiple levels

and comparisons provided allow for viewers to target their regions of interest and understand the pandemic’s

impact in their location. While there is an interplay of many factors contributing to the pandemic spread,

trajectories of cases, deaths, and spread allow for understanding of and response to the pandemic’s impact on

communities.

Methods

Study Data

We obtained daily confirmed COVID-19 cases and deaths at the county, state, and country level from the

COVID-19 Data Repository by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins

University1. This repository aggregated data primarily from government resources, such as Departments of

Health, as well as news sources and other agencies. We retrieve data daily; for the present analyses data is as

of 15 February 2021.
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Statistical Model

We use a generalized linear model (GLM) regression framework for estimating relevant metrics at various

geographic levels, building upon the model by Cori et al17. Let Yt and Rt be the number of new cases and the

effective reproduction number, respectively, on day t for a specific geographical location. As in Cori et al17,

we assume that, once infected, individuals have an infectivity profile given by a probability distribution ws,

termed the serial interval, which depends on the time since infection of s. For example, an individual may be

most infectious three days after becoming infected, so w3 would be greatest. The distribution of ws depends

on biological factors of the pathogen and is assumed to be known. In our analysis, we assumed ws follows

a discretized Gamma distribution with a mean of 5.2 days and standard deviation of 5.1 days18. Then, let

Λt = ∑
t
s=1Yt−sws be the infectivity potential on day t. We assume that, conditional on the number of new

cases on previous days, Yt ∼ Pois(RtΛt). Rt is then the average number of secondary cases that each infected

individual would infect assuming conditions remained the same at time t.

We extend this model by noting that logE(Yt |Λt) = logRt + logΛt . Therefore, we can consider modeling

logRt as a function of covariates and perform inference by fitting a Poisson model with log link to Yt , using

logΛt as an offset. To smoothly model Rt as a function of time, we assume that logRt = B(t)Tβ , where B(t)’s

are the cubic B-spline basis and β is a vector of regression coefficients. We further extend this approach

to account for overdispersion, and thus use a negative binomial model instead of Poisson. The maximum

likelihood estimates and standard errors of β are obtained using Fisher scoring and then used to estimate Rt

and calculate its confidence interval.

Because the number of reported cases on a particular day does not represent the number of people who

contracted COVID-19 on that day, the Rt curve needs to be adjusted to account for the fact that people

contract COVID-19 before their case is reported. We assume a 7-day lag from the time a person contracts

COVID-19 until they are reported as a case, so we shift the Rt curve back 7 days to reflect this. This assumes

an average incubation period of 7 days, which includes an average latent period of 3 days and an average

presymptomatic period 2 days18, plus an additional delay of two days to account for the time between getting

tested and receiving a test result.

This model can then be extended to model the time-varying case rate or death rate. For case rate,

we let Yt be as before; for death rate, we let Yt be the number of new deaths on day t. Then, the time-

varying case/death rate is ρt = Yt/Ct where Ct is the population at time t. Therefore, we can again model
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logE(Yt |Ct) = logρt + logCt and model ρt using a cubic B-spline as logρt = B(t)Tβ . We do not apply a lag

to the case or death rate.

We further extended our model to handle several cases (see Supplementary Methods). This model

flexibly permits time-varying estimation and it can further be used to evaluate the impact of time-varying

non-pharmaceutical interventions. All R code for implementing this general model is publicly available at

https://github.com/lin-lab/COVID19-Rt/.
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Figure 1: Effective reproductive number map over time. Global map of effective reproductive number Rt

estimated for each country with sufficient data and US map of effective reproductive number Rt estimated
for each state with sufficient data on 1 April 2020, 15 July 2020, 1 November 2020, and 15 February 2021,
lagged by 7 days.
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Figure 2: US State-level daily effective reproductive number, case rate, and death rate. Comparison of
essential metrics Rt (left; lagged by 7 days), daily new cases per million (center), and daily new deaths per
million (right) for each US state grouped by census region from 1 April 2020 to 15 February 2021.
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Figure 3: Country- and state-specific effective reproductive number, daily new cases per million, and
daily new deaths per million over time. Comparison of essential metrics Rt (top panel), case rate (middle
panel), and death rate (bottom panel) over time for US states and countries impacted by the pandemic. (a)
Comparison of the US states of Florida (red), Massachusetts (blue), New York (orange), and South Dakota
(green). (b) Comparison of the countries Brazil (red), India (blue), Italy (orange), and Russia (green).
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Figure 4: County-level effective reproductive number in New York. Comparison of effective reproductive
number lagged by 7 days for (a) Rt mapped by NY county on 1 April 2020, 15 July 2020, and 1 November
2020, (b) Rt over time by NY county.
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