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ABSTRACT (word count: 150, 150 max) 

All humans age, but some age faster than others. Variation in biological aging can be measured in 

midlife, but the implications of this variation are poorly understood. We tested associations between 

biological aging and indicators of future frailty risk in the Dunedin cohort of 1037 infants born the same 

year and followed to age 45. Participants’ Pace of Aging was quantified by tracking declining function in 

19 biomarkers indexing the cardiovascular, metabolic, renal, hepatic, immune, dental, and pulmonary 

systems across ages 26, 32, 38, and 45 years, in 2019. Participants with faster Pace of Aging had more 

cognitive difficulties, signs of advanced brain aging, diminished sensory-motor functions, older 

appearance, and more pessimistic perceptions of aging. People who are aging more rapidly than same-

age peers in midlife may prematurely need supports to sustain independence that are usually reserved 

for older adults. Chronological age does not adequately identify need for such supports. 
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INTRODUCTION 

As we age, the risk that we will experience chronic diseases (e.g., heart disease, diabetes, 

cancer) and declining capacities (e.g., reduced strength, impaired hearing, worse memory) increases.1 To 

help mitigate personal and societal costs associated with aging, population-level policies typically specify 

eligibility on the basis of chronological age. These include retirement age, pensions, social security, and 

healthcare subsidies, all intended to support independence. However, while many individuals continue 

to live independently and flourish into their nineties, others experience organ failure, dementia, and 

mortality before their sixties, the age when entitlement to many of the aforementioned age-based 

supports begins.2 Thus, chronological age is, at best, an imperfect basis for aging policy. 

All individuals age chronologically at the same rate, but there is marked variation in their rate of 

biological aging; this may help explain why some adults experience age-related decline faster than 

others.3,4 Biological aging can be defined as decline that (a) simultaneously involves multiple organ 

systems and (b) is gradual and progressive.5 Across the lifespan, the consequences of individual 

differences in genetic endowment, cellular biology, and life experiences accumulate, driving the 

divergence of biological age from chronological age for some people.6–9 Among older adults of the same 

chronological age, those with accelerated biological aging are more likely to develop heart disease, 

diabetes, and cancer and have a higher rate of cognitive decline, disability, and mortality.10–16 

Current disease-management strategies usually treat and manage each age-related chronic 

disease independently.7 In contrast, the geroscience hypothesis proposes that many age-related chronic 

diseases could be prevented by slowing biological aging itself.7,17 The geroscience hypothesis states that 

biological aging drives cellular-level deterioration across all organ systems, thereby causing the 

exponential rise in multi-morbidity across the second half of the lifespan.6 The implication is that by 

slowing biological aging directly, instead of managing each disease separately, risk for all chronic age-

related diseases could be simultaneously ameliorated.5 Early trials suggest that this goal may be 
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attainable.18,19 To achieve maximal prevention of age-related diseases, interventions to slow biological 

aging will need to target individuals by midlife before decades of subclinical organ decline have 

accumulated.6,20 However, little is known about how to identify adults in midlife who are aging fast and 

who are most likely to benefit from geroscience-informed interventions, and for this reason, we studied 

biological aging in midlife. 

 We measured biological aging in a population-representative 1972–1973 birth cohort of 1,037 

individuals followed from birth to age 45 years in 2019 with 94% retention: the Dunedin Study.21 Over a 

20-year period—at ages 26, 32, 38, and 45—we repeatedly collected 19 biomarkers to assess changes in 

the function of cardiovascular, metabolic, renal, hepatic, immune, dental, and pulmonary systems, and 

quantified age-related decline shared among these systems (Figure 1). We call this index of biological 

aging in the Dunedin Study the “Pace of Aging”. We tested the hypothesis that individual differences in 

the Pace of Aging from ages 26 to 45 would be associated, at age 45, with established risk factors for 

future frailty, morbidity and early mortality across four domains (Figure 1).22 First, we tested whether 

individuals with a faster Pace of Aging had early signs of brain aging that have been linked to cognitive 

decline and dementia in older adults. Second, we tested whether individuals with a faster Pace of Aging 

had more cognitive difficulties and decline. Third, we tested whether those with a faster Pace of Aging 

already displayed signs of diminished sensory-motor functional capacities that are linked to loss of 

independence, falls, and mortality in studies of older adults. Fourth, we tested whether individuals with 

an accelerated Pace of Aging look older than their same-aged peers, whether they self-report pessimism 

about aging, and whether informants have noticed age-related difficulties in Study members. 
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RESULTS 

Quantifying two decades of biological aging in midlife 

In a 2015 article, we quantified the Pace of Aging across 12 years among Dunedin Study 

members, from age 26 to age 38.22 Here, we extended these measurements to age 45, quantifying 20 

years of biological aging across the first half of the lifespan (see Supplemental Table S1 for details on 

each biomarker). From these biomarkers, the Pace of Aging was quantified in three steps. 

First, we measured longitudinal changes in 19 biomarkers at ages 26, 32, 38 and 45 assessing 

cardiovascular, metabolic, renal, hepatic, immune, dental, and pulmonary systems, totaling 69,715 data 

points (cohort participants x biomarkers x assessment phases) (Figure 1).  All biomarkers at each age 

were standardized based on their original distribution at age 26 (i.e. set to mean of 0 and a standard 

deviation of 1) and coded so that higher values represented “older/less healthy” levels (i.e., scores were 

reversed for cardiovascular fitness, lung function, creatinine clearance, and high density lipoprotein 

cholesterol for which values are expected to decline with increasing chronological age). In our cohort of 

midlife adults, biomarkers showed a pattern of age-dependent decline in the functioning of multiple 

organ systems over the 20-year follow-up period. 

Second, linear mixed-effects modelling was used to quantify each study member’s personal rate 

of change across each of the 19 biomarkers. The 19 models took the form Bit = γ0 +γ1Ageit +μ0i +μ1iAgeit 

+ ϵit, where Bit is a biomarker measured for individual i at time t, γ0 and γ1 are the fixed intercept and 

slope estimated for the cohort, and μ0i and μ1i are the random intercepts and slopes estimated for each 

individual i. Biomarker slopes indicated a tendency to decline with age (Figure 2A). Of the 171 unique 

correlations among biomarker slopes, 124 (73%) had a positive sign indicating coordinated change with 

age. Correlations between biomarker slopes averaged r = 0.1 ranging from r = -0.2 to r = 0.7 across the 

19 biomarkers (Supplemental Table S2). 
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Third, we combined information from the 19 slopes to calculate each Study member’s personal 

Pace of Aging. In line with the geroscience hypothesis, which states that aging represents correlated 

gradual decline across organ systems, we calculated each Study member’s Pace of Aging as the sum of 

age-dependent annual changes across all biomarkers: Pace of Agingi = ∑𝐵=1
19  μ1iB. The resulting Pace of 

Aging was then scaled to a mean of 1, so that it could be interpreted with reference to an average rate 

of 1 year of biological aging per year of chronological aging. Study members showed wide variation in 

their Pace of Aging (Mean=1 biological year per chronological year, SD=0.29). Over the two decades that 

we measured biological aging, the Study member with the slowest Pace of Aging aged by just 0.40 

biological years per chronological year, while the Study member with the fastest Pace of Aging accrued 

2.44 biological years per chronological year (Figure 2B).  

 

Accelerated biological aging and the aging brain 

Deterioration of the brain (e.g., in Alzheimer’s disease and related dementias) is a major 

contributor to morbidity and loss of independence in older adults.23,24 Brain imaging can detect subtle 

signs of brain aging decades before the onset of age-related disease.25,26 Several magnetic resonance 

imaging (MRI) measures have been associated with a higher risk for cognitive decline and 

neurodegenerative disease in older adults including: thinner cortex, smaller surface area, smaller 

hippocampal volume, larger volume of white matter hyperintensities, lower fractional anisotropy, and 

older brain age.27–29 Here we found that an accelerated Pace of Aging in the first half of the lifespan was 

associated with most of these risk factors derived from high-resolution structural MRI scans at age 45. 

Table 1 reports effect sizes, significance tests and covariate-adjusted analyses for all brain measures. 

Study members with a faster Pace of Aging had thinner average cortical thickness (β = -0.14, p < 

0.001; 95% CI: -0.21, -0.08) and smaller total surface area of the cortex (β = -0.08, p = 0.003; 95% CI: -

0.14, -0.03). Furthermore, regional investigation of cortical thickness revealed that associations between 

faster Pace of Aging and thinner cortex were widespread across the cortex (89.72% of parcels had 
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negative effect sizes, 38.33% were statistically significant at p < .05, corrected for false discovery rate; 

Supplemental Table S3), with the largest associations in medial temporal and insular cortex (Figure 3A). 

Regional associations with surface area were also widespread across the cortex (96.11% of parcels had 

negative effect sizes, 22.50% were statistically significant p < .05, corrected for false discovery rate; 

Supplemental Table S4), with the largest associations in visual and lateral temporal cortex (Figure 3B). 

Those with a faster Pace of Aging also had smaller volumes of the hippocampus (β = -0.10, p = 0.001; 

95% CI: -0.16, -0.04), a brain region central to both healthy memory function and age-related memory 

decline.30 

Study members with a faster Pace of Aging had early signs of white matter deterioration, as 

indicated by a larger log-transformed volume of white matter hyperintensities (β = 0.18, p < 0.001; 95% 

CI: 0.11, 0.24; Figure 3C), but they did not have lower fractional anisotropy (β = -.03, p = 0.439; 95% CI: -

0.09, 0.04), a measure of white matter microstructural integrity. Sensitivity analyses revealed that 

associations between Pace of Aging and MRI signs of brain aging were not attributable to being 

overweight, to smoking history, or to already being diagnosed with an age-related disease (heart 

disease, diabetes, cancer) (Table 1).  

We also studied a relatively new measure called “brain Age Gap Estimate” (brainAGE). BrainAGE 

is the difference between each study member’s chronological age and their brain age as estimated from 

a machine-learning algorithm that was trained to predict chronological age from gray- and white-matter 

measures in independent samples ranging in age from 19 to 82.31 Higher scores on brainAGE thus 

indicate a brain age that is older than chronological age. Dunedin Study members with a faster Pace of 

Aging tended to have brains that were typical of an older person as represented by higher brainAGE 

scores (β = 0.20, p < 0.001; 95% CI: 0.13, 0.26; Figure 3D).  

 

Accelerated biological aging, cognitive difficulties and cognitive decline 
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Cognitive testing is widely used to assess risk for age-related neurological disease. Low cognitive 

functioning is a risk factor for Alzheimer’s disease and dementia, and cognitive decline is a hallmark 

feature of these age-related disorders.32,33 Dunedin Study members with a faster Pace of Aging displayed 

poorer cognitive functioning and more cognitive decline by age 45. Table 1 reports effect sizes, 

significance tests and covariate-adjusted analyses for all cognitive measures. 

Compared to peers with a slower Pace of Aging, those who were aging faster had lower 

intelligence quotient (IQ) scores (β = -0.33, p < .001; 95% CI: -0.38, -0.26). This difference in cognitive 

functioning reflected actual cognitive decline over the years: when we compared age-45 IQ test scores 

with baseline scores from the childhood version on the same IQ test, Study members with a faster Pace 

of Aging tended to show decline net of their baseline level (β = -0.16, p < 0.001; 95% CI: -0.22, -0.09). 

Furthermore, a faster Pace of Aging was broadly associated with poorer cognitive functioning across 

domains: Study members with a faster Pace of Aging had poorer verbal comprehension (β = -0.30, p < 

0.001; 95% CI: -0.36, -0.24), perceptual reasoning (β = -0.27, p < 0.001; 95% CI: -0.33, -0.20), working 

memory (β = -0.22, p < 0.001; 95% CI: -0.28, -0.15), processing speed (β = -0.23, p < 0.001; 95% CI: -0.29, 

-0.16), worse memory learning performance (Rey Auditory Verbal Learning [RAVL] learning memory, β = 

-0.29, p < 0.001; 95% CI: -0.34, -0.22), and worse delayed memory recall (RAVL recall, β = -0.19, p < 

0.001; 95% CI: -0.25, -0.13). 

Cognitive difficulties were not only detectable on objective tests but also noticeable in everyday 

life. Informants, who were surveyed because they knew a Study member well, reported that Study 

members with a faster Pace of Aging experienced more memory difficulties (β = 0.15, p < 0.001; 95% CI: 

0.08, 0.21) and attention problems (β = 0.20, p < 0.001; 95% CI: 0.14, 0.26); for example, they noted that 

faster-aging Study members were more likely to be “easily distracted” and “get sidetracked” as well as 

to “misplace wallet, keys or eyeglasses” and “forget to do errands, return calls or pay bills.” Sensitivity 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 12, 2021. ; https://doi.org/10.1101/2021.03.09.21252473doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.09.21252473
http://creativecommons.org/licenses/by/4.0/


 9 

analyses indicated that the associations between Pace of Aging and cognitive difficulties were not 

attributable to being overweight, to smoking or to common age-related diseases (Table 1). 

 

Accelerated biological aging and diminished sensory-motor functional capacities 

In gerontology, poor scores on tests of sensory-motor functioning (e.g., gait speed, grip 

strength, visual contrast sensitivity, hearing thresholds) are often used to identify frail individuals who 

are at high risk for falls, loss of independence, and mortality.34–37 Dunedin Study members who were 

aging faster showed multiple signs of sensory-motor difficulties. Table 2 reports effect sizes, significance 

tests and covariate-adjusted analyses for all sensory-motor measures. 

Compared to peers with a slower Pace of Aging, those who were aging faster had slower gait 

speed (β = -0.33, p < 0.001; 95% CI: -0.39, -0.27), poorer balance (one-legged balance, β = 0.36, p < 

0.001; 95% CI: -0.42, -0.30), were slower at rising repeatedly from a chair (chair stands, β = -0.30, p < 

0.001; 95% CI: -0.37, -0.24) and stepping in place (two-minute step test, β = -0.28, p < 0.001; 95% CI: -

0.34, -0.22), were weaker (grip strength, β = -0.05, p = 0.017; 95% CI: -0.09, -0.01), and had more 

difficulties with fine motor control (grooved pegboard, β = -0.27, p < 0.001; 95% CI: -0.33, -0.20). 

In addition, Study members who were aging faster had diminished sensory abilities. Visual 

contrast sensitivity and hearing ability are known to decline with advanced age.34,38 Study members with 

a faster Pace of Aging at age 45 had more difficulty visually distinguishing an object from its background 

on tests of contrast sensitivity (β = -0.13, p < 0.001; 95% CI: -0.19, -0.07). They also had more difficulties 

detecting high-pitch-tones (HF-PTA, β = 0.17, p < 0.001; 95% CI: 0.10, 0.23) and low-mid-pitch tones (4F-

PTA, β = 0.20, p < 0.001; 95% CI: 0.14, 0.26) and were worse at hearing sentences in noisy environments 

when auditory distractors were nearby (LiSN-S Low cue, β = -0.17, p < 0.001; 95% CI: -0.23, -0.10) and 

when distractors were spatially distant (LiSN-S Spatial advantage, β = 0.22, p < 0.001; 95% CI: 0.15, 0.28). 

Finally, Study members with a faster Pace of Aging noticed sensory-motor difficulties in their everyday 
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lives, self-reporting more physical limitations (SF-36 physical functioning scale, β = 0.29, p < 0.001; 95% 

CI: 0.23, 0.35). Sensitivity analyses revealed that associations between the Pace of Aging and sensory-

motor difficulties were not attributable to being overweight, to smoking or to common age-related 

diseases (Table 2). 

 

Accelerated biological aging and negative perceptions of aging 

Age-related morbidity and mortality are not only forecast by objective measures of physical and 

cognitive functioning. Older adults who self-report that they feel old are also more likely to 

subsequently be diagnosed with age-related disease and die at a younger age.39,40 We found that Study 

members with a faster Pace of Aging were more likely to hold unfavorable views of aging. Table 2 

reports effect sizes, significance tests and covariate-adjusted analyses for all perception measures. 

Study members with a faster Pace of Aging had more negative attitudes towards aging (β = -

0.22, p < 0.001; 95% CI: -0.28, -0.16), endorsing sentiments such as “things keep getting worse as I get 

older” and “I am not as happy now as I was when I was younger.” They self-reported that they felt less 

healthy (β = -0.35, p < 0.001; 95% CI: -0.41, -0.29) and that they felt older than their chronological age (β 

= 0.09, p = 0.005; 95% CI: 0.03, 0.16). When asked similar questions about the Study members, 

informants (who knew them well) and research workers (who met the Study members during their one-

day Unit visit) both reported that Study members with a faster Pace of Aging seemed in worse health 

(informant, β = -0.38, p < 0.001; 95% CI: -0.45, -0.32; research worker, β = -0.58, p < 0.001; 95% CI: -0.62, 

-0.52) and looked older than their age (informant, β = 0.35, p < 0.001; 95% CI: 0.29, 0.41; research 

worker, β = 0.44, p < 0.001; 95% CI: 0.38, 0.49; Figure 4A). In addition, Study members who were aging 

faster self-reported that they looked older than their age (β = 0.10, p = 0.003; 95% CI: 0.03, 0.16) and, 

when solely presented with facial images, independent raters scored Study members with a faster Pace 

of Aging as looking older than their peers (β = 0.33, p < 0.001; 95% CI: 0.26, 0.39) (Figure 4B and 4C). 
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Finally, Study members with a faster Pace of Aging were less likely to think that they would live past the 

age of 75 (β = -0.27, p < 0.001; 95% CI: -0.33, -0.20). Sensitivity analyses revealed that associations 

between Pace of Aging and perceptions of aging were not attributable to being overweight, to smoking 

or to common age-related diseases (Table 2). 

 

DISCUSSION 

Chronological age is a poor proxy for biological age, even in midlife. Here, in a population-

representative birth cohort without variation in chronological age, we found that Study members had 

large variation in their Pace of Aging. Furthermore, Study members who had a faster Pace of Aging in 

midlife exhibited signs of advanced brain aging, experienced more cognitive difficulties, had diminished 

sensory-motor functional capacity and had more negative perceptions of aging. Sensitivity analyses 

revealed that these associations were not explained by obesity, smoking or chronic diseases, supporting 

our hypothesis that the Pace of Aging is a robust indicator of the cumulative, progressive, and gradual 

deterioration across organ systems that underlies biological aging. Together, these findings support at 

least two conclusions: 1) meaningful variation in biological aging can be measured in midlife; and 2) 

people with a faster rate of biological aging across the first half of the lifespan are more likely to 

experience age-related functional impairment by midlife. These findings raise the question of whether 

midlife is a window of opportunity for the mitigation of age-related disease. We have shown that 

biological aging in midlife is meaningful, yet further research is needed to determine whether biological 

aging in midlife is still malleable. Randomized trials are beginning to test this possibility.41,42   

Four design features of the Dunedin Study support these conclusions. First, all Study members 

were born in 1972-1973, which allows the direct measurement of individual differences in biological 

aging uncoupled from age and cohort effects.43,44 Second, the Dunedin Study has very low attrition 

rates; unlike many longitudinal studies of older adults that have selective attrition and mortality, the full 
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range of health is represented.45,46 Third, the Dunedin Study has collected four waves of biological 

measurements from age 26 to age 45, a unique dataset allowing for more accurate estimates of 

biological aging. Fourth, even though age-related diseases are uncommon in midlife, Study members 

were assessed at age 45 with a battery of established measures that are commonly used in geriatric 

settings to predict frailty, morbidity and mortality.  

This study was not without limitations. First, these findings are based on a single birth cohort 

from New Zealand. Second, our study currently lacks follow-up past the age of 45. Further investigation 

of the Pace of Aging in diverse cohorts and in older adults is needed. Third, the Pace of Aging was 

derived from 19 biomarkers repeatedly assessed across 20 years, which will be infeasible for most 

studies of biological aging. However, we recently reported that a proxy for the Pace of Aging can now be 

quantified from genome-wide DNA methylation data extracted from a single cross-sectional blood 

draw.47 This measure makes it possible for studies lacking 4 waves of biomarkers to extend this work; 

e.g., it predicts disease and mortality in U.S. and U.K. samples.47 Fourth, while associations were 

consistent across domains and measures, effect-sizes were generally moderate. However, these 

moderate associations between the Pace of Aging and midlife function likely reflect the cumulative 

effects of the aging process. Therefore, if the Pace of Aging truly measures the underlying aging process, 

the associations reported here should grow larger over time, as fast and slow agers continue to 

diverge.48  

Within the bounds of these limitations, our findings have implications for geroscience theory, 

research, and policy. With regard to theory, we find that variation in the pace of biological aging can be 

quantified in midlife and, among 45-year-olds, is already associated with indicators of risk for frailty, 

morbidity and mortality across 4 domains. The breadth of these associations is consistent with the 

geroscience hypothesis depicting accelerated aging as a common cause of age-related chronic disease. 

While previous research suggested that biological aging could be measured in younger adults,22 it was 
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unclear whether these measures indexed biological aging with functional implications for later-life 

health. Here we show that faster aging in midlife is associated with several measures of functional 

impairment and frailty that in older adults have established links to morbidity and mortality. For 

example, Study members who were in the fastest quintile of the Pace of Aging had brainAGEs that were 

an average of 3.79 years older and were rated as looking 4.32 years older than those in the slowest 

quintile. Further research is needed to test whether interventions in humans can slow biological aging in 

midlife and reduce long-term risk for age-related chronic disease. Interventions that can achieve even 

mild slowing of biological aging promise to improve quality of life in older adults while yielding 

significant healthcare savings.17,49 

With regard to research and policy, current efforts aimed at improving biological aging 

measurement are primarily driven by the need to test emerging anti-aging biotechnology. While our 

findings support these efforts, they also suggest that biological aging may have broader implications for 

society. Many social programs, including state pensions and Medicare in the U.S., are designed to offset 

the economic and health burdens that accrue as individuals age. Eligibility for these benefits has 

historically been determined on the basis of chronological age. For example, the age for U.S. Social 

Security eligibility was set to 65 in 1939 when the average life expectancy was 63.7.50 However, with 

lengthening lifespans, it is important to also consider biological age. Our findings suggest that already by 

midlife, chronological age is a crude, poorly calibrated measure of the functional consequences of aging. 

We provide evidence that disparities in biological aging independent of chronological age are already 

linked to functional difficulties in midlife. Some of those difficulties may reduce individuals’ ability to 

work. Widespread application of biological aging measures could represent an alternative to using 

birthdates when determining the allocation of healthcare and financial support for those suffering from 

the sequelae of aging. For example, in the U.S., there are ongoing debates about lowering the Medicare 

age to expand access to preventative healthcare.51,52 Perhaps someday we will be able to use biological 
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aging measures to guide treatment access. With further development, geroscience could provide the 

conceptual tools, measurement technology, and interventions required to mitigate disparities in the 

pace of biological aging through more tailored and just access to independence-sustaining resources. 
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METHODS 

Study Design and Population 

Participants are members of the Dunedin Study, a longitudinal investigation of health and 

behavior in a representative birth cohort. The 1037 participants (91% of eligible births) were all 

individuals born between April 1972 and March 1973 in Dunedin, New Zealand, who were eligible on the 

basis of residence in the province and who participated in the first assessment at age 3 years21. The 

cohort represents the full range of socioeconomic status (SES) in the general population of New 

Zealand’s South Island and, as adults, matches the New Zealand National Health and Nutrition Survey on 

key adult health indicators (e.g., body mass index, smoking, and general practitioner visits) and the New 

Zealand Census of citizens of the same age on educational attainment21,53. The cohort is primarily white 

(93%, self-identified), matching South Island demographic characteristics. Assessments were performed 

at birth; at ages 3, 5, 7, 9, 11, 13, 15, 18, 21, 26, 32, and 38 years; and, most recently (completed April 

2019), at age 45 years, when 938 of the 997 participants (94.1%) still alive participated. Study members 

with data available at age 45 years did not differ significantly from other living participants in terms of 

childhood SES or childhood neurocognitive functioning (see attrition analysis in Supplemental Figure S1 

and S2). At each assessment, each participant was brought to the research unit for interviews and 

examinations. Research staff make standardized ratings, informant questionnaires are collected, and 

administrative records are searched. Written informed consent was obtained from cohort participants. 

Ethical approval for the study protocols was given by the campus Institutional Review Board of Duke 

University and the Health and Disability Ethics Committees of the New Zealand government. This study 

follows the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) reporting 

guideline. The premise and analysis plan for this project were pre-registered at https://bit.ly/2ZVtnsq. 

 

Statistical Analysis 
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Unless otherwise specified, all statistical analyses were completed using linear regression 

models in R (version 3.4.0). All models were adjusted for sex. In addition, two types of sensitivity 

analyses were also performed for all associations. 1) In addition to sex, body mass index and smoking 

status at age 45 were simultaneously added as covariates to rule out the possibility that associations 

were limited to overweight individuals and to smokers. 2) Sex-adjusted models were run in which all 

Study members were excluded who had diagnosed, common age-related diseases (cancer, diabetes, 

heart attack). Correction for multiple comparisons was performed using the false discovery rate 

correction across all 38 sex-adjusted models presented in Table 1 and Table 2. Analyses reported here 

were checked for reproducibility by an independent data-analyst who recreated the code by working 

from the manuscript and applied it to an independently generated copy of the dataset. 

 

Measuring the Pace of Aging 

Pace of Aging. We measured Pace of Aging from repeated assessments of a panel of 19 

biomarkers: Body mass index (BMI), Waist-hip ratio, Glycated hemoglobin, Leptin, Blood pressure (mean 

arterial pressure), Cardiorespiratory fitness (VO2Max), Forced vital capacity ratio (FEV1/FVC), Forced 

expiratory volume in one second (FEV1), Total cholesterol, Triglycerides, High density lipoprotein (HDL), 

Lipoprotein(a), Apolipoprotein B100/A1 ratio, estimated Glomerular Filtration Rate (eGFR), Blood Urea 

Nitrogen (BUN), High Sensitivity C-reactive Protein (hs-CRP), White blood cell count, mean periodontal 

attachment loss (AL), and the number of dental-caries-affected tooth surfaces (tooth decay). Biomarkers 

were assayed at the age-26, 32, 38 and 45 assessments. The Pace of Aging reported here represents an 

extension of a previously reported measure that used 18 biomarkers assayed at ages 26, 32 and 38.22  

Here we add a recently completed 4th measurement wave of data, at age 45, totaling 19 biomarkers.  

We added measures of leptin and carries, both of which have now been assessed at multiple waves 

allowing growth curve modeling. Telomere length was dropped because of an emerging and yet-
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unresolved field-wide debate about its measurement54. Details on biomarker measurements are 

provided in Supplemental Table S1. 

We calculated each Study member’s Pace of Aging in three steps. In the first step, we 

transformed the biomarker values to a standardized scale. For each biomarker at each wave, we 

standardized values according to the age-26 distribution (i.e. set to mean of 0 and a standard deviation 

of 1). Standardization was conducted separately for men and women. Standardized biomarker values 

greater than zero indicated levels that were “older” and values less than zero indicated levels “younger” 

than the average 26-year-old. To match, scores were reversed for VO2Max, FEV1/FVC, FEV1, eGFR, and 

HDL cholesterol, which are known to decline with age. Over the 2 decades of follow-up, the biomarkers 

in the panel indicated a progressive deterioration of physiological integrity with advancing chronological 

age; i.e. their cohort mean values tended to increase (i.e., worsen) from the age-26 assessment to the 

age-45 assessment (Figure 2).  

In the second step, we calculated each Study member’s personal slope for each of the 19 

biomarkers—the average year-on-year change observed over the 2-decade period. Slopes were 

estimated using a mixed effects growth model that regressed the biomarker’s level on age. A complete 

list of means of biomarker slopes and pairwise correlations among biomarker slopes is presented in 

Supplemental Table S2. For only four of the 19 biomarkers we examined, cohort mean levels did not 

worsen over time as expected based on published associations with age-related chronic disease: white 

blood cell count and CRP levels remained stable with age; HDL cholesterol and apolipoprotein B100/A1 

ratio improved with age. However, individual-difference slopes for these biomarkers did show the 

expected pattern of correlation with other biomarkers’ slopes. For example, Study members whose 

apolipoprotein B100/A1 ratio increased during the follow-up period also showed increasing adiposity, 

declining lung function, and increasing systemic inflammation. We retained all pre-registered 

biomarkers in the Pace of Aging model.  
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In the third step, we combined information from the 19 slopes of the biomarkers to calculate 

each Study member’s personal “Pace of Aging.” Because we did not have any a priori basis for weighting 

differential contributions of the biomarkers to an overall Pace of Aging measure, we combined 

information using a unit-weighting scheme (all biomarkers were standardized to have mean=0, SD=1 

based on their age-26 distributions, so slopes were denominated in comparable units). We calculated 

each Study member’s Pace of Aging as the sum of age-dependent annual changes in biomarker Z-scores. 

Because the Dunedin birth cohort represents its population, its mean and distribution represent 

population norms. We used these norms to scale the Pace of Aging to reflect physiological change 

relative to the passage of time. We set the cohort mean Pace of Aging as a reference value equivalent to 

the physiological change expected during a single chronological year. Using this reference value, we 

rescaled Pace of Aging in terms of years of physiological change per chronological year (M = 1, SD = 

0.29). On this scale, cohort members ranged in their Pace of Aging from 0.4 years of physiological 

change per chronological year (slow) to 2.4 years of physiological change per chronological year (fast) 

(Figure 2).  

As a sensitivity check to ensure that the geroscience definition of aging as unidirectional decline 

fits the data, we examined biomarker patterns of change for potential non-linearity. Three biomarkers – 

leptin, hs-CRP and eGFR – were measured at only three time-points and could only be fit with a linear 

model. For all other biomarkers, we fit an additional model that included fixed effects for the intercept, 

linear change and quadratic change, as well as random effects for the intercept and linear terms. For 

nine biomarkers, fit statistics (residual LL, AIC, BIC) indicated that the linear model provided a better fit 

than the quadratic model. For seven biomarkers, fit statistics indicated that the quadratic model 

provided a better fit than the linear model. However, for these seven biomarkers, the linear slope 

estimates extracted from the two models were highly correlated in sex-adjusted models (Waist-hip 

ratio: 0.99, VO2Max: 1.00, FEV1/FVC: 0.99, FEV1: 0.99, Apolipoprotein B100/A1 ratio: 0.99; BUN: 0.99; 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 12, 2021. ; https://doi.org/10.1101/2021.03.09.21252473doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.09.21252473
http://creativecommons.org/licenses/by/4.0/


 19 

Gum health: 0.99), leading us to conclude that we could reasonably use the linear slope estimates from 

the models including linear fixed effects only. This is graphically apparent in Supplemental Figure S3, 

which compares the linear-only and linear + quadratic growth curves. 

 

Structural MRI 

Image Acquisition. Each participant was scanned using a Siemens MAGNETOM Skyra (Siemens 

Healthcare GmbH) 3T scanner equipped with a 64-channel head/neck coil at the Pacific Radiology Group 

imaging center in Dunedin, New Zealand. High resolution T1-weighted images were obtained using an 

MP-RAGE sequence with the following parameters: TR = 2400 ms; TE = 1.98 ms; 208 sagittal slices; flip 

angle, 9°; FOV, 224 mm; matrix =256×256; slice thickness = 0.9 mm with no gap (voxel size 

0.9×0.875×0.875 mm); and total scan time = 6 min and 52 s. 3D fluid-attenuated inversion recovery 

(FLAIR) images were obtained with the following parameters: TR = 8000 ms; TE = 399 ms; 160 sagittal 

slices; FOV = 240 mm; matrix = 232×256; slice thickness = 1.2 mm (voxel size 0.9×0.9×1.2 mm); and total 

scan time = 5 min and 38 s. Additionally, a gradient echo field map was acquired with the following 

parameters: TR = 712 ms; TE = 4.92 and 7.38 ms; 72 axial slices; FOV = 200 mm; matrix = 100×100; slice 

thickness = 2.0 mm (voxel size 2 mm isotropic); and total scan time = 2 min and 25 s. Diffusion-weighted 

images providing full brain coverage were acquired with 2.5 mm isotropic resolution and 64 diffusion 

weighted directions (4700 ms repetition time, 110.0 ms echo time, b value 3,000 s/mm2, 240 mm field 

of view, 96×96 acquisition matrix, slice thickness=2.5 mm). Non-weighted (b=0) images were acquired in 

both the encoding (AP) and reverse encoding (PA) directions to allow for EPI distortion correction.  875 

Study members completed the MRI scanning protocol (see Supplemental Figures S1 and S2 for attrition 

analyses). 

Image Processing. Structural MRI data were analyzed using the Human Connectome Project 

(HCP) minimal preprocessing pipeline as detailed elsewhere.55 Briefly, T1-weighted and FLAIR images 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 12, 2021. ; https://doi.org/10.1101/2021.03.09.21252473doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.09.21252473
http://creativecommons.org/licenses/by/4.0/


 20 

were processed through the PreFreeSurfer, FreeSurfer, and PostFreeSurfer pipelines. T1-weighted and 

FLAIR images were corrected for readout distortion using the gradient echo field map, coregistered, 

brain-extracted, and aligned together in the native T1 space using boundary-based registration56. Images 

were then processed with a custom FreeSurfer recon-all pipeline that is optimized for structural MRI 

with higher resolution than 1 mm isotropic. Finally, recon-all output were converted into CIFTI format 

and registered to common 32k_FS_LR mesh using MSM-sulc.57 Outputs of the minimal preprocessing 

pipeline were visually checked for accurate surface generation by examining each participant’s myelin 

map, pial surface, and white matter boundaries. 

Cortical thickness, surface area and hippocampal volume. For each participant the mean cortical 

thickness and surface area were extracted from each of the 360 cortical areas in the HCP-MPP1.0 

parcellation.58 Regional cortical thickness and surface area measures have each been found to have 

excellent test-retest reliability in this sample (mean ICCs = 0.85 and 0.99 respectively).59 Bilateral 

hippocampal volume was extracted from the FreeSurfer “aseg” parcellation. Of the 875 Study members 

for whom data were available, 4 were excluded due to major incidental findings or previous injuries 

(e.g., large tumors or extensive damage to the brain/skull), 9 due to missing FLAIR or field map scans, 1 

due to poor surface mapping yielding 861 participants’ datasets for cortical thickness surface area and 

hippocampal volume analyses. 

White matter hyperintensities. To identify and extract the total volume of white matter 

hyperintensities (WMH), T1-weighted and FLAIR images for each participant were processed with the 

UBO Detector, a cluster-based, fully-automated pipeline with established out-of-sample performance, 

and high reliability in our data (test-retest ICC = 0.87).60,61 The resulting WMH probability maps were 

thresholded at 0.7, which is the suggested standard. WMH volume is measured in Montreal 

Neurological Institute (MNI) space, thus removing the influence of differences in brain volume on WMH 

volume. Because of the potential for bias and false positives due to the thresholds and masks applied in 
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UBO, the resulting WMH maps for each participant were manually checked by two independent raters 

to ensure that false detections did not substantially contribute to estimates of WMH volume. Visual 

inspections were done blind to the participants’ cognitive status. Due to the tendency of automated 

algorithms to mislabel regions surrounding the septum as WMH, these regions were manually masked 

out to further ensure the most accurate grading possible. For WMH data, participants were excluded if 

they had missing FLAIR scans, Multiple Sclerosis, or inaccurate white matter labelling or low-quality MRI 

data, yielding 852 participants’ datasets for analyses. In all analyses, WMH volume was log-transformed.  

  Diffusion Weighted Imaging. Diffusion weighted images were processed in FSL 

(http://fsl.fmrib.ox.ac.uk/fsl). Raw diffusion weighted images were corrected for susceptibility artifacts, 

subject movement, and eddy currents using topup and eddy. Images were then skull-stripped and fitted 

with diffusion tensor models at each voxel using FMRIB's Diffusion Toolbox (FDT; 

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FDT). The resulting fractional anisotropy (FA) images from all Study 

members were non-linearly registered to the FA template developed by the Enhancing Neuro Imaging 

Genetics Through Meta-Analysis consortium (ENIGMA), a minimal deformation target calculated across 

a large number of individuals.62 The images were then processed using the tract-based spatial statistics 

(TBSS) analytic method63 modified to project individual FA values onto the ENIGMA-DTI skeleton. 

Following the extraction of the skeletonized white matter and projection of individual FA values, 

ENIGMA-tract-wise regions of interest, derived from the Johns Hopkins University (JHU) white matter 

parcellation atlas,64 were transferred to extract the mean FA across the full skeleton and average FA 

values for a total of 25 (partially overlapping) regions. After visual inspection of all diffusion images, 7 

Study members were removed because data were collected with 20-channel head coils, leading to poor 

diffusion image quality; 3 were removed due to major incidental findings; 5 were removed due to 

excessive (>3mm) motion detected with eddy tool; and 7 were removed due to missing diffusion scans. 
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This resulted in 854 Study members with high-quality diffusion images that were included in the 

analysis. 

Brain age. We estimated brain age with a publicly available algorithm, developed by a different 

research team, which uses information about cortical anatomy to estimate the age of a person’s brain.31 

They trained this algorithm on chronological age in samples ranging from 19-82 years old. The algorithm 

has been shown to predict chronological age in multiple independent samples, and to have high test-

retest reliability in the Dunedin Study (ICC = 0.81),65 although it has a documented tendency to 

underestimate chronological age by approximately 3 years among adults between chronological ages 44 

and 46 years. For this reason, we standardized the scores to the mean chronological age of the Dunedin 

Study members at the time of their scanning in the Phase-45 assessment.66 In all analyses we used the 

brain Age Gap Estimate or brainAGE, which is the difference between each Study member’s estimated 

brain age and their chronological age. An older brainAGE results when the predicted brain age is older 

than the study member’s chronological age and is presumed to reflect accelerated brain aging. Data 

from six Study members were excluded due to major incidental findings or previous head injuries (e.g., 

large tumors or extensive damage to the brain). This resulted in brainAGE data from 869 Study 

members. 

 

Cognitive functioning  

Neurocognitive functioning. The Wechsler Adult Intelligence Scale-IV (WAIS-IV)67 was 

administered to each participant at age 45 years, yielding the IQ. In addition to full scale IQ, the WAIS-IV 

yields indexes of four specific cognitive function domains: Processing Speed, Working Memory, 

Perceptual Reasoning, and Verbal Comprehension.   

Child-to-adult neurocognitive decline. The Wechsler Intelligence Scale for Children–Revised 

(WISC–R)68 was administered to each participants at ages 7, 9, and 11 years, yielding the IQ.  To increase 
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baseline reliability, we averaged each participant’s three scores. We measured cognitive decline by 

studying IQ scores at midlife after controlling for IQ scores in childhood (as a sensitivity analysis, in 

addition to analyzing residualized change, we also analyzed “change scores” assessed as the difference 

between adult IQ and childhood IQ, and obtained the same substantive and statistically-significant 

results). We focus on change in the overall IQ given evidence that age-related slopes are correlated 

across all cognitive functions, indicating that research on cognitive decline may be best focused on a 

highly reliable summary index, rather than focused on individual functions69. 

Rey Auditory Verbal Learning Test. This is a test of verbal learning and memory administered at 

45 years.70 The test involves repeated presentation of a 15-word list and a one-time presentation of an 

interference list. Total Recall is the total number of words (0-60) recalled over four trials (the sum of 

words recalled across trials 1-4). Delayed Recall is the total number of words (0-15) recalled after a 30-

minute delay.  

 Informant memory and attention. Subjective everyday cognitive function was reported by 

individuals nominated by each participant as knowing him/her well.  These informants were mailed 

questionnaires and asked to complete a checklist indicating whether the Study member had problems 

with memory or attention over the past year. 94% of Study members had at least one informant return 

the questionnaire, 88% had two, and 68% had three.  A memory-problems scale consisted of three 

items: “has problems with memory,” “misplaces wallet, keys, eyeglasses, paperwork,” and “forgets to 

do errands, return calls, pay bills” (internal consistency reliability = 0.63). An attention-problems scale 

consisted of four items: “is easily distracted, gets sidetracked easily,” “can’t concentrate, mind 

wanders,” “tunes out instead of focusing,” and “has difficulty organizing tasks that have many steps” 

(internal consistency reliability = 0.79).  

 

Sensory-motor Functioning 
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We assessed sensory-motor functional capacity at age 45 with objective tests of physical and 

sensory functioning and self-reports of physical limitations. 

Gait speed. Gait speed (meters per second) was assessed with the 6-m-long GAITRite Electronic 

Walkway (CIR Systems, Inc) with 2-m acceleration and 2-m deceleration before and after the walkway, 

respectively. Gait speed was assessed under 3 walking conditions: usual gait speed (walk at normal pace 

from a standing start, measured as a mean of 2 walks) and 2 challenge paradigms, dual-task gait speed 

(walk at normal pace while reciting alternate letters of the alphabet out loud, starting with the letter 

“A,” measured as a mean of 2 walks) and maximum gait speed (walk as fast as safely possible, measured 

as a mean of 3 walks). Gait speed was correlated across the 3 walk conditions.71 To increase reliability 

and take advantage of the variation in all 3 walk conditions (usual gait and the 2 challenge paradigms), 

we calculated the mean of the 3 highly correlated individual walk conditions to generate our primary 

measure of composite gait speed. 

One-legged balance. Balance was measured using the Unipedal Stance Test as the maximum 

time achieved across three trials of the test with eyes closed.72–74 

Chair-stand test. Chair rises were measured as the number of stands with no hands a participant 

completed in 30 seconds from a seated position.75,76 

2 min step test. The 2-min step test was measured as the number of times a participant lifted 

their right knee to mid-thigh height (measured as the height half-way between the knee cap and the 

iliac crest) in 2 minutes at a self-directed pace.76,77 

Grip strength. Handgrip strength was measured for each hand (elbow held at 90°, upper arm 

held tight against the trunk) as the maximum value achieved across three trials using a Jamar digital 

dynamometer.36,78 
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Visual-motor coordination. Visual-motor coordination was measured as the time to completion 

of the Grooved Pegboard Test.70 Scores for the Grooved Pegboard test were reversed so that higher 

values corresponded to better performance. 

Contrast Sensitivity. Study members wore their glasses or contact lenses (if these were normally 

worn). Study members were seated one meter from the Thomson Test Chart and the Samsung 23" LCD 

Thin Client screen. Room lighting was set at 520 lux. Contrast sensitivity was tested with both eyes open. 

The Pelli-Robson chart presents three letters per line and the black letters gradually fade from black to 

grey to white on the white background to determine the lowest level of “contrast” that the eye can 

detect. If only one letter on a line was correctly determined by the study member, the number of letters 

was recorded to determine the CSF score. However, if two letters on a line were correctly determined, 

the technician proceeded to the next line to determine if the study member could correctly determine 

any of these letters. 

Audiometry. Hearing acuity was assessed in a sound-attenuating booth (350 Series 

MaxiAudiology Booth by IAC Acoustics) which met the standard for maximum permissible ambient 

sound pressure levels. Pure tone audiometry was administered via the Interacoustics Callisto Suite 

configured to the Interacoustics OtoAccess database, operated from an HP Envy laptop with sound 

delivered by Sennheiser HDA 300 headphones. The program was set to deliver pure-tone stimuli in the 

following order: 1000 Hz, 2000 Hz, 4000 Hz, 8000 Hz, 12500 Hz, and 500 Hz. Presentation intensity levels 

began at 40 decibels at hearing level (dB HL) for normal hearing Study members, and 60 dB HL for 

hearing aid users. Audiometry used the Hughson-Westlake procedure (ISO8253-1:2010; Acoustics-

Audiometric test methods-Part1: Pure-tone air and bone-conduction audiometry) in which participants 

respond when they hear a pure tone. Auditory thresholds, defined as the lowest intensity level that the 

individual responded to, for 2 out of 3 presentations, were determined using a standard down-10-up-5 

technique for each frequency. A four-frequency pure-tone average was calculated by averaging 500 Hz, 
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1000 Hz, 2000 Hz, and 4000 Hz; and a high pure-tone average was calculated by averaging 8000 Hz and 

12500 Hz. The results for the “best ear” are reported. 

Spatial listening. Study members completed the Listening in Spatialised Noise–Sentences Test 

(LiSN-S) (Phonak, Switzerland) in a sound-attenuating booth (350 Series MaxiAudiology Booth by IAC 

Acoustics). Auditory stimuli were delivered through a pair of Sennheiser 215 headphones attached to a 

Mini PCM2704 external sound card. The LiSN-S produces a three-dimensional auditory environment 

through the headphones via four different task conditions.79 Target sentences are superimposed with 

distractor stories (maskers). Across the four conditions, these maskers differ with respect to perceived 

spatial location (0o or ±90 o azimuth), and speaker identity (same or different to the target speaker). The 

following order of conditions was identically presented to all participants: 1) different speaker at ±90 o 

azimuth, 2) same speaker at ±90 o azimuth, 3) different speaker at ±0 o azimuth, and 4) same speaker at 

±0 o azimuth. 

The masking stories were consistently presented at an intensity of 55 decibels sound pressure 

level (dB SPL). Participants repeated the target sentences and were scored in the software on their 

accuracy (words correct in each sentence). The program was adaptive, with target sentences delivered 

at 62 dB SPL to start, and intensity levels continuously adjusted up (if <50% of the words in the sentence 

correct), and down (if >50% of the words in the sentence correct), based on accuracy. The first few 

sentences (a minimum of 5) are considered practice sentences. This practice testing continues where 

levels were lowered in 4 dB increments, until one upward reversal in performance was recorded (i.e. the 

sentence score drops <50% of words correct), after which the increments decreased to ±2 dB steps. 

Practice sentence scores did not form part of the final score. The test condition continued until the 

average of the levels from positive-and negative-going reversals amounted to ≥3 (independent midpoint 

target level), and the standard error of these midpoints was less than 1 dB. Alternatively, the test 

condition continued until it reached the maximum number of 30 sentence presentations. Speech-
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reception thresholds were calculated as the lowest intensity at which the individual could repeat 50% of 

the words correctly. Two outcome scores were used: 1) Speech reception threshold from a low-cue 

condition represented performance in the most difficult auditory environment (masker speaker same as 

the target speaker, and masker was presented at 0 o azimuth, in the same location as the target 

speaker). 2) “Spatial advantage” score measured the benefit gained when the masker is presented from 

a different direction to the target.  

Physical limitations. Physical limitations were measured with the RAND 36-Item Health Survey 

1.0 physical functioning scale.80 Participant responses (“limited a lot”, “limited a little”, “not limited at 

all”) assessed their difficulty with completing various activities, e.g., climbing several flights of stairs, 

walking more than 1 km, participating in strenuous sports, etc. Scores were reversed to reflect physical 

limitations so that a high score indicates more limitations. 

 

Perceptions of aging 

Attitudes towards Aging. Age beliefs were assessed with the five-item Attitude Toward Aging 

scale.40 Sample items: “Things keep getting worse as I get older (R)", "As you get older, you are less 

useful.”  

Perceived Health. We obtained three reports about Study members’ health from three sources: 

self-reports, informant impressions, and staff impressions (see next paragraph for a description of these 

data sources). All reporters rated the study member’s general health using the following response 

options: excellent, very good, good, fair or poor. Correlations between self-, informant-, and staff-

ratings ranged from 0.48-0.55.   

Age appearance. We obtained reports about Study members’ age appearance from three 

sources: self-reports, informant impressions, and staff impressions. Self-reports – We asked the Study 

members about their own impressions of how old they looked, "Do you think you LOOK older, younger 
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or about your actual age?" Response options were younger than their age, about their actual age, or 

older than their age. We also asked Study members to rate their age perceptions in years, “How old do 

you feel?”. Informant impressions - Informants who knew a Study member well (94% response rate) 

were asked: “Compared to others their age, do you think he/she (the study member) looks younger or 

older than others their age? Response options were: much younger, a bit younger, about the same, a bit 

older, or much older. Staff impressions - Four members of Dunedin Study Unit staff competed a brief 

questionnaire describing each study member. To assess age appearance, staff used a 7-item scale to 

assign a “relative age” to each study member (1=young looking”, 7=”old looking). Correlations between 

self-, informant-, and staff-ratings ranged from 0.34-0.52.  

Facial Age. Facial Age was based on ratings by an independent panel of eight raters of each 

participant’s digital facial photograph. Facial Age was based on two measurements of perceived age. 

First, Age Range was assessed by an independent panel of four raters, who were presented with 

standardized (non-smiling) facial photographs of participants and were kept blind to their actual age. 

Raters used a Likert scale to categorize each participant into a 5-year age range (i.e., from 20-24 years 

old up to 70+ years old) (interrater reliability = 0.77). Scores for each participant were averaged across 

all raters. Second, Relative Age was assessed by a different panel of four raters, who were told that all 

photos were of people aged 45 years old. Raters then used a 7-item Likert scale to assign a “relative 

age” to each participant (1=”young looking”, 7=”old looking”) (interrater reliability = .79). The measure 

of perceived age at 45 years, Facial Age, was derived by standardizing and averaging Age Range and 

Relative Age scores.   

Perceived Longevity. At age 45, study members were asked, “How likely is it that you will live to 

be 75 or more?” (0=not likely, 1=somewhat likely, 2=very likely). 

 

Data and Code Availability 
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Dunedin study data are available via managed data access 

(https://moffittcaspi.trinity.duke.edu/research). All code used  this analysis are available upon request. 
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Figure 1. Study design. We studied the Pace of Aging in the Dunedin birth cohort. The timeline on the 
bottom of the figure visualizes the design of the Dunedin Longitudinal Study. The years of each phase of 
data collection and the corresponding ages are listed. The Pace of Aging was derived from measuring 
longitudinal changes in 19 biomarkers at 4 timepoints between ages 26 and 45 years. These biomarkers 
indexed functioning across multiple organ systems (each visualized under the heading “multiple 
systems”). We combined rates of changes across these biomarkers to produce a single measure termed 
the Pace of Aging (PoA). We then investigated associations between the Pace of Aging and aging 
outcomes across 4 domains at age 45: Neuroimaging measures, cognitive difficulties, sensorimotor 
functional capacity and perceptions of aging. 
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Figure 2. Biological aging across two decades from age 26 to age 45. A) For visualization, biomarker 
values were standardized to have M = 0 and SD = 1 across the two decades of follow-up (z-scores). Z-
scores were coded so that higher values corresponded to older levels of the biomarkers. B) Pace of 
Aging is denominated in years of physiological change per chronological year. A Pace of Aging of one 
indicates a cohort member who experienced one year of physiological change per chronological year 
(the cohort average). A Pace of Aging of two indicates a cohort member aging at a rate of two years of 
physiological change per chronological year (i.e., twice as fast as the cohort average). 
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Figure 3. Study members who were aging faster showed signs of advanced brain aging relative to 
slower-aging peers. The overlays display cortical regions (in blue) whose (A) thickness or (B) surface area 
are significantly associated (p < 0.05, false discovery rate corrected) with Pace of Aging. The scatter plots 
show associations between Pace of Aging and (C) volume of white matter hyperintensities (WMH) as 
well as (D) brainAGE (a measure of the difference between each Study member’s chronological age and 
their brain age as estimated from a machine-learning algorithm that was trained to predict chronological 
age from gray- and white-matter measures in independent samples ranging in age from 19 to 82.31 
Scatterplots include regression lines along with 95% confidence intervals. 
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Figure 4. Study members who were aging faster were perceived as less healthy and looking older, 
when compared to slower-aging peers. (A) Effect sizes of associations between Pace of Aging and self-
report, informant and research worker ratings of overall health and age appearance. (B) Digitally 
averaged composite faces made up of the ten male and female Study members with the youngest (left) 
and oldest (right) facial age ratings. (C) Scatterplot of the association between Pace of Aging and facial 
age ratings by independent raters. Scatterplot includes a regression line with 95% confidence interval. 
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Table 1. Associations between the Pace of Aging, neuroimaging and cognitive measures. On the left side of this table are associations from the 
main text from regression models that were adjusted for sex. In the middle are sensitivity analyses in which the models also adjusted for BMI 
and smoking. On the right are results from models adjusted for sex in which all Study members who had a diagnosis of cancer, diabetes or heart 
attack were excluded (N=58. RAVL = Rey Auditory Verbal Learning. All statistically significant (p < .05) sex-adjusted associations remain 
statistically significant after false-discovery rate correction for the 38 tests presented in Table 1 and Table 2. 
  

Signs of brain aging and cognitive difficulties 

   Adjusted for sex    Adjusted for sex, BMI and smoking  Without cancer, diabetes or heart attack 

 N β (95% CI) P  N β (95% CI) P  N β (95% CI) P  

Signs of brain aging            

  Cortical thickness 860 -0.14 (-0.21 to -0.08) <.001  858 -0.15 (-0.24 to -0.05) .002  806 -0.14 (-0.22 to -0.07) < 0.001 
  Surface area 860 -0.08 (-0.14 to -0.03) .003  858 -0.13 (-0.20 to -0.05) .001  806 0.06 (-0.12 to -0.01) 0.031 
  Hippocampal volume 860 -0.10 (-0.16 to -0.04) .001  858 -0.14 (-0.22 to -0.06) .001  806 -0.08 (-0.15 to -0.02) 0.009 
  Log WMH volume 851 0.18 (0.11 to 0.24) <.001  848 0.17 (0.07 to 0.26) <.001  797 0.18 (0.12 to 0.26) < 0.001 
  Fractional Anisotropy 853 -0.03 (-0.09 to 0.04) .439  852 -0.12 (-0.22 to -0.03) .010  802 -0.02 (-0.09 to 0.05) 0.620 
  BrainAGE 868 0.20 (0.13 to 0.26) <.001  865 0.20 (0.11 to 0.29) <.001  813 0.18 (0.11 to 0.25) < 0.001 
Cognitive difficulties            
  Full-scale IQ 916 -0.33 (-0.38 to -0.26) <.001  910 -0.32 (-0.41 to -0.24) <.001  859 -0.33 (-0.40 to -0.27) < 0.001 
  IQ decline (residualized change) 904 -0.16 (-0.22 to -0.09) <.001  899 -0.18 (-0.27 to -0.09) <.001  847 -0.17 (-0.25 to -0.11) < 0.001 
  Verbal comprehension index 893 -0.30 (-0.36 to -0.24) <.001  889 -0.35 (-0.44 to -0.26) <.001  838 -0.31 (-0.39 to -0.25) < 0.001 
  Perceptual reasoning index 904 -0.27 (-0.33 to -0.20) <.001  900 -0.27 (-0.36 to -0.18) <.001  848 -0.26 (-0.34 to -0.20) < 0.001 
  Working memory index 900 -0.22 (-0.28 to -0.15) <.001  896 -0.18 (-0.27 to -0.09) <.001  844 -0.22 (-0.30 to -0.16) < 0.001 
  Processing speed index 904 -0.23 (-0.29 to -0.16) <.001  900 -0.24 (-0.33 to -0.15) <.001  848 -0.22 (-0.29 to -0.16) < 0.001 
  RAVL learning memory 905 -0.29 (-0.34 to -0.22) <.001  901 -0.28 (-0.37 to -0.20) <.001  849 -0.21 (-0.28 to -0.15) < 0.001 
  RAVL recall 901 -0.19 (-0.25 to -0.13) <.001  897 -0.20 (-0.29 to -0.12) <.001  845 -0.30 (-0.37 to -0.25) < 0.001 
  Informant memory difficulties 881 0.15 (0.08 to 0.21) <.001  875 0.24 (0.15 to 0.33) <.001  827 0.16 (0.10 to 0.24) < 0.001 
  Informant attention difficulties 881 0.20 (0.14 to 0.26) <.001  875 0.29 (0.20 to 0.38) <.001  827 0.22 (0.16 to 0.29) < 0.001 
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Sensory-motor functional capacity and perceptions of aging 

   Adjusted for sex    Adjusted for sex, BMI and smoking  Without cancer, diabetes or heart attack  

 N β (95% CI) P  N β (95% CI) P  N β (95% CI) P  

Sensory-motor capacity             

  Gait speed 903 -0.33 (-0.39 to -0.27) <.001  901 -0.19 (-0.27 to -0.10) <.001  848 -0.33 (-0.40 to -0.27) < 0.001  

  One-legged balance 909 -0.36 (-0.42 to -0.30) <.001  905 -0.26 (-0.34 to -0.17) <.001  853 -0.35 (-0.42 to -0.29) < 0.001  

  Chair stands 872 -0.30 (-0.37 to -0.24) <.001  871 -0.25 (-0.34 to -0.16) <.001  820 -0.30 (-0.38 to -0.24) < 0.001  

  Step in place 885 -0.28 (-0.34 to -0.22) <.001  884 -0.21 (-0.30 to -0.12) <.001  832 -0.28 (-0.36 to -0.22) < 0.001  

  Grip strength 919 -0.05 (-0.09 to -0.01) .017  913 -0.10 (-0.15 to -0.04) <.001  863 -0.03 (-0.07 to 0.01) 0.110  

  Grooved pegboard 901 -0.27 (-0.33 to -0.20) <.001  897  -0.21 (-0.29 to -0.12) <.001  845 -0.27 (-0.34 to -0.21) < 0.001  

  Contrast sensitivity 903 -0.13 (-0.19 to -0.06) <.001  899 -0.10 (-0.19 to -0.01) .036  847 -0.11 (-0.18 to -0.04) 0.002  

  Audiometry: HF-PTA 900 0.17 (0.10 to 0.23) <.001  897 0.14 (0.05 to 0.23) .003  845 0.19 (0.13 to 0.26) < 0.001  

  Audiometry: 4F-PTA 901 0.20 (0.14 to 0.26) <.001  897 0.14 (0.05 to 0.23) .003  846 0.14 (0.07 to 0.21) < 0.001  

  LiSN-S Low cue 901 -0.17 (-0.23 to -0.10) <.001  897 -0.10 (-0.19 to -0.01) .026  845 -0.17 (-0.24 to -0.10) < 0.001  

  LiSN-S Spatial advantage 901 0.22 (0.15 to 0.28) <.001  897 0.18 (0.09 to 0.27) <.001  845 0.21 (0.14 to 0.21) < 0.001  

  Physical limitations (SF-36) 921 0.29 (0.23 to 0.35) <.001  913 0.11 (0.02 to 0.19) .012  864 0.29 (0.23 to 0.36) < 0.001  

Perceptions of aging             

  Self-reported aging attitudes 920 -0.22 (-0.28 to -0.16) <.001  911 -0.25 (-0.34 to -0.16) <.001  863 -0.21 (-0.28 to -0.14) < 0.001  

  Self-reported health 927 -0.35 (-0.41 to -0.29) <.001  916 -0.27 (-0.36 to -0.19) <.001  870 -0.34 (-0.42 to -0.29) < 0.001  

  Self-reported perceived age 892 0.09 (0.03 to 0.16) .005  888 0.11 (0.01 to 0.20) .024  838 0.08 (0.02 to 0.16) 0.018  

  Informant-reported health 881 -0.38 (-0.45 to -0.32) <.001  875 -0.30 (-0.38 to -0.21) <.001  827 -0.36 (-0.44 to -0.31) < 0.001  

  Researcher-reported health 930 -0.58 (-0.62 to -0.52) <.001  916 -0.45 (-0.51 to -0.37) <.001  873 -0.56 (-0.62 to -0.51) < 0.001  

  Informant-reported age appearance 881 0.35 (0.29 to 0.41) <.001  875 0.34 (0.25 to 0.43) <.001  827 0.34 (0.29 to 0.42) < 0.001  

  Researcher-reported age appearance 930 0.44 (0.38 to 0.49) <.001  916 0.40 (0.31 to 0.47) <.001  873 0.43 (0.37 to 0.50) < 0.001  

  Self-reported age appearance 894 0.10 (0.03 to 0.16) .003  891 0.11 (0.02 to 0.21) .015  838 0.08 (0.01 to 0.15) 0.029  

  Facial age 905 0.33 (0.26 to 0.39) <.001  901 0.30 (0.22 to 0.39) <.001  850 0.33 (0.28 to 0.41) < 0.001  

  Perceived Longevity 908 -0.27 (-0.33 to -0.20) <.001  902 -0.20 (-0.28 to 0.11) <.001  852 -0.26 (-0.32 to -0.19) <0.001  

 
Table 2. Associations between the Pace of aging, measures of sensory-motor functional capacity and perceptions of aging. On the left side of 
this table are associations from the main text from regression models that were adjusted for sex. On the right side of the table are sensitivity 
analyses in which the models also adjusted for BMI and smoking. On the right are results from models adjusted for sex in which all Study 
members who had a diagnosis of cancer, diabetes or heart attack were excluded (N=58). All statistically significant (p < .05) associations in this 
table remain statistically significant after false-discovery rate correction for the 38 tests presented in Table 1 and Table 2.  
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