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Key Points:  

 

1) The fully-automatic, end-to-end workflow which eliminated the vessel extraction and 

segmentation step for supervised-learning was feasible in the stenosis classification on CAG 

images, achieving an accuracy of 0.85, sensitivity of 0.96, and AUC of 0.86 in per-patient level.  

2) The redundancy training improved the AUC values, accuracy, F1-score, and kappa score of the 

stenosis classification.  

3) Stenosis position localization was assessed in two methods of CAM-based and anchor-based 

models, which performance was acceptable with better quantitative results in anchor-based models. 

Summary Statement: A fully-automatic end-to-end deep learning-based workflow which 

eliminated the vessel extraction and segmentation step was feasible in the stenosis classification and 

localization on CAG images. The redundancy training improved the stenosis classification 

performance.  
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Abstract        

Background  

Automatic coronary angiography (CAG) assessment may help in faster screening and diagnosis of 

patients. Current CNN-based vessel-segmentation suffers from sampling imbalance, candidate 

frame selection, and overfitting; few have shown adequate performance for CAG stenosis 

classification. We aimed to provide an end-to-end workflow that may solve these problems. 

Methods 

A deep learning-based end-to-end workflow was employed as follows: 1) Candidate frame selection 

from CAG videograms with CNN+LSTM network, 2) Stenosis classification with Inception-v3 

using 2 or 3 categories (<25%, >25%, and/or total occlusion) with and without redundancy training, 

and 3) Stenosis localization with two methods of class activation map (CAM) and anchor-based 

feature pyramid network (FPN). Overall 13744 frames from 230 studies were used for the stenosis 

classification training and 4-fold cross-validation for image-, artery-, and per-patient-level. For the 

stenosis localization training and 4-fold cross-validation, 690 images with >25% stenosis were used.  

Results 

Our model achieved an accuracy of 0.85, sensitivity of 0.96, and AUC of 0.86 in per-patient level 

stenosis classification. Redundancy training was effective to improve classification performance. 

Stenosis position localization was adequate with better quantitative results in anchor-based FPN 

model, achieving global-sensitivity for LCA and RCA of 0.68 and 0.70 with mean square error 

(MSE) values of 39.3 and 37.6 pixels respectively, in the 520 × 520 pixel image.  

Conclusion 
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A fully-automatic end-to-end deep learning-based workflow that eliminates the vessel extraction 

and segmentation step was feasible in coronary artery stenosis classification and localization on 

CAG images.  
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Introduction     

 

Coronary artery disease (CAD) is the leading cause of morbidity and mortality worldwide [1]. X-ray 

coronary angiography (CAG) is the current gold standard imaging technique for CAD diagnosis. 

Expert CAG interpretation requires considerable ‘hands on’ training both visually and cognitively. In 

clinical practice and also for quality control purposes, screening CAG studies visually to distinguish 

cases with normal or mild stenosis from those with clinically significant stenosis is a time-consuming 

process even for experienced readers. Developing an automatic CAG assessment tool to exclude 

normal or mild stenosis cases would facilitate diagnosis and treatment and enable the screening of 

large data sets for quality control purposes.  

The current “automated or semi-automated” CAG stenosis detection method consists of multiple 

steps. For example, the most widely used vessel-based workflow starts from the visual or automatic 

selection of candidate frames from a CAG video [2]. This is followed by the artery extraction using 

image segmentation algorithms [3] like center-tracking [4]–[6], model-based [7], [8], or 

Convolutional Neural Network (CNN) [9]–[12]. Finally,  individual stenotic lesion localization and 

classification is performed [4], [5], [8]. The need for extensive human interaction during image data 

and training label preparation, in addition to addressing problems of sampling imbalance during 

supervised-learning, has led to algorithms that are commonly evaluated on small datasets prone to 

overfitting. In this study, we propose an end-to-end workflow for (a) easier data preparation and 

labeling of large datasets, (b) ruling out significant stenosis, and (c) allowing for precise localization 

of coronary stenoses in CAG images. 

 

Methods 
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Study population 

This research was retrospectively performed on 230 participants with available data from a 

“Combined Non-invasive Coronary Angiography and Myocardial Perfusion Imaging Using 320 

Detector Computed Tomography (CORE320)” study (www.clinicaltrials.gov, NCT00934037), a 

prospective, multicenter, international study that assessed the performance of combined 320-row 

CTA and myocardial CT perfusion imaging (CTP) in comparison with the combination of invasive 

coronary angiography and single-photon emission computed tomography myocardial perfusion 

imaging (SPECT-MPI) for detecting myocardial perfusion defects and luminal stenosis in patients 

with suspected coronary artery disease [13][14].  For the stenosis classification, thirty-six studies 

out of 230 were excluded from the training due to the low image quality or contrasting condition. 

These images however, were included for evaluation. The original CORE320 study was approved 

by central and local institutional review boards, and written informed consent was obtained from all 

participants[13][14]. Given the retrospective and ancillary nature of the data, the current study is 

covered by the original CORE320 study IRB. 

Candidate Frame Selection 

The entire study workflow is summarized in Figure 1. All the CAG studies were saved in the 

universal DICOM format with a resolution of 512 × 512, 15 fps, typically 60-200 frames per view. 

Coronary type (left and right coronary artery, LCA and RCA) was classified initially by experts in a 

small subset (19 patients). This was then leveraged by training a simple classifier [15] for 

automated coronary selection (100% classification accuracy was obtained). To identify the angle 

views of the CAG images, DICOM tags were used. Overall 4 angles for LCA (LAO Cranial, LAO 

Caudal, RAO Cranial, and RAO Caudal) and 3 angles for RCA (LAO, straight RAO, and shallow 

LAO/RAO Cranial) were used based on the optimal view map (OVM) [16]. A candidate frame was 
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defined as an image with good quality, full contrasting, clear vessel border, and anatomical 

significance of stenosis (if it had stenosis) in a video frame. A redundancy frame was defined as a 

background frame without any contrasting agent in arteries. Redundancy frames were added to the 

training dataset but not in the validation. Exploiting redundancy to improve classification accuracy 

has been used before [17]. Each training category was provided with the same prevalence of 

candidate frame and redundancy frame to avoid category imbalance. 

A CNN+LSTM network was implemented for the candidate frame selection from 19 patients (146 

videos in total, and 18688 frames overall). Inception-v3 was employed as a basic classifier to 

recognize full-contrasting frames and non-contrasting frames as candidates or redundancy frames. 

Then, the fully-connection layer was connected to a bi-directional LSTM. The inception model was 

pre-trained for 200 epochs with the initial learning rate (LR) of 1e-4 and the loss function as binary 

entropy. Then LSTM was trained for 100 epochs with LR=4e-5 and the loss function was defined as 

convolutional F1 score. Typically, this strategy selected 5 to 10 candidate frames per video.  

The performance of candidate frame detection was tested with 582 videos from 175 patients using 

mean error and standard deviations of beginning contrasting frame (BCF) and ending contrasting 

frame (ECF) between ground-truth and prediction. The acceptance and error rates were also 

calculated with average differences of BCF and ECF in a pre-defined range [2], in which accept rate 

with the error <=3 and error rate with the error >=10. Performance was reported using classification 

accuracy, F1 and Kappa. 

Stenosis Classification 

QCA results previously documented in the CORE320 study were utilized, which documented the 

29-segment model localization [18] with their per-segmental stenosis severities. For our study goals 

(ruling out significant stenosis), coronary stenosis severities were re-categorized into three groups 
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of <25% stenosis, 25 to 99% stenosis, total occlusion as 3-CAT, and two groups of <25% stenosis, 

≥25% stenosis as 2-CAT. These were used for artery-level labels. For the image-level labeling, per-

segmental stenosis categories were assigned in each angle-view.  

Inception-v3 was employed for the stenosis classification network with and without additional 

redundancy frames in the training dataset to compare the performance with redundancy. The 

stenosis classification training was performed on 4 models of LCA for each angle view and one 

model of RCA combining the three angle views due to the complicated features of LCA when 

compared to the RCA. A max-pooling layer was added to the output of inception to evaluate the 

artery-level stenosis prediction and for the patient-level stenosis prediction. (Figure 1, 2).  

Overall 10872 frames from 194 studies were used for image-level stenosis classification training 

and 13744 frames from 230 studies were used for the 4-fold cross-validation. Distribution of the 

cases in the image-, artery-, and patient-levels are summarized in Table 1. The performance of 

image-level stenosis classification results of LCA was reported as a combined result of four angles. 

Performance of image-level classification on 3- CAT and 2- CAT with and without redundancy 

training was reported using accuracy, sensitivity, F1, Kappa, and area under the curve (AUC). 

Performance of artery-level and per-patient level classification was assessed on the 2-CAT with 

redundancy training image-level results and reported using accuracy, sensitivity, and AUC. 

Stenosis Localization 

For the stenosis positioning, two methods were investigated: 1) class activation map (CAM) [19] 

based on the back-propagation from the stenosis classification decision and 2) anchor-based feature 

pyramid network (FPN) [20]. For FPN inputs, 1588 positioning boxes with a minimal size of 35 × 

35 pixels were annotated by two independent expert cardiologists. The anchor-based model was 

trained with LearningRate=1e-4 over 500 epochs and using a pre-trained 2-CAT classifier as the 
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backbone. Then FPN was built on the feature maps of pre-trained classification models. The same 

reader-annotated bounding boxes were also used for evaluation of the CAM-based localization 

technique. For the positioning training and 4-fold evaluation, 690 frames with >25% stenosis were 

used (Figure 1).  

 The performances of the two stenosis localization methods were assessed by the metrics of global-

sensitivity, per-stenosis-sensitivity (Sens_s), per-stenosis-specificity (Spec_s), and mean square 

error (MSE). Global-sensitivity was defined as the recall of localization for the most significant 

stenosis in the images, which is similar to AR^(max=1) in COCO benchmark [21]. Sens_s and 

Spec_s were defined as the recall rate of all stenosis localizations in the images. MSE was assessed 

in 512 × 512 images for the CAM-based model and the anchor-based models. Due to the lower 

resolution, metrics for the CAM-based model were calculated with Intersection over Union (IoU) 

>0.2 in the CAM-based model whereas IoU>0.5 for the anchor-based model. 

Statistical Analysis 

All the statistical evaluation was performed in Python (version 3.6; Python Software Foundation, 

Wilmington, Del; https://www.python.org). In this study, the calculation for diagnostic performance 

was based on a per-patient approach, including image-level severity classification. Accuracy, f1-

score and Cohen’s Kappa were calculated for image-level stenosis classification; receiver operating 

characteristic (ROC) analysis and areas under the curves (AUC) were used to further evaluate the 

image-/artery-/patient-level diagnostic performance. Stenosis positioning was evaluated by 

sensitivity, specificity, and mean square error as described in the previous section. All metrics were 

computed using Scikit-learn, version 0.19.1. Continuous variables that were normally distributed 

were summarized and reported as means ± standard deviations. 
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Results 

Patient Characteristics 

The study participants’ characteristics are given in Table 2.  A total of 230 individuals were 

included in our analysis.  The median age was 62 years [IQR 55,69], 70% were men, 45% were 

white, 82% had hypertension, 71% had dyslipidemia, 16% were current smokers, and 27% had a 

high pretest probability of obstructive coronary artery disease. 

Candidate Frame Selection 

The automatic model achieved a mean error of 2.05 and 2.27 in BCF and ECF detection 

respectively. The acceptance and error rates were 83% and 5.0%. A common feature of 

misclassified cases was a relatively short contrast duration in the video (typically <5 frames with 

adequate vessel-to-background contrast). The network did not adequately handle this type of 

condition because the training dataset had very few instances of short-duration contrasting frames. 

Stenosis Classification 

The stenosis classification results in 3-CAT and 2-CAT with and without redundancy training 

models are summarized in Table 3 and Figure 3. In brief, the image-level classification performance 

was better in 2-CAT than 3-CAT for the LCA while not significantly different for the RCA. The 

redundancy training improved the AUC values for both 2-CAT and 3-CAT, as well as the accuracy, 

F1-score, and kappa score in 2-CAT. Based on the better performance in 2-CAT as well as our aim 

to pick-up non-significant stenosis, only 2-CAT evaluation was performed for artery-level (LCA 

and RCA) and patient-level classification. The accuracies were 0.83, 0.81, 0.85, the sensitivities 

were 0.94, 0.90, and 0.96 and AUCs were 0.87, 0.88, and 0.86 at the artery-level; LCA and RCA, 

and at the per-patient level respectively. A representative image illustrating the effect of the 
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redundancy training is demonstrated in Figure 4 with visualization aided by a heatmap. The 

overfitting caused by background structures is markedly reduced, likely resulting in the 

improvement in classification performance. 

Stenosis Localization 

Quantitative results were summarized in Table 4. In brief, the anchor-based FPN method showed 

better performance than the CAM-based method by all the metrics studied. Both the localization 

techniques performed better for RCA images than for LCA images. In both methods, Sensitivity 

was low due to the many annotations that highlighted small lesions that had ambiguous feature 

patterns in the arteries. Performance was also lower when there were multiple stenoses in distal 

coronary arteries or branches (see Figure 5 for illustration).  

Discussion 

The main findings from the present study are summarized as follows: 1) the fully-automatic, end-to-

end workflow, which eliminated the vessel extraction and segmentation step for supervised-

learning, was precise for stenosis classification on CAG images, achieving an accuracy of 0.85, a 

sensitivity of 0.96 and an AUC of 0.86 at the per-patient level. 2) Redundancy training improved 

the accuracy, F1-score, and the kappa score, and the AUC values for the image-level stenosis 

classification. 3) Stenosis localization was assessed by two methods: CAM-based and anchor-based 

models, with superior quantitative results for the anchor-based models.  

End-to-end workflow is advantageous in reducing human interaction steps. In our proposed 

workflow, once applied to the CAG videos, the model automatically selects the optimal frames, 

performs stenosis classification and localizes stenosis positions, providing robust results at both the 

artery and patient levels. This workflow is advantageous in a large volume clinical setting or quality 
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control purposes because the timely screening of many CAG videos to correctly identify cases with 

normal or mild stenoses can translate into improved productivity. The candidate frame selection 

performance presented here showed good results. This was better than what has previously been 

reported [2], likely due to the use of the bi-directional LSTM network in temporal information 

processing [22]. Additionally, by providing stenosis classification and localization, the 

reader/physician can verify the performance of the presented CNN framework and perform 

quantitative coronary angiography faster.  

The stenosis classification results presented in our study are encouraging. We compared our 

stenosis classification performance with that of a previous CT study [23] with accuracies of 

0.75/0.80 in 3-/2-CAT; and with three other vessel-based CAG studies [4], [5], [24] in 2-CAT with 

accuracies of 0.97/0.94/0.75 respectively. Therefore, our method was comparable and sometimes 

outperformed methods reported in previous studies.  We attribute our favorable results to addressing 

different aspects of a typical CAG study such as multiple angle views, background frames and 

visually insignificant features of vessel stenoses through redundancy training to reduce overfitting 

in classification training.  

Our study also explores a solution to the stenosis localization problem via an object detection 

framework. Two different stenosis localization methods of CAM and FPN were compared. FPN 

showed a better performance for stenosis positioning, even though additional annotations were 

necessary for training the algorithm. The CAM-based model has the strength of employing a simple 

derivation that uses stenosis classification as a backbone model.   

Our study had a few important limitations. Training and evaluation were performed in the same 

cohort. A validation study using an external cohort is needed to accurately assess the performance 

of our techniques. Stenosis classification was simply categorized into three groups of <25% 
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stenosis, 25 to 99% stenosis, and total occlusion for 3-CAT while <25% stenosis and 25 to 100% 

stenosis for 2-CAT. Our aim was to develop a tool that identifies normal and mild stenosis cases 

within a large cohort. In this regard, more granular categories for mild to moderate stenosis may be 

considered for different clinical or investigational purposes, such as detection of hemodynamically 

significant stenosis.  

In conclusion, a fully-automatic end-to-end deep learning-based workflow which eliminates the 

vessel extraction and segmentation step was accomplished for accurate stenosis classification and 

localization on CAG images. This end-to-end approach may be useful in clinical settings with large 

patient volumes or for quality control of CAG procedures.  
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Tables and figures 

Table 1. Distribution of the cases in each stenosis severity categories used for the image view, 

artery, and patient-levels validation. 

Stenosis  

severity 

Image 

level  

(LCA- 

LAO  

Cranial) 

Image 

level  

(LCA - 

RAO  

Cranial) 

Image 

level  

(LCA – 

LAO  

Caudal) 

Image 

level 

(LCA – 

RAO 

Caudal) 

Image 

level  

(RCA) 

Coronary 

artery 

level 

(LCA) 

Coronary 

artery 

level 

(RCA) 

Per-

patient  

level 

<25% 624 

(32.7%) 

752 

(33.0%) 

673 

(43.8%) 

789 

(34.7%) 

2292 

(39.9%) 

57 

(24.8%) 

84 

(36.5%) 

46  

(20.0%) 

25% to 

99% 

1123 

(58.9%) 

1393 

(61.1%) 

673 

(43.8%) 

1333 

(58.5%) 

3181 

(55.4%) 

132 

(57.4%) 

118 

(51.3%) 

127 

(55.2%) 

100% 160 

(8.4%) 

135 

(6.0%) 

189 

(12.3%) 

155 

(6.8%) 

272 

(4.7%) 

41 

(17.8%) 

28 

(12.2%) 

57  

(24.8%) 

 

Overall 13744 frames from 230 studies were used for the image level validation. Each of the 

coronary artery level and per-patient level validations were performed on 230 cases. LCA = left 

coronary artery. LAO = left anterior oblique. RAO = right anterior oblique. RCA = right coronary 

artery.   
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Table 2. Clinical characteristics of the study participants. 

 

Characteristic 

 

Included (n=230) 

Age (years)  62 [55, 69] 

Age ≥ 60 years 134 (58%) 

Male sex  160 (70%) 

Race  

White 

Black 

Asian 

Other 

 

103 (45%) 

18 (8%) 

105 (46%) 

4 (2%) 

Body mass index (BMI, kg/m2) 26 [24, 29] 

Obesity (BMI ≥ 30 kg/m2) 51 (22%) 

Hypertension  188 (82%) 

Diabetes Mellitus 80 (35%) 

Dyslipidemia  159 (71%) 

Current smoker 35 (16%) 

Family history of CAD  88 (41%) 

Diamond-Forrester risk score 

Low 

Intermediate 

High 

 

4 (2%) 

164 (71%) 

62 (27%) 

Previous cerebrovascular accident  9 (4%) 
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A total of 230 individuals were included in our analysis.  The median age was 62 years [IQR 

55,69], 70% were men, 45% were white, 82% had hypertension, 71% had dyslipidemia, 16% were 

current smokers, and 27% had a high pretest probability of obstructive coronary artery disease. 
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Table 3. The image-level stenosis classification performance for the 2-category and 3-category 

severity levels.  

 3-CAT (<25, 25-99, 100% Stenosis) 2-CAT(<25%, >25% stenosis) 

 Acc. Sensitivity F1 κ AUC Acc. Sensitivity F1 κ AUC 

LCA 0.71±0.02 0.78±0.04 0.65±0.05 0.50±0.07 0.77 0.77±0.01 0.90±0.06 0.71±0.06 0.46±0.04 0.80 

LCA 

w/R 

0.70±0.06 0.72±0.04 

 

0.70±0.06 0.44±0.10 0.82 0.79±0.02 0.89±0.04 0.74±0.07 0.51±0.06 0.84 

RCA 0.83±0.02 0.82±0.01 0.81±0.04 0.70±0.04 0.86 0.84±0.01 0.92±0.02 0.77±0.01 0.56±0.03 0.83 

RCA 

w/R 

0.77±0.02 0.81±0.04 0.77±0.03 0.59±0.04 0.90 0.83±0.01 0.90±0.01 

 

0.80±0.03 0.63±0.03 0.89 

 

The classification performance with and without the redundancy training is presented. The 

performance of image-level stenosis classification results of LCA was reported as a combined result 

of four angles. Performance is assessed using accuracy, sensitivity, F1-score, kappa and AUC. LCA 

= left coronary artery. RCA = right coronary artery. LCA w/R = LCA with redundancy training. 

RCA w/R = RCA with redundancy training. Acc. = accuracy. F1 = weighted F1-score. κ = Cohen’s 

Kappa. AUC = area under the curve. 
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Table 4. Performance of the stenosis localization algorithms for the LCA and RCA. 

 CAM-based Anchor-based 

 Global-

sensitivity 
Sens𝑠 Spec𝑠 

MSE 

(Deviation) 

Global-

sensitivity 
Sens𝑠 Spec𝑠 

MSE 

(Deviation) 

LCA  0.59 0.25 0.43 103.3 (71.18) 0.68 0.44 0.68 39.3 (40.00) 

RCA  0.61 0.17 0.51 79.5 (47.21) 0.70 0.51 0.77 37.6 (51.63) 

 

Results are presented as the global sensitivity, sensitivity, specificity, and MSE for the two 

techniques presented – the CAM-based model and the anchor-based model. Global-sensitivity was 

defined as the sensitivity of one most severe stenosis localization per image. Due to the low 

resolution, metrics (Sens, Sens_s, Spec_s) for the CAM-based model were calculated with IoU >0.2 

whereas the metrics for the anchor-based model were calculated with IoU>0.5. LCA = left coronary 

artery. RCA = right coronary artery. Sens_s = per-stenosis sensitivity. Spec_s = per-stenosis 

specificity. MSE = mean square error. CAM = class activation map. IoU = intersection over union. 
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Figure 1. Dataset and Algorithm Workflow.  
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Three steps of data preparation, stenosis classification, and stenosis positioning were presented. The 

steps of image and training label preparation including coronary artery selection, viewing angle 

selection, and contrasting frame detection was designed in a fully automatic manner. Stenosis 

severity classification training was performed in image-level, artery-level, and patient-level. 

Stenosis positioning was performed in two methods of CAM-based and anchor-based methods. 

CAM = class activation map. QCA = quantitative coronary angiography.  
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Figure 2. The architecture of the output of the stenosis classification inception model. 

 

A max-pooling layer was added to the output of inception to evaluate the artery-level stenosis 

prediction and for the patient-level stenosis prediction. LCA = left coronary artery. LAO = left 

anterior oblique. RAO = right anterior oblique. RCA = right coronary artery. QCA = quantitative 

coronary angiography. 
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Figure 3. Performance of coronary stenosis classifications in image, coronary artery, and patient 

levels. 

 

 (a) and (b): ROC curves of image level classification on 3-CAT and 2-CAT with and without 

redundancy training on LCA and RCA. (c) and (d): ROC curves of coronary artery level 

classification on LCA and RCA. (e): ROC curve of patient level classification. The AUC values are 

summarized in Table 3. RCA = right coronary artery. LCA = left coronary artery. AUC = area 

under the curve.  
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Figure 4. A representative image of the effect of the redundancy training demonstrated in a 

heatmap style.  

 

In the original training, the model had mid-to-high level attention on background regions. The 

redundancy training reduced the overfitting caused by background structures and improved the 

performance of stenosis classification. 

  

Original images 

Redundancy training 

Class Activation Map (CAM) 
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Figure 5. Representative images of stenosis position localization experiments. 

Predicted boxes from anchor-based model produced more accurate boxes when compared to the 

CAM-based model. Multiple stenoses in distal coronary arteries or branches were difficult for 

correct localization, which was the main reason for the failed cases. 
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