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Abstract

The role of particulate matter (PM) in the COVID-19 pandemic is currently

being discussed by the scientific community. Long-term (years) exposure to PM

is known to affect human health by increasing susceptibility to viral infections

as well as to the development of respiratory and cardiovascular symptoms. In

the short-term (days to months), PM has been suggested to assist airborne vi-

ral transmission. However, confounding factors such as urban mobility prevent

causal conclusions. In this study, we explore short-term relationships between

PM concentrations and the evolution of COVID-19 cases in a number of cities

in the United States of America. We focus on the role of PM in facilitating

viral transmission in early stages of the pandemic. We analyzed PM concentra-

tions in two particle size ranges, < 2.5 µm, and between 10 and 2.5 µm (PM2.5

and PM10 respectively) as well as carbon monoxide (CO) and nitrogen diox-

ide (NO2). Granger causality analysis was employed to identify instantaneous

and lagged effects of pollution in peaks of COVID-19 new daily cases in each

location. The effect of pollution in shaping the disease spread was evaluated by

correlating the logistic growth rate of accumulated cases with pollutants con-

centrations for a range of time lags and accumulation windows. PM2.5 shows
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the most significant results in Granger causality tests in comparison with the

other pollutants. We found a strong and significant association between PM2.5

concentrations and the growth rate of accumulated cases between the 1st and

18th days after the report of the infection, peaking at the 8th day. By compar-

ing results of PM2.5 with PM10, CO and NO2 we rule out confounding effects

associated with mobility. We conclude that PM2.5 is not a first order effect

in the cities considered; however, it plays a significant role in facilitating the

COVID-19 transmission. We estimate that the growth rate of COVID-19 cases

would be risen by 12.5% if PM2.5 is increased from 25 to 35 µg m−3.

Keywords: COVID-19, SARS-CoV-2, airborne transmission, particulate

matter, Granger’s Causality

1. Introduction

The current pandemic scenario has encouraged the scientific community to

gather resources in the characterization of the evolution of COVID-19 [1, 2].

One of the primary and most pressing concern to worldwide policy makers is

the saturation of health systems caused by a high number of infections, as5

quantified by the reported number of cases per day (daily cases) [3]. Changes in

daily cases are characterized by changes in the transmission rate of SARS-CoV-

2, which is associated with a number of societal, environmental, and behavioral

factors [4]. In this study, we explore the role of pollutants, namely airborne

particulate matter (PM), carbon monoxide (CO) and nitrogen dioxide (NO2), on10

the evolution of the COVID-19 pandemics across the United States of America

(USA).

Statistical links between air quality and COVID-19 daily cases are expected

to occur through different mechanisms; in this study, we explore the following

hypotheses: 1) PM has been suggested to facilitate viruses transmission, due to15

its role in shielding the virus during airborne transport [5, 6, 7, 8, 9]; 2) The

long-term exposure, particularly to CO and NO2, increases the susceptibility of

a population to adverse health conditions [10, 11]; 3) PM levels are associated

2
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with urban mobility [12], thus we expect them to respond to the effectiveness

of local social distancing measures. In the following subsections we discuss in20

detail these mechanisms as well as the statistical techniques employed to explore

them.

1.1. Aerosol-assisted SARS-CoV-2 spread

Short-term interactions between aerosol and airborne viruses can occur through

a spreading assistance mechanism. This mechanism is dependent on the aerosol25

size. Large (> 5µm) and small droplets (< 5µm) containing viruses are released

by infected persons when talking, coughing, sneezing or vomiting. While larger

droplets travel shorter distances (1 – 2 meters), smaller droplets can travel up to

tens of meters. In addition, suspended droplets can lose mass by drying and can

also interact with other particles, physically and chemically, further changing30

their travel distances [9].

A growing body of research is investigating virus transport and transmission

associated with PM. In Spain, deposition rates of billions of viruses per m2 per

day were estimated considering long-range transport from air masses coming

from marine and desert sources [13]. In China, influenza-like-illnesses were35

associated with PM with aerodynamic diameter lesser than 2.5 µm (PM2.5) in

lags of 2 days during flu-season [8]. Chen et al. estimated that approximately

10% of influenza cases result from exposure to ambient PM2.5, suggesting that

the reduction of PM2.5 concentrations lowers influenza transmission [7].

The preliminary evidence of SARS-CoV-2 interacting with PM was found40

at an industrial site in Bergamo Province, Italy. Samples detected viral RNA

in PM [5]. Bergamo is characterized by high concentrations of PM and was

severely affected by COVID-19. In addition, other studies have found viral

RNA of SARS-CoV-2 in aerosol from hospitals and stores in Wuhan, China [14]

and Nebraska, USA [2]. In the USA, researchers have shown that viruses survive45

in aerosol for at least 3 hours [15]. Tung et al. [16] present a review of studies

about the virus-PM interaction.

Virus viability in PM is favored by key-compounds which contribute to its

3
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protection. Aerosol particles contain organic matrices of exopolymeric com-

pounds, which absorb ultraviolet wavelengths and prevent the dehydration of50

the virus [17, 18]. In addition, viruses can be stabilized and protected from

environmental stress and antimicrobial agents by colloidal and solid organic

matter, such as biofilm [19]. A virus-PM interaction simulation [9] has shown

enhancement of respiratory syncytial virus viability potentially due to the for-

mation of a salt and carbon protective encasing; when associated with aerosol55

particles, the viruses remain capable of infection at low temperatures up to 6

months. In addition to providing protection, a virus-PM interaction has the

potential to modify virus infectivity characteristics. Due to PM black carbon

fraction, virus-PM interactions have been shown to accelerate virus entry and

bioavailability in the cell [9, 20, 6].60

1.2. Sources and Long-term health impacts of air pollution

The size and composition of PM is dependent on its source. Primary PM is

ones produced directly in the source, whilst secondary PM is produced while in

the atmosphere by gas-particle conversion processes. Vehicular (exhaust, tyre

and break wear), soil dust ressuspension, and industrial emissions are the main65

sources of PM with aerodynamic diameters between 2.5 and 10 µm (PM10) in

US urban centers [21, 22, 23, 24]. Secondary PM explains much of the mass

of PM2.5, followed by fuel combustion [25, 21]. The source apportionment of

primary PM is more accurate as it retains the source composition at some level.

Secondary PM is mostly produced by non-linear reactions, thus, information70

about source characteristics is lost [26, 27].

The effects of PM exposure in human health, especially in long-term, is well

know and discussed [28, 29, 30, 31]. The penetrability of PM in the respiratory

system depends on the particle size. Finer particles have a greater penetration

potential [32]. PM10 can penetrate the respiratory system mostly accumulating75

at the tracheobronchial tree. PM2.5 can reach the bronchioles and alveoli and

penetrate the circulatory system [33]. PM concentration is also directly linked to

viral infection [34]. Yao et al. suggest that long-term exposition to PM affects

4
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COVID-19 prognosis [35]. Thus, its very likely the PM exposure is directly

linked to the COVID-19 symptoms development and the daily cases report.80

Fossil fuel usage is the main source of CO and NO2 [36, 37, 38]. CO is

relatively stable in the atmosphere with residence time of at least one month

[39]. NO2 is involved in many atmospheric reactions (e.g. ozone formation

and secondary aerosol formation). Therefore, its concentration is not linearly

proportional to fossil fuel usage [27].85

The effects of long-term exposure to CO and NO2 are matter of concern

in many studies. The toxicity of CO is directly linked to cellular apoxia [40].

Short and long-term studies link chronicle exposure to CO with cardiovascular

events and death [41]. There is no major link between ambient level CO and

pulmonary complications [41]. NO2 is a strong oxidant that affects mainly the90

lungs, causing diverse respiratory symptoms; it also increases the susceptibility

to viral infection [42]. The effect of long-term exposition of NO2 on mortality

is comparable to PM2.5 exposition [43].

1.3. Statistical modelling and time series analysis

The incubation time of COVID-19 ranges from 4 to 15 days. Therefore,95

perturbations in the epidemic evolution caused by air pollution through airborne

transmission would be observed in time lags within this same interval. It is

simpler, however, to quantify the ability of air pollution to predict perturbations

in the epidemic growth rather than asserting true causality. This can be done by

computing linear correlations between the target variable (i.e., perturbations in100

cases) and the lagged explanatory variables (i.e., concentration of pollutants).

In the econometric framework of Granger causality [44], it is possible to test

if an explanatory variable, up to a number of lags in the past, contains useful

information to forecast the target variable. If an explanatory variable pass this

test above a significance threshold, it is said that it “Granger causes” the target105

variable.

Granger causality was employed in a number of studies related to air pol-

lution. Jiang and Bai [45] investigated causal relationships between emissions

5
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in Beijing and its neighboring cities. Zhu et al. [46] identified elements of the

urban dynamics that Granger cause air pollution in China. Wang et al. [47] em-110

ployed Granger causality to relate mortality rates and air pollution. Mele and

Magazzino [48] employed the same framework to investigate causal relationships

between economic growth and air pollution in India.

More recently, studies investigating causes of new cases of COVID-19 and

consequences of the global pandemic have employed the Granger framework.115

Bushman et al. [49] investigated the effect of social distancing on the number

of deaths related to COVID-19. Awasthi et al. [50] inferred from causal models

that temperature and humidity do not cause new cases of COVID-19.

The effect of air pollution on peaks of daily cases can be quantified by lagged

correlations and Granger analysis. However, we also expect a relationship be-120

tween the shape of the accumulated cases curve and pollution. In other words,

we expect that the SARS-CoV-2 spread is faster in more polluted cities. To

this end, we employed a logistic regression to extract shape parameters of the

accumulated cases curve. The logistic regression has been shown to fit well

COVID-19 cases in Italy and China [51, 52]. The analysis of the impact of125

PM2.5 as a carrier for the virus was performed to the EUA for two reasons,

the high number of infected per day and the data accessibility to Pollutants

concentrations and cases of COVID at many different cities and counties of the

country.

2. Methodology130

2.1. Data

The following datasets were employed in this study:

• PM and pollutant gases data were retrieved from the World Air Quality In-

dex (WAQI) project at https://aqicn.org/data-platform/covid19 (Septem-

ber 2020). The WAQI dataset is available at city level in the USA.135

6
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• 2019 Novel Coronavirus COVID-19 (2019-nCoV) Data Repository by Johns

Hopkins University Center for Systems Science and Engineering for COVID-

19 data, available at https://github.com/CSSEGISandData/COVID-19

(September 2020). The data was retrieved at county level.

The period covered ranges from December 30, 2019 to July 31, 2020. Details140

in Table 1. WAQI aggregates data from local official monitoring datasets. City

level pollution data were associated with the respective county level COVID-19

data by matching the metadata available in both datasets. Although ideally

both datasets should be at the same administrative level, we expect this asso-

ciation is appropriated for this study since the cities in the WAQI dataset are145

the most populous of their respective counties.

After matching COVID-19 and WAQI datasets we performed a quality check

on the air pollution time series by selecting cities that: (1) Have at least 80% of

data coverage after the first case was registered, (2) Have at least 70% of data

coverage in the whole period and (3) The estimated precision of the pollution150

sensor is lesser than 1 µg to PM and NO2 and 1 ppm to CO . Since the quality

check was employed for each pollutant and location individually, the sets of

cities available for each pollutant are not identical.

2.2. Granger causality

Granger causality tests were employed to investigate potential relationships155

between pollution levels (explanatory variables) and the rate of change of COVID-

19 new cases (target variable). Granger causality is an econometric method that,

when applied on two stationary time series, determines if one can be predicted

by past values of the other. Since time series of COVID-19 daily new case are

usually “bell” shaped they are highly non-stationary. Therefore, we considered160

the temporal differences (first derivatives) of the daily new cases time series;

i.e., the rate of change of new cases. Then, an Augmented Dickey-Fuller (ADF)

unit root test at a critical level of 5% was employed to assert the stationarity of

all variables for each city before they were submitted to the Granger causality

test.165

7
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Variable Stats / Values Freqs (% of Valid) Valid Missing

County 1. Albuquerque 198 ( 1.9%) 10296 0

2. Atlanta 198 ( 1.9%) (100.0%) (0.0%)

3. Austin 198 ( 1.9%)

4. Baltimore 198 ( 1.9%)

5. Boise 198 ( 1.9%)

[ 47 others ] 9306 (85.3%)

State 1. Arizona 396 ( 3.8%) 10296 0

2. Arkansas 198 ( 1.9%) (100.0%) (0.0%)

3. California 1188 (11.5%)

4. Colorado 198 ( 1.9%)

5. Connecticut 198 ( 1.9%)

[ 26 others ] 8118 (78.8%)

Day min : 2019-12-30 198 distinct values 10296 0

med : 2020-04-06 12:00:00 (100.0%) (0.0%)

max : 2020-07-14

range : 6m 14d

PM10 Mean (sd) : 15.7 (7.9) 61 distinct values 4747 5549

min <med <max: (46.1%) (53.9%)

1 <14 <100

IQR (CV) : 10 (0.5)

PM25 Mean (sd) : 28.6 (13.7) 103 distinct values 10152 144

min <med <max: (98.6%) (1.4%)

3 <25 <157

IQR (CV) : 18 (0.5)

NO2 Mean (sd) : 7.3 (5.8) 248 distinct values 6772 3524

min <med <max: (65.8%) (34.2%)

0.3 <5.6 <48.2

IQR (CV) : 5.6 (0.8)

Table 1: Dataset summary with descriptive statistics and missing data info. Note that this

dataset is the one after the quality check described.

8
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In the Granger causality test, the target variable was lagged in order to

construct a linear autoregressive model. Then, the linear model was expanded

to consider lags of the explanatory variable from zero to a maximum lag n. An

F-test was employed to evaluate if the predictive power of the regression was

enhanced by adding the lags of the explanatory variable from zero to n. The170

p-values of the F-test were computed iteratively for n ranging from 0 to 20

days. Then, the n associated with the most confident p-value was identified for

each location. The ADF and Granger causality tests are described in [45]. We

employed the implementation available in the Python library statsmodels.

2.3. Logistic curve fitting175

The COVID-19 curve of accumulated cases approximates a logistic-like growth

[51, 52]. In a logistic model (Eq. 1), the accumulated cases at a given time

(N(t)) is modeled as a function of the carrying capacity L (i.e., the susceptible

population), the logistic growth rate r (i.e., the steepness of the curve) and the

midpoint t0 which corresponds to the function’s inflection point. The model180

was fitted for each city using a generalized linear model implementation in the

R language stats library v3.6.2. Because of its sigmoidal shape, and the “bell”

shape of its derivative, the logistic function cannot fit well a time series with

more than one “wave” of new cases. To that end, we isolated the first wave of

new cases by finding the inflection points (null second derivatives) of the accu-185

mulated cases time series; the first wave was defined as the time period before

the second inflection point. The time series were smoothed by a 30-day running

average before the derivatives were computed. The quality of fitting was quan-

tified by the normalized root mean square error (NRMSE) and Shapiro-Wilk’s

test (SW).190

N(t) =
L

1 + er(t−t0)
(1)

2.4. Lag Analysis

The lag analysis is the comparison between two datasets with one being dis-

placed by −n samples, where n is a positive integer. In this study, we lagged the

9
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pollutants concentrations in respect to the new cases time series with n ranging

from 0 to 30 days. Then, we calculated the time averages of the pollutants195

concentrations within the first outbreak phase. These averages were linearly

regressed against the logistic growth rate. By varying n, we explored the time

window in which the mean pollution data is best correlated with the logistic

model parameters in all cities.

3. Results and discussion200

3.1. Granger Causality

Figure 1 shows the result of the Granger causality test in the counties con-

sidered for each pollutant. Counties in green presented F-test p-values below

0.05, while counties in pink are above this threshold. The counties displayed

are not the same for all pollutants. This is because, in some locations, the time205

series either failed the ADF stationarity test or the pollution data failed the

quality control.

10
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Figure 1: Spatial distribution of the Granger causality test between pollutants concentrations

and COVID-19 new cases in USA counties. Counties where the p-values of the Granger F-test

are green when below 0.05 and pink when above. Dark gray squares were plotted around

colored counties to facilitate their visualization.

It is readily visible that PM2.5 (Fig. 1a) Granger causes new COVID-19

cases in a substantial number of locations. This is also the case for PM10

(Fig. 1b) and NO2 (Fig. 1d); however, less locations are available for these210

pollutants. CO, on the other hand, visibly failed the F-test in most locations.

The spatial distributions of locations where pollutants Granger cause new cases

do not show any clear pattern, such as a preferential latitude. This is evidence

against possible confounding effects, such as weather conditions or other regional

particularities.215

The boxplot in Figure 2a shows the distribution of p-values of the Granger F-

test between the pollutants and COVID-19 new cases considering the locations

shown in Figure 1. PM2.5 shows a significant Granger causal link to the rate of

change of COVID-19 new cases in 17 of 44 locations and presented the lowest

p-value mean among the pollutants. NO2 presented a lower median, however220

only 7 out of 28 locations presented p-value under the threshold of 0.05. PM10

11
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mean and median p-value are higher than PM2.5 and PM10; in this case, 8 out

of 20 locations passed the significance test. CO presented the highest p-value

mean and median; only in 4 out of 21 locations a significant causality link was

found. Figure 2b shows the distribution of lag windows for locations where225

there is a significant causal link between pollution and COVID-19 new cases.

This allows us to verify that the SARS-CoV-2 incubation period is within the

range of the lag windows encountered by the Granger analysis, sustaining the

plausibility of the hypothesis.

Figure 2: a) Boxplot of p-values of the Granger F-test between pollutants concentrations and

COVID-19 new cases; b) boxplot of the optimal lag window size only considering locations

where the p-values of the Granger F-test are below 0.05. Medians are teal solid lines and

means are orange dashed lines. In a), the black dotted line identifies p-value = 0.05.

3.2. Logistic Model230

For each city available for the pollutants we fitted a logistic curve to the

accumulated cases data. The period selected in each city starts on the day

where sixth case was recorded to the first minimum of the COVID-19 new cases

(first phase of outbreak). The first minimum was obtained after smoothing the

time series with 30-day moving averages. This was done in order to isolate the235

“first phase” or “first wave” of the epidemic because the logistic model supports

a single sigmoid curve. The average NRMSE of the fits is 0.0273±0.0096 %.

The average SW p-value for the fitted models is 0.0141±0.0231. The NRMSE

12
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lesser than 0.05 indicate a good overall fit. SW p-values lesser than 0.05 indicate

normally distributed residuals without biases. Both indicates that the logistic240

model is well fitted to the curve of COVID-19 accumulated cases. Thus, the

model parameters can be used to represent aspects of the observed data.

3.3. Lag Analysis

Pearsons’s correlation coefficient and their p-values (for the hypothesis of null

correlation) were calculated between the average pollutant concentration and245

the logistic growth rate (Figure 3) in order to assert the relationship between the

pollutants and the outbreaks growth rate. PM2.5 presents higher and significant

correlations from lags 0 to 18 days. CO presents significant correlations at all

lags; its correlations are higher in later lags, in special after 26 days. Since CO

is a good tracer to fossil fuel usage, large temporal shifts places the pollutant250

data outside the quarantine range. Thus, the rise of correlation at later lags is

expected as it enhances the representation of the overall social mobility before

the outbreak in the cities. This behaviour is also observed in PM10 and NO2,

although the latter do not present significant correlations.

13
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Figure 3: Pearson’s correlation between the logistic growth rate and the pollutants for all

cities for lags between 0 to 30 days. p-values for the zero zero correlation null-hypothesis are

represented by the point size. p-values lesser than 0.01 are in red. The opposite is in blue.

PM2.5 presents higher lags in a period that matches the SARS-CoV-2 in-255

cubation time. It support the Granger analysis about the short-term role of

PM2.5. However the lag analysis points out a significant impact in the outbreak

development, assigning a major role to PM2.5.

3.4. Quantifying the general impact of the pollutant sources

We used linear regressions to quantify the impact of PM on the spread of260

COVID-19 characterized by the logistic growth rate (Figure 4). Other regres-

sions may be more appropriated, but they require justification based on previous

knowledge of the mechanisms behind the PM/COVID-19 interaction. There-

fore, the linear regression was employed as a naive method to determine the

general tendency of these relationships.265
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Figure 4: Logistic growth rate of COVID-19 accumulated cases (r) as a function of mean

pollutants concentrations. The average pollutants concentrations are in the best correlated

lag calculated in the Lag Analysis section (8, and 0 days to PM2.5 and PM10 respectively).

The linear regression with all cities is represented by the black line. Parameters of this

linear regression are in each plot. Cities where the pollutant Granger causes new daily cases

(described in Granger Causality section) are presented in blue, the rest in yellow. The size

of points represents the p-value of the Granger test, greater sizes represent smaller p-values.

Linear regression to the blue and yellow groups of points are presented by the blue and yellow

lines. A version with the cities labeled in the plots is available in the Supplementary Material.

The horizontal error bars were calculated using bootstrap with 1000 interactions. The vertical

error bars were obtained from the logistic fit.15
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In Figure 4A the general impact of PM2.5 in the outbreak is clear. We note,

for example, that an increase in PM from 20 to 40 µg m−3 rises the logistic

growth rate from 0.09 to 0.136 1/day, corresponding to a 54% increase. If

we only consider cities where the PM2.5 Granger causes the COVID-19 new

cases, the same PM2.5 increase rises the logistic growth rate from 0.086 to 0.144270

1/day, corresponding to a 67% increase. Considering cities where the Granger

test fails, the same PM increase only rises the growth rate from 0.09 to 0.124

1/day (i.e., 38%). A similar behaviour occurs with the 0.1 and 0.9 quantiles of

the PM2.5 (see supplementary material). PM10 (Figure 4B) shows no significant

correlation with the logistic growth rate.275

The interpretation of PM2.5/COVID-19 statistical relationships is not straight-

forward. We can describe at least three potential mechanisms underpinning

these relationships: (1) long-term PM2.5 exposure increases population suscep-

tibility; (2) PM2.5 indicates social mobility and (3) PM2.5 is a viral airborne

transport facilitator. Mechanisms 1 and 2 are confounding factors to Mecha-280

nism 3, so we will discuss them individually.

Mechanism 1 is expected to be present in all regressions in Figure 4A, as cities

with higher mean PM2.5 in the studied period are likely to have an atmospheric

polluted history. To separate the more instantaneous role of PM2.5 (Mechanism

3), we can consider the difference between the regression using cities where285

PM2.5 Granger causes new daily cases (blue line in Fig. 4A) and cities where

the Granger test fails (yellow line). The higher slope of the blue regression

indicates that Mechanism 3 is discernible from the confounding factor posed

by Mechanism 1. Mechanism 2, however, does not seem to be an important

confounding factor for Mechanism 3 as the lagged correlations between PM10290

and NO2 are inconclusive and CO only passes the Granger test in four locations.

Using the difference of the blue and yellow linear regressions in Fig. 4A, we

calculate a rise of the logistic growth of 0.012 1/day based on an increase from

25 to 35 µg m−3 of PM2.5. For instance, the growth rate of accumulated cases in

Boston of 0.096 1/day and PM2.5 averages at 25 µg m−3. An increase of 10 µg295

m−3 of PM2.5 rises its growth rate by approximately 12.5%.
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4. Conclusion

In this study we explored the short-term role of the particulate matter in the

COVID-19 outbreak in USA cities. We applied the Granger’s causality tests,

lag analysis and logistic modelling to investigate the statistical links between300

the spread of COVID-19 and pollution data. The comparison between PM and

the other pollutants allowed us to isolate PM2.5 from confounding factors and

estimate its contribution to airborne viral transportation. The findings support

the viral transport hypothesis, i.e., virus can associate with the pre-existent

particulate matter in the air synergically. We conclude that PM2.5 plays a305

small, yet discernible, role in the COVID-19 transmission.

The USA presents diverse geographic, climatic and political scenarios. This

suggests that the conclusions presented here could be potentially be generalized

to other countries. Increasingly abundant COVID-19 data worldwide will facil-

itate future studies to explore these interactions in a global scale. Broadly, we310

hope to rise the interest of the scientific community as well as the awareness of

the general public and decision makers to the potential synergy between viral

transmission and air pollution.

Considering that we are still with increasing mortality rate in most countries,

any efforts to decrease the transmissibility of the COVID can be summed up315

with all the others to save some lives.
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