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Abstract  
Purpose. Image fusion strategies of myocardial perfusion imaging (MPI) and 

coronary CT angiography (CCTA) have shown increased diagnostic power. However, 

their clinical feasibility is hindered by the lack of efficient algorithms for the extraction of 

cardiac anatomy from CCTA datasets. The aim of this work was to validate our 

previously published algorithm for automated cardiac segmentation of CCTAs in a 

larger cohort of subjects while testing its application in clinical settings. 

Methods. Three borders were automatically and manually extracted on sixty-

three clinical CCTAs: left and right endocardia (LV, RV) and the biventricular epicardium 

(EPI). Impact of image resolutions and inter-operator variability on accuracy and 

robustness of automated processing were evaluated. Automated algorithm accuracy 

was assessed with the Dice Similarity Coefficient (DSC) and the surface-to-surface 

distance metric. Relevant quantities were compared for automated versus manual 

segmentations: LV and RV volumes, myocardial mass and LV myocardial mass.  

Results. Lower resolution images offered an acceptable trade-off for accuracy 

and processing time (45 sec). DSC for LV, RV, EPI borders were 0.88, 0.80 and 0.89. 

Automated versus manual correlation coefficients for LV and RV vol, myo and LV mass 

were 0.96, 0.73, 0.84 and 0.67 with inter-operator agreement > 0.93 for three variables. 

Consistent and improved results were evidenced at higher resolutions. 
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Conclusion. Our algorithms allowed efficient automated cardiac segmentation 

from CT imagery with minimal user intervention, clinically acceptable times and 

accuracy. The reported results show promise for its use in a clinical environment, 

specifically in the context of image fusion. 
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1. Introduction 

 For decades the use of multimodality image fusion for the detection and 

assessment of Coronary Artery Disease (CAD) has been heralded as a powerful 

diagnostic strategy1,2. It allows the incorporation of anatomical and physiological 

information obtained from two or more imaging modalities and permits a more 

comprehensive portrayal of disease severity3-6. Even from a clinical perspective, it is not 

uncommon for a patient to be acquired with multiple modalities when the first test has 

produced ambiguous results. Yet, multimodality image fusion frameworks that can be 

used seamlessly in a clinical environment are not widely available, likely due to the lack 

of well-validated, robust and fast software tools for the automated quantification of 

anatomical acquisitions such as Coronary Computed Tomographic Angiography 

(CCTA).  

Currently CCTA/nuclear myocardial perfusion imaging (MPI) fusion frameworks 

exist as research applications6,7 or in systems that do not rely on the explicit CCTA 

segmentation but rather on the visualization of the two datasets with volume rendering 

techniques8. In contrast, our team has been concentrating on the creation of 

frameworks that explicitly obtain a 3D representation of the heart anatomy9-11 to be 

displayed in combination with coronary trees and with functional quantitative 

assessments such as ischemic areas12, PET-derived absolute blood flow 

quantification7, and myocardium at risk6. Clinical implementation of our quantitative 

fusion technique requires that our software have access to accurately and quickly 

segmented nuclear perfusion and CCTA cardiac imagery. Extraction of the required 

nuclear information is readily available from our widely disseminated nuclear cardiology 

software (Emory approach13). Although many techniques have been reported for the 

whole heart segmentation from CCTA studies14, what has been lacking is a software 

package for the extraction of the required anatomic information from CCTA that is 

readily accessible to quantitative fusion algorithms.  

We recently published our novel and improved methodology15 for the automated 

segmentation of a biventricular myocardium from clinical CCTAs that included positive 

preliminary results from a small population. However, crucial aspects for the evaluation 

of any segmentation algorithm that is being proposed for clinical use are degree of 
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automation, speed, reliability, applicability in a medical environment and robustness. 

The aim of this work was to validate our proposed CCTA cardiac automated 

segmentation methodology in a larger cohort of subjects using more clinically significant 

validation parameters to better assess its reliability, accuracy, stability and speed while 

also testing the feasibility of its application in a clinical setting.  

 

2. Materials and Methods  

2.1 Study Population and Imaging Data. 

Sixty-three consecutive imaging datasets were selected from a database of 

clinical CCTAs available in our Nuclear Cardiology Laboratory at Emory University. The 

database was created with images acquired at different clinical and research centers as 

a result of previous collaborations6. The data was acquired between 2005 and 2016 

with devices from different manufacturers (Siemens Somaton Definition, Siemens 

Sensation Cardiac 64, GE LightSpeed VCT and Philips Brilliance 64). The image 

acquisition was originally performed after review and approval by Emory University 

Institutional Review Board (USA), the Institutional Review Board of the University 

Hospital Val D’Hebron (Spain) and the Institutional Review Board of the Rambam 

Medical Hospital (Israel). Written informed consent was obtained from each patient in 

accordance with clinical guidelines on human research6. The current work 

retrospectively analyzes the previously collected images under a novel review and 

approval of the Emory University Institutional Review Board. 

ECG-gated contrast-enhanced CT images were acquired following standard 

clinical guidelines after the injection of 60 mL of nonionic contrast agent at a rate of 4 

mL/sec and saved in DICOM format. The best diastolic phase was selected for 

successive processing.  

 

2.2 Volumetric Dataset Preparation and Manual Segmentation. 

 To facilitate manual segmentation of cardiac CCTA images, datasets were re-

oriented along the cardiac short-axis (SA) and resampled to create an isotropic 
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volumetric dataset. A manual procedure common to nuclear cardiac studies processing 

was used to re-orient the CCTA transaxial images. Once re-oriented, the images were 

resampled with an isotropic image spacing equal to the original in-plane image 

resolution creating a volume of 512x512x512 voxels, indicated herein as High Res. To 

accelerate image processing and reduce computer memory requirements a scaled-

down version of each image was created with a spacing 4 times the original one and a 

dimension of 128x128x128 voxels, indicated as Low Res. An in-house developed 

software was used for the manual segmentation performed by members of the team 

expert in cardiac anatomy. Three borders were identified on the volumes: the left (LV) 

and right ventricle (RV) endocardia and the biventricular epicardium (EPI). Manual 

segmentations were performed only on the higher resolution datasets. Binary images 

were constructed from the profiles and three-dimensional (3D) surface models extracted 

with the Marching Cube algorithm16. In Figure 1 the steps from transaxial images to 3D 

biventricular model are shown. The manual segmentations represented the ground truth 
 

 

Figure 1. Reorientation of CCTA images and manual segmentation output: A) original transaxial 
orientation; B) re-orientation along the cardiac short-axis; C) manual segmentation mask 
identifying LV, RV chambers and myocardial tissue; D) biventricular myocardial binary mask; E) 
extraction of the LV myocardium; F) 3D model. 
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for validating the automated results and the SA images were the only input to the 

segmentation code. 
 

2.3 Automated Segmentation Algorithms  

Our algorithms for the automated segmentation of the biventricular model of the 

heart from CCTA images were recently published15. While implementation details are 

available elsewhere, here we briefly describe the main features of the developed 

methodologies.  

The algorithms can be considered a modification of the Chan-Vese techniques17 

that represent an image as a piece-wise constant function where the evolution of the 

boundaries separating the different objects to be segmented depends on the statistics 

of the pixel intensities within each 3D region. Our proposed algorithms were customized 

to the problem of myocardial segmentation by introducing several high-level constraints, 

employing a binary (rather than constant) intensity model for the nearby background 

(BG) region, and making use of shape priors for the anatomical regions (LV, RV, EPI) 

that were obtained from an initial training phase. All these modeling ingredients are 

combined into a single integrated optimization problem iteratively solved within which 

the three boundaries are evolved simultaneously while the modeling constraints couple 

their evolution behavior (i.e. severely penalize overlap between boundary surfaces). 

Since in our formulation the borders do not evolve independently, weighting factors 

(indicated with wBG, wLV, wRV and wEPI) could be assigned to the curve evolution to bias 

if needed the expansion/contraction of one region at the expense of another and to 

address cases of low contrast particularly between myocardium and RV. The weighting 

factors could theoretically be modified case by case, but in an effort to test the 

robustness and clinical applicability of the whole procedure, optimal setting values were 

identified in previous investigations (wBG = 1.0, wLV = 0.5, wRV = 0.5 and wEPI = 1.5) and 

used for all the analyzed cases as the default configuration for the algorithms. In the 

training phase, 10 randomly selected, manually segmented datasets were used to 

extract mean shapes and principal modes of shape variations for LV, RV and EPI. 

These training datasets guided the prospective segmentation of all other cases. A mean 

shape was computed for each anatomical structure from the training datasets and a 
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principal component analysis (PCA) technique employed to extract shape priors which 

represented the individual variations in shape with respect to the mean.  

 

2.4 Segmentation Software Utilization. 

 The algorithms were incorporated into a stand-alone application written in C++ 

with a graphic user interface in Tcl/Tk that allows the operator to supervise and interact 

with the different modules of the procedure. In terms of interactions of the user with the 

code, once the weighting factors were fixed, the segmentation procedure was 

essentially fully automated. Only two inputs were required from the operator to model 

the background in the images (i.e. all the structures outside the myocardium): a 

representative intensity level for the bone structures and an average gray value for all 

other tissues. A display window enabled the user to pick points, visualize their intensity 

values and enter the two selected thresholds to be used in the running code.  

Two sets of images were analyzed to investigate image resolution impact on 

automated segmentation: the 53 prospectively segmented sets at Low Res and a cohort 

of 20 High Res images. To assess inter-operator variability the Low Res images were 

processed by two users (indicated as U1, U2). The High Res images were processed 

only by the primary operator U1. The number of iterations was set to 100 for all cases in 

addition to the default weighting factors setting. Only the two background thresholds 

were selected case-by-case by the operator. The processing times were recorded.  

The same ten datasets were used for the training phase at both high and low 

resolution to be properly employed in the prospective segmentations of the two cohorts 

but not included in the validation results.   

 

2.5 Comparisons of Manual versus Automated Segmentations. 

A number of comparisons were performed to compare manually segmented 

images to the ones automatically obtained.  

 

2.5.1 Dice Similarity Coefficient  
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As manually created binary images of the LV, RV chambers and the biventricular 

EPI were considered the reference standard, the Dice Similarity Coefficient (DSC)18 was 

employed as one of the metrics to assess the algorithms accuracy. The DSC is an index 

of spatial overlapping commonly used to validate segmentation algorithms with binary 

images. It is computed as twice the number of pixels that belong to the segmented 

structure in both automated and manual masks over the sum of the number of pixels 

defining the structure in each of the mask. The DSC ranges between 0 and 1 (0 

indicating no overlap and 1 complete overlap) and was computed for both the Low Res 

and the High Res cohorts. The manual binary masks were resampled to the same 

image resolution before comparisons in the Low Res group.   

 

2.5.2 LV and RV Volumes and Myocardial Masses 

The following physiologically relevant quantities were computed for automated 

and manual segmentations: LV and RV chambers volume (Vol), and biventricular 

myocardial mass (Myo Mass) by subtracting the LV and RV binary images from the EPI 

multiplied by a density factor of 1.05 g/mL. Given the importance of the LV myocardium 

in cardiovascular diseases and MPI studies, an automated procedure for the removal of 

the right ventricle was used to obtain just the LV mass7 (LV Myo Mass) (see Figure 1 D-

E).  

3D surface models for the LV, RV and EPI were obtained and surface-to-surface 

distances computed between each couple of manual-automated anatomical structures. 

A surface-to-surface distance between triangulated meshes was defined as the 

Euclidean distance (in mm) of each point on the source surface mesh (automated) to 

the closest point in the target surface mesh (manual) along the direction of the local 

normal to the source surface. The average of surface-to-surface distance map for all 

points was computed for LV, RV and EPI surfaces. Figure 2 shows maps of the surface-

to-surface distance calculation displayed for one of the analyzed cases.  

 Volumes, masses and surface-to-surface distances were computed for all the 

analyzed datasets, for both operators and both image resolutions when available. 
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Figure 2. 3D maps of the surface-to-surfaces distance between manually segmented borders 
(mesh in opaque) and automated ones (color-coded). The absolute distance between each 
couple of structures is used to color to models. For anatomical reference the manual epicardial 
model is also displayed in opaque light gray with the LV and RV chambers. 
 

2.6 Statistical Analysis.  

 Continuous data were expressed as mean ± SD and statistical significance was 

measured with Student t-test with a level of significance of p<0.05. The DSC was 

provided as mean ± SD. Pearson correlation coefficients (R) and the standard error of 

the estimate (SEE) were used to assess the performance of the automated 

segmentations in extracting LV and RV Vol, Myo and LV Myo Mass and to assess U1-

U2 inter-operator variability. Percentage of relative errors of the automated 

measurements were calculated with respect to the manual ones. Surface-to-surface 

distances were provided as mean ± SD over the entire triangulated surfaces. Student t 

test were used to assess differences between operators processing and image 

resolutions with a level of significance of p<0.05.  

 

3. Results 

3.1 Image Preparation and Processing 
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 Original in-plane image resolutions of the 63 cases used varied from 0.31 to 0.61 

mm (mean 0.43 ± 0.06); the best diastolic phase ranged between 55% and 89% of the 

cardiac cycle.  

 

3.2 Image processing time and robustness 

The manual segmentation of all three borders required from 2 to 3 hours. The 

time required for image re-orientation and creation was consistently below 1-2 minutes. 

Of the 53 prospective studies, 44 visually converged on all three cardiac anatomic 

features using the weighting factors established during training while the remaining 9 

required the operator to change the factors for the algorithm to converge. Thus, the 

assessment on the algorithms’ performance was based on the 44 studies where no 

interaction was required.   

Automated segmentation was performed using a quad core 3.2 GHz Intel core i7 

CPU with a 16 GB RAM computer (although the algorithms were not yet multithreaded 

and consequently unable to exploit the parallel processing capabilities). For the down 

sampled cases (Low Res) automated segmentation took an average of 0.45 secs per 

iteration favorably converging at 100 iterations (45 secs total). For the full resolution 

cases (High Res) automated segmentation took an average of 21.9 secs per iteration 

for a total of 36.5 min processing time.  

 

3.3 Manual vs Automated Segmentations 

The DSC was computed for all cases in the two image resolution cohorts. Mean 

values were as follows: 0.88 ± 0.04, 0.80 ± 0.08, 0.89 ± 0.04 respectively for the LV and 

RV chambers and biventricular EPI at Low Res (n=44); 0.91 ± 0.02, 0.85 ± 0.03, 0.89 ± 

0.02 at High Res (n=20).  

In Table 1 automated segmentations are compared to manual ones in terms of 

average values of LV and RV chamber volumes, and Myo and LV Myo Mass for the 

entire cohort of studies processed at Low Res (n=44) by primary operator U1. Figure 3 

graphically depicts the performance of the automated segmentations for the four 

analyzed quantities. Mean percentage relative errors were 28, 31, 34 and 35% for LV 
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and RV Vol, Myo and LV Myo Mass respectively and are shown in Figure 4 (left). While 

paired t tests exhibited statistically significant differences between manual and 

automated values for all variables, Pearson correlation coefficients showed excellent 

results for the LV endocardium detection (R = 0.96, SEE = 13.1) and progressively 

decreasing levels of accuracy for LV Myo Mass (R = 0.84, SEE = 21.7), RV Vol (R = 

0.73, SEE = 27.8) and Myo Mass (R = 0.67, SEE = 29.3).  

To assess inter-operator variability due to differences in selecting the two fiducial 

points required (background and bone), the Low Res cohort was processed by a 

second user U2. Table 1 reports mean values and correlation coefficients for U2 

processing and inter-operator correlations for all measured variables. Statistically 

significant differences between U1 and U2 were found in the LV and RV volume 

 
 
 
n = 44 
 

 
Manual  

 

mean ± SD 
 

 
Automated (U1) 

 
Automated (U2) 

 
Inter-

Operator 
Correlation 

mean ± SD R (SEE) mean ± SD R (SEE) 

          
       

LV Vol  
[mL]  

96.9 ± 37.7 120.9 ± 43.9 0.96 (13.1) 119.6 ± 43.6 0.95 (14.3) 0.98 

RV Vol  
[mL]  

105.4 ± 27.2 134.2 ± 40.3 0.73 (27.8) 128.3 ± 38.4 0.67 (28.8) 0.88 

Myo Mass 
[g] 
 

170.3 ± 48.9 110.0 ± 39.0 0.67 (29.3) 108.6 ± 38.3 0.72 (26.8) 0.96 

LV Myo 
Mass [g] 

135.0 ± 43.8 85.5 ± 30.9 0.84 (21.7) 81.7 ± 31.0 0.84 (16.8) 0.93 

 

Table 1. Comparison of manual versus automated segmentations for the Low Res cohort. 
Images were processed by two users (U1, U2) with default algorithmic settings (n=44).  
LV Vol, left ventricle volume; RV Vol, right ventricle volume; Myo Mass, biventricular myocardial 
mass; LV Myo Mass, left ventricle myocardial mass; SD, standard deviation; SEE, standard 
error of the estimate; R, Pearson’s correlation coefficient. 
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Figure 3. Performance of the automated algorithms in the extraction of LV and RV Volume, Myo 
Mass and LV Myo Mass compared to manual segmentations in the Low Res cohort (n=44). Two 
operators (User 1 and User 2) independently processed the data. Correlation coefficients 
reported in Table 1. 
 
 

 
 
Figure 4.  Distribution of percentage relative errors in the extraction of LV and RV Volume, Myo 
Mass and LV Myo Mass compared to manual segmentations for the Low and High Res cohorts. 
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quantifications (p<0.05) but not in the computations of mass. 

Analogously to U1, the most accurate automated quantifications with respect to 

manual were LV Vol and LV Myo Mass with R = 0.95 and 0.84 respectively and 

decreasing performance for Myo Mass and RV Vol (R = 0.72 and 0.67). The inter-

operator consistency was excellent with R ³ 0.93 for three of the four measured 

variables.  

In Table 2 and Figure 5 the manual vs automated comparisons are reported for 

the cohort of datasets processed at both high and low resolutions by U1 (n=20). The 

trend to improved accuracy is shown in all measurements for both R and SEE when 

processing at a higher image resolution. The averaged percentage relative errors for the 

High Res cohort were 12, 11, 40 and 40% for respectively LV and RV Vol, Myo and LV 

Myo Mass. Figure 4 (right) displays the error distribution over the entire cohort.   

Table 3 reports the analysis of the 3D surface-to-surface distance between each 

couple of automated-manual borders, LV and RV endocardia and the biventricular EPI. 

Results of U1 processing confirmed the highest accuracy of the LV chamber  

 

n = 20  
Manual 

mean ± SD  

Automated (U1) 

High Res 
mean ± SD  

R (SEE)  
Low Res 

mean ± SD  
R (SEE)  

      

LV Vol  
[mL] 120.1 ± 40.9 134.6 ± 48.6 0.99 (7.4) 139.4 ± 49.7  0.96 (14.1) 

RV Vol  
[mL] 120.6 ± 24.0 119.3 ± 23.6 0.75 (16.0) 149.4 ± 34.5 0.59 (28.6) 

Myo  
Mass [g] 199.8 ± 33.0 120.0 ± 33.6 0.68 (25.5) 107.0 ± 31.8 0.52 (28.0) 

LV Myo  
Mass [g] 148.4 ± 27.7 88.0 ± 18.3 0.71 (13.3) 82.2 ± 23.1 0.63 (18.4) 

 

Table 2. Comparison of manual versus automated segmentations for the High Res and Low 
Res cohorts processed by primary user U1 (n=20).  
LV Vol, left ventricle volume; RV Vol, right ventricle volume; Myo Mass, biventricular myocardial 
mass; LV Myo Mass, left ventricle myocardial mass; SD, standard deviation; SEE, standard 
error of the estimate; R, Pearson’s correlation coefficient. 
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Figure 5. Performance of 
the automated algorithms in 
the extraction of LV and RV 
Volume, Myo Mass and LV 
Myo Mass compared to 
manual segmentations at 
both high and low image 
resolution (n=20).Correlation 
coefficients reported in Table 
2. 
 

identification with a  𝑑𝑖𝑠𝑡!"#$%& = 2.7	𝑚𝑚 and slightly higher values for EPI and RV 

borders (𝑑𝑖𝑠𝑡!"#$	()* = 3.5 and  𝑑𝑖𝑠𝑡!"#$	+& = 4.3	𝑚𝑚). These assessments were supported 

by results from U2 processing: analogous values were found for the LV and EPI 

surfaces (p-values>0.05), while differences were shown in the identification of the RV 

chamber (𝑑𝑖𝑠𝑡!"#$	+& = 3.7	𝑚; p-value<0.05) by the second operator. The maximum 

distance values could greatly increase on a case by case basis (in fact as much as 4.5 

cm), but these values were consistently located at the base of the heart or even further 

out with respect to where the manual segmentations stopped. In Figure 6 two examples 

are displayed of automated vs manual 3D models. In Figure 6-B the automated models 

notably expanded outside of the manual segmentation domains. The usage of images 

with higher resolution improved the results and decreased the automated versus 

manual mean distances for all 3D surfaces (Table 3, column III and IV).  The 

segmentations of LV and RV chambers were significantly more accurate (p-value<0.01), 

while only a trend toward lower errors could be evidenced for EPI borders. The 
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significant decrease in maximum distance values also substantiated the better 

performance of the algorithms in case of high resolution images.  

 

 

Figure 6. Display of two of the analyzed cases comparing automated and manual 3D models 
for the biventricular epicardial surface (left), LV (mid) and RV (right) chambers. The automated 
models are color-coded with the absolute surface-to-surface distance, and the manual ones are 
shown in opaque red. For anatomical reference the manual epicardial model is also displayed in 
opaque gray with the LV and RV chamber. 
 

4. Discussion 
In this study, we determined the favorable accuracy of the automated detection 

of biventricular myocardial surface from CCTA acquisitions in 44 clinical patients. The 

accuracy was determined by comparing the automated surfaces to those hand-traced 

by experts. These comparisons were done in terms of: a) physiologically important 
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Surface-to-Surface Distances 

 
Low Res (n=44) U1 Processing (n=20) 

U1 U2 High Res Low Res 
     

LV Endo 

[mm] 
2.7±1.0 [3.8-24.6] 2.6±1.1 [3.6-21.0] 1.7±0.4 [3.8-11.9] * 2.6±1.0 [3.8-22.7] * 

RV Endo 

[mm]  
4.3±2.4 [5.9-45.0] ‡ 3.7±1.6 [6.1-27.8] ‡ 2.3±0.5 [5.5-14.2] ** 3.9±1.5 [5.9-30.2] ** 

Heart Epi 
[mm] 

3.5±1.58 [7.3-37.8] 3.2±1.4 [6.6-31.8] 3.3±0.5 [8.0-17.0] 3.8±1.5 [7.3-30.0] 

     
 

Table 3.  Surface-to-surface distances calculated for the Low Res cohort (n=44) processed by 
two users (U1, U2) and in the subgroup of datasets processed at both image resolutions (n=20) 
by primary user U1.  
LV Endo, left ventricle endocardium; RV Endo, right ventricle endocardium; Heart Epi, 
biventricular epicardium. Values reported as mean ± SD [min -max] range; ‡ p-value < 0.05;  
*, ** p-value < 0.01 
 

cardiac anatomic parameters (LV and RV volumes, myo and LV myo mass) determined 

by the automated technique, b) the boundary distances measured between automatic 

and hand-traced surfaces and c) the DSC for the LV and RV chambers and biventricular 

EPI.  

Our results show that by down-sampling the high-resolution CT images we could 

extract the required automated segmented anatomic features at a clinically acceptable 

processing time (45 secs) with a reasonable trade-off for accuracy. Our best results 

were found in the segmentation for the LV chamber and biventricular epicardium and 

our least accurate the RV chamber. The high inter-operator correlation coefficients also 

substantiated the robustness and reliability of the methodology even when used by less 

experienced users.   

 In the course of this testing, overall favorable performance resulted in the 

segmentation of the left and right ventricular boundaries away from the apex and base 

structures, but a lesser performance was noted near the apex as well as in 

underestimated septum thickness between the ventricles as evidenced by the errors on 
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the LV myo mass assessment (Fig 4). Analysis and testing at Georgia Tech have linked 

much of this underperformance to uncertainties and inconsistencies in capturing the 

structures at the base, resulting in larger errors in the distances between the boundaries 

at these locations (Fig 6, B). Work is in progress that focuses on improving these 

shortcomings. 

Many other automated methods exist for segmenting anatomic cardiac features 

from CCTA and have been reported in excellent reviews. Notably, a recent review [14] 

compares results from 10 methods applied to the same 60 CT studies acquired in a 

clinical environment with manual segmentation for comparison. The evaluated methods 

included deep-learning (DL) and multi-atlas (MAS) segmentations. Although difficult to 

compare due to differences in datasets and exact processing tasks, our results compare 

favorably with their average results for DSC (0.87 DL, 0.86 MAS vs. ours 0.88 (High 

Res), 0.86 (Low Res)), surface-to-surface distance (mm) (1.84 DL, 3.3 MAS vs. ours 2.4 

(High Res), 3.5 (Low Res) and processing time (range: 0.22 sec – 21 min vs. our down-

sampled average: 45 secs).  

 The present manuscript presents a crucial benchmark for the development and 

extension of our image fusion framework in order to provide radiologists and 

researchers with an easy-to-use application to analyze, quantify and visualize different 

imaging modalities into a single integrated display. While the results favorably compare 

with other techniques and methodologies, an additional validation will be necessary to 

assess whether the accuracy of the present automated segmentation is sufficient to 

guarantee the correct alignment of CCTA and cardiac MPI (either SPECT or PET) and 

consequently the fusion of anatomic structures, namely the patient-specific coronaries, 

to functional data for diagnosis purposes. A similar study was previously published by 

our team on our animal model experiments19.  

While the relative errors between manual and automated segmentation may 

appear significant (Fig 4), it should be noted that their impact on our registration 

algorithms20 and consequently on image fusion has not been evaluated yet. As our 

multimodality registration algorithm starts with the alignment of the LV chambers and 

uses the additional features (the biventricular myocardial mass and the RV chamber) to 

correct for rotations around the LV short-axis, the influence of such errors may not be 
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sizable given the much more modest image resolution of the nuclear images. With this 

work, the authors do not wish to claim that at the present stage of development the 

algorithms could be used to reliably extract all anatomical features from CCTA images, 

but that automated MPI/CCTA image fusion can finally become a clinical reality. 

Furthermore, notably CCTA protocols focus on the visualization of the LV structures, as 

the most important part of cardiac function, not necessarily on the RV and biventricular 

masses, which explains the extremely variable image quality evidenced for the right 

ventricle and the less reliable segmentation results.  

 

Limitations 
A limitation of our work is that it used the interactively hand-traced CCTA 

biventricular meshes as a reference standard. Although these surfaces were defined by 

clinical experts, manual methods are subjective.  

We also did not compare directly our automatic CT contours to those from other 

automated methods14. This was not done for a number of reasons.  As discussed 

above, a large number of different segmentation solutions have indeed been proposed 

through the years to segment anatomic information from CT acquisitions. Our future 

plans are to compare our segmentation to those available to us using the same image 

datasets but, since no methodology has emerged as a definitive reference for 

comparisons’ sake and the long-term goal of this project is automatic nuclear MPI/CTA 

fusion, the direct availability of CCTA-derived surfaces is of paramount importance 

hence the need to develop our own integrated procedure.  

Our automated algorithms have been developed to take as input data the CCTA 

best diastolic phase as the time point at which cardiac structures are less susceptible to 

motion artifacts. Although specific testing has not been performed on this issue, 

different cardiac phases could be theoretically used once the training step had been 

adjusted to the new cardiac time point.  

 

5. Conclusions 
Our proposed algorithms allowed efficient segmentation of LV, RV and EPI from 

CCTA clinical datasets with minimal user intervention in clinically acceptable times and 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 12, 2021. ; https://doi.org/10.1101/2021.03.08.21252480doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.08.21252480
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19 

accuracy. The reported results show promise for its use in a clinical environment and 

specifically in the context of multimodality image fusion.  

 

 

References 
1. Blankstein R and Di Carli M. Integration of coronary anatomy and myocardial 

perfusion imaging. Nat Rev Cardiol, 2010, 7:226-36.  

2. Rizvi A, Han D, Danad I, et al. Diagnostic performance of hybrid cardiac imaging 

methods for assessment of obstructive coronary artery disease compare to stand-

alone coronary computed tomography: A meta analysis. JACC Cardiovasc Imaging, 

2018, 11:589-99. 

3. Rispler S, Keidar Z, Ghersin E, et al. Integrated single-photon emission computed 

tomography and computed tomography coronary angiography for the assessment of 

hemodynamically significant coronary artery lesions. J Am Coll Cardiol, 2007, 

49:1059-67. 

4. Slomka PJ, Chen VY, Damini D, et al. Quantitative analysis of myocardial perfusion 

SPECT anatomically guided by coregistered 64-slice coronary CT angiography. J 

Nucl Med, 2009, 50:1621-30. 

5. Liga R, Vontobel J, Rovai D, et al. Multicenter multi-device hybrid imaging study of 

coronary artery disease: results from the EVINCI hybrid imaging population. Eur 

Heart J Cardiovasc Imaging, 2016, 17:951-60.  

6. Piccinelli M, Santana C, Sirineni GKR, et al. Diagnostic performance of the 

quantification of myocardium at risk from MPI SPECT/CTA 2G fusion for detecting 

obstructive coronary disease: A multicenter trial. J Nucl Cardiol, 2018, 25:1376-86. 

7. Piccinelli M, Cho SG, Garcia EV, et al. Vessel-specific quantification of absolute 

myocardial blood flow, myocardial flow reserve and relative flow reserve by means 

fused dynamic 13NH3 PET and CCTA: Range in a low-risk population and 

abnormality criteria. J Nucl Cardiol, 2018, Oct 29. doi: 10.1007/s12350-018-01472-3 

8. Gaemperli O, Schepis T, Valenta I, et al. Cardiac image fusion from stand-alone 

SPECT and CT: clinical experience. J Nucl Med, 2007, 48:696-703. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 12, 2021. ; https://doi.org/10.1101/2021.03.08.21252480doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.08.21252480
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

9. Vikram A, Ganapathy B, Abufadel A, et al. A region of confidence based approach to 

enhance segmentation with shape priors. Proc. of SPIE-IS&T Electronic Imaging; 

SPIE; p. 753302.  

10. Tsai A, Yezzi A, Wells W, et al. A shape-based approach to the segmentation of 

medical imagery using level-set. IEEE Trans Med Imaging, 2003, 22:137-154.  

11. Piccinelli M, Faber TL, Arepalli CD, et al. Automatic detection of left and right 

ventricles from CTA enables efficient alignment of anatomy with myocardial 

perfusion data. J Nucl Cardiol, 2014, 21:96-108. 

12. Santana C, Garcia EV, Faber TL, et al. Diagnostic performance of fusion of 

myocardial perfusion imaging (MPI) and computed tomography coronary 

angiography. J Nucl Cardiol, 2009, 16:201-11. 

13. Garcia E, Faber TL, Cooke CD, et al. The increasing role of quantification in clinical 

nuclear cardiology: The Emory approach. J Nucl Cardiol, 2007, 14:420-32. 

14. Zhuang X, Li L, Payer C, et al. Evaluation of algorithms for multi-modality whole 

heart segmentation: An open-access grand challenge. Medical Image Analysis, 

Accepted 2019, July 22. In press. Doi: https://doi.org/10.1016/j.media.2019.101537  

15. Dahiya N, Yezzi A, Piccinelli M et al. Integrated 3D anatomical model for automatic 

myocardial segmentation in cardiac CT imagery. CMBBE Imaging and Visualization, 

2019, Feb 13. Doi:10.1080/21681163.2019.1583607 

16. Lorensen WE and Cline HE. Marching cubes: a high resolution 3D surface 

construction algorithm. Computer Graphics, 1987, 21:163-169. 

17. Chan T, Vese L. An active contour model without edges. Int. Conf. Scale-Space 

Theories in Computer Vision, 1999, 141-51.  

18. Dice LR. Measures of the amount of ecologic association between species. Ecology, 

1945, 26:297-302. 

19. Piccinelli M, Faber TL, Arepalli CD, et al. Automatic detection of left and right 

ventricles from CTA enables efficient alignment of anatomy with myocardial 

perfusion data. J Nucl Cardiol, 2014, 21(1): 96-108.  

20.  Faber TL, Santana CA, Piccinelli M, et al. Automatic alignment of myocardial 

perfusion images with contrast-enhanced cardiac computed tomography. IEEE 

Trans Nucl Sci, 2011, 58(5):2286-2302.    

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 12, 2021. ; https://doi.org/10.1101/2021.03.08.21252480doi: medRxiv preprint 

https://doi.org/10.1101/2021.03.08.21252480
http://creativecommons.org/licenses/by-nc-nd/4.0/

