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Abstract 9	

Background: Identifying adverse drugs effects (ADEs) in children is essential for preventing 10	
disability and death from marketed drugs. At the same time, however, detection is challenging 11	
due to dynamic biological processes during growth and maturation, called ontogeny, that alter 12	
pharmacokinetics and pharmacodynamics. As a result, current data mining methodologies have 13	
been limited to event surveillance and have not focused on investigating adverse event 14	
mechanisms. There is an opportunity to design data mining methodologies to identify and 15	
evaluate drug event patterns within observational databases for ontogenic-mediated adverse 16	
event mechanisms. The first step of which is to establish statistical models that can identify 17	
temporal trends of adverse effects across childhood. Results: Using simulation, we evaluated a 18	
population stratification method (the proportional reporting ratio or PRR) and a population 19	
modeling method (the generalized additive model or GAM) to identify and quantify ADE risk at 20	
varying reporting rates and dynamics. We found that GAMs showed improved performance over 21	
the PRR in detecting dynamic drug event reporting across child developmental stages. Moreover, 22	
GAMs exhibited normally distributed and robust ADE risk estimation at all development stages 23	
by sharing information across child development stages. Conclusions: Our study underscores the 24	
opportunity for using population modeling techniques, which leverages drug event reporting 25	
across development stages, to identify adverse drug effect risk resulting from ontogenic 26	
mechanisms.  27	
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Background 30	

Adverse drug events (ADEs) in children are common and can result in injury and death1,2. 31	

Clinical trials rarely include children3 and pediatric-specific trials are limited in identifying 32	

possible ADEs in the population4. Pediatric drug safety studies can evaluate large numbers of 33	

ADEs from the population5 but current methodologies are limited in their ability to identify the 34	

mechanisms that drive pediatric ADEs6. Children undergo evolutionarily conserved and 35	

physiologically dynamic biological processes, collectively called ontogeny, as they grow and 36	

develop from birth through adolescence7,8. The mechanisms may include varying protein 37	

activity9,10 as well as include functional and structural changes that occur during maturation11,12. 38	

These ontogenic changes can alter pharmacodynamics and pharmacokinetics resulting in adverse 39	

effects, as is the case for doxorubicin-induced cardiotoxicity13 and valproate-induced 40	

hepatotoxicity14. With a few notable exceptions, however, many pediatric adverse events are 41	

idiopathic with no known, clear connection to developmental biology15,16. Additionally, adverse 42	

event mechanisms established in adults may not translate to the pediatric population17. There is 43	

an opportunity to combine known ontogenic biology with real-world pediatric drug effect data to 44	

identify ontogenic-mediated adverse events.  45	

To date, elucidation of ontogenic mechanisms has relied on hypothesis-driven approaches. For 46	

example, juvenile mouse models have been used to identify genetic vulnerabilities of 47	

hematopoiesis18 and investigate effects by a glutamatergic agonist on the neural developmental 48	

sequence19 during early life. More recently, pharmacometric tools have been used to extrapolate 49	

drug effects from adults to children, such as projecting acetaminophen exposure across pediatric 50	

age groups20, and investigate drug action in children, such as predicting clearance of zidovudine 51	
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during infancy21. However, juvenile animal studies are low-throughput and require complex 52	

study designs22, and there is limited experimental data to parameterize manually designed 53	

pharmacometric models23,24. While lacking specificity, top-down studies are complementary in 54	

that they evaluate thousands of hypotheses simultaneously and can identify idiosyncratic effects 55	

that would otherwise go unnoticed25,26. Moreover, analyses of large population datasets start 56	

from clinically significant events which can take decades to identify27,28. Top-down studies can 57	

close the pediatric evidence gap23 by sifting through large databases to identify clinically 58	

significant although perhaps less studied and rare adverse drug events during the period of child 59	

growth and development.  60	

While pediatric pharmacovigilance has been able to identify adverse drug events, it is limited in 61	

identifying growth and development processes that underlie those observations10,29. A common 62	

approach when identifying ADEs is to stratify the pediatric population into age groups which 63	

directly reduces the amount of data available to identify ADEs during childhood. The 64	

Proportional Reporting Ratio, which was designed to be sensitive even when data is scarce30, is 65	

an established detection method and has been shown to unmask ADE signal within child 66	

development stages compared to detection within the larger pediatric population31. However, 67	

reduced data within these strata was shown to significantly affect PRR detection performance 68	

across pediatric age groups31. To investigate pediatric ADEs, the continuous, time-dependent 69	

biological processes during growth and development suggest using all information across child 70	

development stages. 71	

Generalized additive models (GAMs) are supervised machine learning approaches that can 72	

quantify non-linear effects reflective of natural phenomena32. GAMs may be able to quantify 73	

signal reflecting dynamic, continuous processes such as ontogeny. These models are extensively 74	
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used for spatial and temporal analysis in ecological studies33, such as explaining cardiovascular 75	

mortality risk from heat waves over time34 and rat infestation from environmental factors within 76	

geographic areas35. Similar to evaluating ecological responses using shared information across 77	

time or space, we can evaluate adverse events from temporally-connected ontogenic processes 78	

using shared information across child development stages. 79	

We performed the first study to directly evaluate dynamic drug event reporting during childhood. 80	

We performed a data simulation and augmentation study that 1) simulated drug event reporting 81	

temporal trends of different effect sizes and shapes, 2) augmented existing pediatric drug event 82	

data by inserting the simulated reporting rates within observational data, and 3) evaluated 83	

population stratification (PRR) and modeling (GAM) methods to detect these injected ADE 84	

reporting dynamics. We found the detection scores generated by the GAM showed improved risk 85	

estimates and increased detection of drug event reporting among the various simulated dynamics 86	

compared to the PRR. Detection methods that capture temporal adverse drug event dynamics 87	

within observational databases can improve our understanding of the interactions between child 88	

developmental biology and adverse drug effects.	89	

Results 90	

Pediatric FAERS 91	

There were 339,741 pediatric drug event reports in FAERS, which contained 519,555 unique 92	

drug-event pairs. We randomly sampled 500 drug-event pairs to be augmented with simulated 93	

drug event reporting dynamics, representing our positive control set. We then randomly sampled 94	

another 10,000 complementary drug-event pairs where the underlying data was untouched, 95	
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representing our negative control set.  We showed there was no significant difference in the 96	

amount of drug-event reporting between FAERS and the negative control (2-sample Student t-97	

test p-value=0.92) or positive control (p-value=0.87) drug-event pairs (Figure 1). 98	

Data simulation and augmentation 99	

We augmented the 500 drug-event pairs in the positive control set with simulated drug event 100	

reporting across child development stages (see Methods). Augmenting the positive control data 101	

with drug event reporting dynamics did not have a systematic effect on the amount of drug event 102	

reporting compared to the untouched negative control set (Figure S1). However, applying the 103	

PRR and GAM detection methods onto the positive control data showed the ADE risk scores 104	

reflected the simulated dynamics classes (Figure 2).  105	

 106	

The GAM generated ADE risk that resembled normally distributed scores (Shapiro-Wilk test 107	

average p-value and 95% confidence interval: 0.45 [0.059, 0.88], 90mse: 0.20 [4.67E-04, 0.92]) 108	

in comparison to the PRR (score: 0.11 [1.80E-09, 0.56], 90mse: 0.077 [2.48E-09, 0.93]) at child 109	

development stages (Figure 3A).  Moreover, 47% of PRR scores were zero and 18% were unable 110	

to be computed, on average for drug-event pairs (Figure 3B). 111	

ADE dynamics detection performance 112	

We compared the performance of the GAM and PRR for detecting drug event reporting 113	

dynamics (see Methods). Additionally, we further investigated the performance contribution by 114	

each child development stage within the dynamics class. We found that the GAM had improved 115	

detection of drug event reporting dynamics compared to the PRR both overall (Figure 4A) and 116	

within each child development stage (Figure 4B). Moreover, the GAM had similar overall 117	
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performance (Figure 5) as well as sensitivity (Figure S3) at low drug event reporting compared 118	

to the sensitive-by-design PRR. 119	

ADE dynamics sensitivity analysis 120	

We investigated the detection of drug event reporting dynamics with increasingly rare adverse 121	

events within child development stages (Figure S4 and see Methods). The ADE risk scores 122	

generated by the GAM showed dependent, flexible risk estimates across child development 123	

stages unlike the PRR (Figure S5). We found that the GAM had significantly higher performance 124	

(Figure 6) and sensitivity (Figure S5) to detect the various drug event reporting dynamics as 125	

adverse events became rare at child development stages.  126	

Real-world validation 127	

We compared the performance of the GAM and PRR for detecting drug-event pairs in a real-128	

world pediatric reference set of 26 drug-event pairs (see Methods and Figure S6).  We found that 129	

the GAM had slightly improved overall performance and sensitivity compared to the PRR for 130	

detecting pediatric adverse drug events (Table 1 and Figure S7). Moreover, we found no 131	

difference in the fraction of drug-event pairs with significant ADE risk at child development 132	

stages (Table 2; proportion test p-value=0.39). We found that the GAM identified two real-world 133	

pediatric drug events with putative dynamic ADE risk (Figure 7). Specifically, the GAM showed 134	

periods of lower risk during early and late childhood and higher risk during the middle stages of 135	

childhood. While the PRR and GAM performed approximately the same overall, the GAM 136	

captured dynamic ADE risk where the PRR did not.  137	
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Discussion 138	

Children undergo a period of dynamic growth and development, presenting a challenge in 139	

identifying and evaluating adverse drug events10,36. We hypothesize that dynamic ontogenic 140	

processes as children grow and develop may be reflected by temporal drug event reporting in the 141	

population. We presented the first study to evaluate drug event reporting patterns across 142	

childhood in large observational data. We found that GAMs, a population modeling technique, 143	

outperformed the PRR, a population stratification method, as well as generated robust risk scores 144	

to detect adverse drug events during childhood. This work represents a first step in transitioning 145	

from performing event surveillance towards uncovering putative mechanisms of pediatric 146	

adverse drug events. 147	

The goal of our study is to improve the specificity of top-down data mining for generating 148	

pediatric drug safety hypotheses. Our study hypothesis was temporal drug event reporting trends 149	

found in observational data are dependent on ontogeny, which exhibits high and low molecular 150	

and physiological levels throughout childhood7,37,38. To test this within a top-down approach, we 151	

generated temporal trends in observational data to correspond with temporal trends from 152	

ontogeny as opposed to identifying temporal trends from frequency39 or feature-derived40,41 153	

measures directly from observed data. This motivated both simulating dynamic drug event 154	

reporting rates and then augmenting real-world data to generate different classes of dynamic 155	

drug event reporting trends. While we simulated dynamic drug event reporting rates, we showed 156	

that augmenting the FAERS data did not change the overall characteristics of the pediatric drug 157	

reports. This was crucial for establishing the use of real-world drug event data to evaluate hidden 158	

dynamic reporting trends. Importantly the ADE detection methods were in fact able to identify 159	
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the simulated dynamics within the data. The data simulation and augmentation of FAERS laid 160	

the foundation for evaluating statistical methods to investigate ontogenic-mediated adverse event 161	

mechanisms.  162	

We found that the generalized additive model (GAM) showed improved detection of dynamic 163	

drug event reporting compared to the proportional reporting ratio (PRR). While the PRR 164	

produces ADE risk scores that were more erratic and unable to be computed, the GAM scores 165	

were both more flexible and robust. The GAM assumes a flexible relationship yet reduces 166	

‘wiggliness’ to stable risk estimates based on observed data42,43. While bayesian modeling 167	

techniques such as Monte Carlo Markov Chain can also learn flexible relationships from 168	

observed data, these models still require expert knowledge to build, implement, and interpret44. 169	

The GAM, on the other hand, generates an interpretable smooth relationship in a familiar 170	

regression framework32 that shares information across child development stages. Using this 171	

shared information framework, the GAM was able to detect injected dynamic ADE risks across 172	

childhood even when drug event reporting was low. We further showed that the GAM not only 173	

generated visually dynamic ADE risk when injecting dynamics, but we also identified putative 174	

dynamic risk for real-world psychiatric adverse events from exposure to montelukast medication 175	

(Figure S8). We demonstrated that GAMs can be used to detect dynamic reporting of adverse 176	

drug events by sharing information across child development stages. 177	

This study has some limitations. First, observational data has inherent bias and confounding 178	

factors which may affect both the sample of drug-event pairs in our study as well as the 179	

performance of the detection methods. We showed that the random sample of drug events 180	

correspond to the reporting patterns found in the FAERS database. Also, performing a power 181	

analysis allowed for identifying drug events for which the detection methods were able to 182	
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identify the dynamic reporting to provide a fair performance comparison. Second, other 183	

regulatory agencies, such as the Food and Drug Administration and European Medicines 184	

Agency, define pediatric age ranges for development stages by different methods. While varying 185	

child stage definitions were not explored here, we chose stages defined by NICHD that were 186	

established after consultation and agreement among several US-based organizations such as the 187	

American Academy of Pediatrics and the Centers for Disease Control and Prevention45. Third, 188	

fixed development stages may serve more useful in drug regulations and trial design than 189	

representing dynamic child growth and development. Nevertheless, the detection performance 190	

and risk scores for both methods could only be compared when considering data found within 191	

child development strata. Fortunately, the further advantage of the GAM is its ability to model 192	

childhood as a continuous period using age without restrictive strata. This increases the sharing 193	

of information for identifying adverse event risk during childhood which may cross development 194	

stages and affect specific periods during childhood.  195	

Conclusion 196	

In this study, we evaluated ADE risk detection methods to identify dynamic drug event reporting 197	

within observational data. By simulating drug event reporting and augmenting simulated rates 198	

into existing observational data, we can make comparisons between methods to detect dynamic 199	

drug event reporting patterns. We found GAMs result in more robust scores, overall improved 200	

performance to detect dynamics, and improved ability to detect simulated and real-world 201	

pediatric drug-events compared to the state-of-the-art PRR method. This study lays the 202	

foundation to detect and evaluate pediatric adverse drug events for ontogenic-mediated 203	

mechanisms.  204	
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 213	

Methods 214	

ADE data source 215	

We retrieved drug event reports from the Food and Drug Administration’s openFDA46 download 216	

page, utilizing an API key with extended permissions, containing the FAERS data. Using custom 217	
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python notebooks and scripts available in the ‘openFDA_drug_event-parsing’ github repository 218	

(DOI: 10.5281/zenodo.4464544), we extracted and formatted all drug event reports prior to the 219	

third quarter of 2019. Data fields included the safety report identifier, age value, age code 220	

e.g. year, adverse event MedDRA concept code (preferred terms), and drug RxNorm code 221	

(various) used in our analyses. The age value was standardized to year units for categorizing 222	

reports into the 7 child development stages according to the Eunice Kennedy Shriver National 223	

Institute of Child and Human Development45. Adverse drug event MedDRA codes were mapped 224	

to standard concept identifiers using concept tables48 from the OMOP common data model. The 225	

drug RxNorm code was similarly translated to the standard RxNorm concept identifier 226	

(ingredient level) in OMOP and was further mapped to the equivalent ATC concept identifier 227	

(ATC 5th level) using the concept relationship table. The occurrence of an adverse drug event is 228	

defined as any safety report where both the adverse event and drug concepts are reported 229	

together. The pediatric report space for any adverse drug event is all reports which have age 230	

above zero and less than or equal to 21 years old which is the upper bound for the late 231	

adolescence child development stage. The drug event data for a given drug-event pair composed 232	

of 339,741 safety reports with a binary indicator for reports of the event and drug, as well as the 233	

category of NICHD child development stage for the report’s patient. 	234	

Simulated ADE dynamics 235	

The objective of this study was to evaluate detection of drug-event reporting as the reporting rate 236	

changes across child development stages with varying dynamics and effect sizes. We assert that 237	

reporting dynamics during childhood reflect ontogenic profiles observed on molecular, 238	

functional, and structural levels7,37,38. 239	
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We simulated dynamic ADE reporting by combining hyperbolic tangent functions that produced 240	

symmetric probability distributions around a given effect size to define the probability of event 241	

reporting at drug reports. These dynamic reporting classes represent nonlinear trends of drug-242	

event reports across childhood. The average drug and event reporting across reports equaled the 243	

event reporting rate multiplied by a fold change factor resulting in the effect size of dynamic 244	

drug event reporting. The fold change followed a negative exponential distribution with rate 245	

parameter 0.75 resulting in a fold change distribution ranging from 1 to 10 (Figure S9). The 246	

simulated reporting probabilities were distributed to safety reports in age ascending order 247	

reflecting a desired dynamic distribution of ADE reporting across childhood. We designed 5 248	

different dynamic reporting rates, namely ‘uniform’ (random), ‘increase’, ‘decrease’, ‘plateau’, 249	

and ‘inverse_plateau’ (Figure S10).  250	

ADE data augmentation 251	

We augmented the original drug event data from FAERS with the simulated drug event reporting 252	

dynamics. We randomly selected 500 drug-event pairs to be the positive control set. We 253	

augmented the drug event data for each pair with dynamics previously described that we want to 254	

detect. We then randomly selected 10,000 mutually exclusive drug-event pairs to be the negative 255	

control set which were not augmented and represented reporting of drugs with events within 256	

FAERS. Differences of the average drug event reporting between the drug-event sets was 257	

computed by comparing 10 million resamples of each distribution.  258	

 259	

Augmenting the positive control drug-event pairs resulted in 5 sets of 500 drug-event pairs, 260	

forming (drug-event, stage, dynamic) triples. The (drug-event, stage, uniform dynamic) triple 261	
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scores were the reference distribution for comparing the average difference in scores, after 20 262	

resamples, with ADE risk scores from the other dynamics classes.  263	

ADE detection methods 264	

We applied two ADE detection methods to the positive and negative control drug-event sets. We 265	

chose a population stratification (PRR) and modeling (GAM) method to evaluate detection of 266	

ADE dynamics when stratifying the data or by sharing information across child development 267	

stages, respectively. 268	

We employed the Proportional Reporting Ratio (PRR): 269	

𝑎
𝑎 + 𝑐
𝑏

𝑏 + 𝑑
 270	

where ‘a’ is the number of reports with the drug and event, ‘b’ is the number of reports without 271	

the drug and with the event, ‘c’ is the number of reports with the drug and without the event, and 272	

‘d’ is the number of reports without the drug or event of interest. The resulting score is the event 273	

reporting prevalence with the drug compared to without the drug. We generated PRR scores for 274	

each child development stage resulting in 7 scores for each drug-event pair. The PRR scores 275	

were log10 transformed when conducting the Shapiro-Wilk test for normality.  276	

We also evaluated the logistic generalized additive model49	(GAMs): 277	

𝑔(𝐸(𝐸𝑣𝑒𝑛𝑡)) = 𝑠(𝑛𝑖𝑐ℎ𝑑) ∗ 𝐷𝑟𝑢𝑔 278	

where 𝑔 is a logit link function, 𝐸(𝐸𝑣𝑒𝑛𝑡) is the expected value of event reporting, 𝑠 is a spline 279	

function with a penalized cubic basis, 𝑛𝑖𝑐ℎ𝑑 is the child development stage of the report’s 280	
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subject, and 𝐷𝑟𝑢𝑔 is an indicator i.e. 0 or 1 of drug reporting. Details for GAMs can be found at 281	

references42,50 and we specified the model using the 𝑚𝑔𝑐𝑣 package in R. 282	

Briefly, the GAM is a flexible statistical model that captures nonlinear effects of covariates onto 283	

a response. In this paper, we model the effect of the child development stage interacting with 284	

drug reporting on the reporting of an event where the event is the reporting of the MedDRA 285	

preferred term and the drug is the reporting of the ATC 5th level drug concept. The 𝑠() function 286	

is a spline function where the interaction of the child development stage (main effect) and the 287	

drug (interaction using the ‘by’ variable) is modeled according to a set of basis functions. Each 288	

development stage defines the knot (7 in total) in which the expectation of event reporting is 289	

quantified. In the spline function, a penalized cubic spline basis (bs=’cs’) is used for fitting the 290	

basis functions where the first and second derivative of the event expectation is zero at each 291	

knot, resulting in a smooth event expectation across stages. To mitigate overfitting or 292	

‘wiggliness’, we used a penalized iterative restricted likelihood approach, called ‘fREML’, with 293	

a wiggliness penalty in the objective function. Fitting the GAM model (using the ‘bam’ function 294	

and discrete=T) produces coefficient terms, similar to beta coefficients in logistic regression, for 295	

each child development stage for the association of the adverse event being reported in 296	

interaction with reporting the drug. We generated GAM scores for each child development stage 297	

resulting in 7 scores for each drug-event pair. It is important to note that all GAM scores 298	

produced were finite, nonzero values.  299	

The scores generated by each method have different variations and uncertainty in the estimated 300	

population value. We additionally determined the lower confidence bound in which the 301	

population-based score would be greater than 90% of score replicates. The population score and 302	
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the 90% lower confidence bound, called ‘score’ and ‘90mse’ respectively, are the score types for 303	

each method.  304	

ADE dynamic detection power analysis 305	

We performed a power analysis to determine which of the positive control drug-event pairs could 306	

be detected for each method and score type. The generated scores may not show a drug and event 307	

association (score above the null statistic or a significance association) for a child development 308	

stage due to the method’s different assumptions and biases when applied onto observational data. 309	

To mitigate these issues, we determined the drug event data characteristics, namely the number 310	

of drug reports and the effect size, for each method in which reporting dynamics could be 311	

detected at or above 𝑡 = 80% power or true positive rate. Specifically, for the (drug-event, stage, 312	

dynamic) triple scores in the positive control set, we determined the power to differentiate scores 313	

at high reporting rates about a given score threshold (GAM score threshold==0; PRR score 314	

threshold==1). The reporting rates were higher at different child development stages for each 315	

dynamics class e.g. the ‘increase’ dynamics class had higher reporting at the ‘early_adolescence’ 316	

and ‘late_adolescence’ stages (Table S1). The scores from (drug-event, stage, dynamic) triples 317	

with a high reporting rate were only considered for reflecting dynamic drug event reporting 318	

associations. The scores from (drug-event, stage, dynamic) triples with a low reporting rate were 319	

not considered further due to spurious scores generated at stages without injected signal. The 320	

drug event characteristics were determined for both the estimated population score (‘score’) and 321	

the 90% lower bound score (‘90mse’) that represent scores with lower and higher confidence, 322	

respectively, for the ‘true’ population score.  323	
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Choosing drug-event pairs at or exceeding the characteristics for each method and score type at 324	

or above 𝑡 = 80% power resulted in a superset of (drug-event, stage, dynamic) triples designated 325	

as positives in a reference standard for each drug event reporting dynamics class (Table S2). The 326	

negative control set contained the same (drug-event, stage) doubles or 70,000 scores for each 327	

reference standard. Excluding the drug-event scores generated by the uniform class, there were 4 328	

reference standards of positive and negative drug-event pairs for each ADE reporting dynamics 329	

class used for detection performance evaluation.  330	

ADE dynamic detection performance 331	

We evaluated the GAM and PRR methods to detect drug event reporting dynamics across the 332	

child development stages. Specifically, we determined the performance in differentiating scores 333	

from (drug-event, stage, dynamic) triples in the positive control set versus the negative control 334	

(drug-event, stage) score doubles. The positive control set contained a superset of the 500 (drug-335	

event, stage, dynamic) score triples (Table S2). The negative control set contained the same 336	

(drug-event, stage) doubles or 70,000 scores for each reference standard. For each of the four 337	

reference standards, we quantified performance metrics including the sensitivity, specificity, and 338	

area under the receiver operating characteristic (AUROC) curve using the R package ROCR for 339	

each detection method and score type. Confidence intervals for the AUROC were calculated 340	

through bootstrapping (100 resamples) the score distributions and calculating performance 341	

metric values. 342	

Dynamics sensitivity analysis 343	

We assessed the sensitivity of the ADE detection methods to detect drug event reporting 344	

dynamics within child development stages. We artificially reduced, at 10% decrements, the event 345	

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 12, 2021. ; https://doi.org/10.1101/2021.03.10.21253302doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.10.21253302
http://creativecommons.org/licenses/by/4.0/


	 24	

reporting rate at each child development stage separately. Specifically, at each reduced stage, we 346	

determined the sensitivity of each method and score type to detect (drug-event, stage, dynamic) 347	

score triples compared to the same negative control (drug-event, stage) score doubles at that 348	

same reduced stage. Sensitivity was assessed iteratively at the 10% decrements within each child 349	

development stage. We calculated the AUROC and power metrics to quantify sensitivity to drug 350	

event reporting dynamics for each method and score type.  351	

Real-world ADE validation 352	

We applied the ADE detection methods on observed FAERS data for drug-event pairs within the 353	

pediatric drug-event reference standard from the Global Research in Pediatrics consortium51. A 354	

machine-readable dataset can be found at the ‘GRiP_pediatric_ADE-reference_set’ github 355	

repository (DOI: 10.5281/zenodo.4453379). We assigned drug-event pairs with epidemiological 356	

or mechanistic evidence in children (Control==’C’) as the positive class (N=26), and the cross-357	

product of all drugs and events that were complementary to drug-event pairs in the reference set 358	

as the negative class (N=123). We calculated the AUROC using the ROCR package in R and the 359	

true positive rate using the null statistic of each method as the prediction threshold.  360	

List of Abbreviations 361	

ADE: adverse drug event; FAERS: Food and Drug Administration Adverse Event Reporting 362	

System; GAM: generalized additive model; PRR: proportional reporting ratio; NICHD: national 363	

institute of child and human development; AUROC: area under the receiver operating 364	

characteristic curve; TPR: true positive rate; ATC: anatomical therapeutic class; DOI: digital 365	

object identifier.  366	
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Availability of Data and Materials 367	

The datasets and code supporting the conclusions of this article are available in the 368	

‘evaluating_ontogenic_ade_risk’ Github repository, DOI: 10.5281/zenodo.4585585.  369	
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