High-frequency screening combined with diagnostic testing for control of SARS-CoV-2 in high-density settings: an economic evaluation of resources allocation for public health benefit

Will Rogers^{1,2*}, Manuel Ruiz-Aravena², Dale Hansen², Wyatt Madden², Maureen Kessler¹, Matthew W. Fields^{2,3}, Matthew J Ferrari⁴, Connie B. Chang^{3,5}, Jayne Morrow⁵, Andrew Hoegh⁶⁺, Raina K. Plowright²⁺

Affiliations:

¹Department of Ecology, Montana State University, Montana, USA

²Department of Microbiology and Immunology, Montana State University, Montana, USA

³Center for Biofilm Engineering, Montana State University, Montana, USA

⁴Center for Infectious Disease Dynamics, Department of Biology, Pennsylvania State University, State College, PA, USA

⁵Department of Chemical and Biological Engineering, Montana State University, Montana, USA

⁶Department of Mathematical Sciences, Montana State University, Montana, USA

- * Corresponding author
- ⁺ Co-senior authors

Appendix 1: Model methods

Model description

We developed a campus-level, SEIR model with behavioral, testing, and transmission controls to address the implementation of loop-mediated isothermal amplification (LAMP), a generally high specificity but lower sensitivity (dependent upon replicates), rapid test for SARS-CoV-2 compared to the higher sensitivity and expensive tests, like RT-qPCR. SEIR refers to four disease compartments: susceptible, exposed (infected but not infectious), infectious, and recovered. The progression from S to E was stochastic and determined by the probability of infection (Appendix 1: EQ 1 and 2). Infectious individuals progressed from I1 (infectious, but not yet symptomatic) to I2 (infectious with both symptomatic and asymptomatic cases). The rate of progression from E to I1 was stochastic, determined by a mean incubation period of 5 days (Lauer et al., 2020; Appendix 1: EQ 3). Individuals stochastically transition from I1 to I2 based on a mean period of 2 days, (He et al., 2020; Appendix 1: EQ 4). Recognizing that a significant portion of the transmission of SARS-CoV-2 can occur before symptoms (44%; He et al., 2020), we built a boxcar compartment at I2, forcing a one-day delay until an individual could be recognized as symptomatic. After exiting the boxcar, 50% of those infectious cases were distinguished as symptomatic (Denny et al., 2020; Zhang et al., 2020). Transitions from I2 to R were determined by a post-symptomatic period of 7 days (He et al., 2020; Appendix 1: EQ 5).

$$\begin{aligned} \text{EQ 1: } S_{t,i+1} &= S_{t,i}(e^{\frac{-\beta I_t}{N_t}}) \\ \text{EQ 2: } E_{t,i+1} &= S_{t,i}(1-e^{\frac{-\beta I_t}{N_t}}) - E_{t,i}(1-e^{\frac{-1}{5}}) + \pi C \\ \text{EQ 3: } I1_{t,i+1} &= E_{t,i}(1-e^{\frac{-1}{5}}) - I1_{t,i}(1-e^{\frac{-1}{2}}) \\ \text{EQ 4: } I2_{t,i+1} &= I1_{t,i}(1-e^{\frac{-1}{2}}) - I1_{t,i}(1-e^{\frac{-1}{7}}) \\ \text{EQ 5: } R_{t,i+1} &= I1_{t,i}(1-e^{\frac{-1}{7}}) + R_{t,i} \end{aligned}$$

where S, E, I1, I2, and R represent the epidemic categories with timestep denoted by t, on- or off-campus affiliation denoted by i, and pi denotes the daily probability of community infectious introductions to the population of size C.

We included two basic subpopulation components in the model for on-campus and off-campus students. The abundance of each subpopulation was determined by enrollment data from a local university (Montana State University, Bozeman, Montana). The two subpopulations mixed homogeneously and epidemiological conditions can be modified to suit assumptions about student behavior and dormitory conditions. Individuals were removed from the mixed population in three ways: (1) symptomatic cases (a subset of I2) could elect for diagnostic testing, (2) random individuals from all compartments could be tested via random screening and removed if test-positive. (3) and random individuals from all compartments could be removed via contact tracing. We included two parameters in the model to describe how population behavior might alter the efficacy of testing and testing demand: (1) "compliance" moderated the proportion of students who participated in screening testing, who tested positive through screening, and close contacts who elected to isolate or quarantine and (2) "care-seeking" moderated the proportion of students who elected to seek diagnostic testing after demonstrating symptoms. The ability to identify symptomatic infectious cases was determined by the proportion of I2 cases that were symptomatic (50% in below simulations), the sensitivity of the test applied (diagnostic RT-qPCR is generally high, modeled at 98% below), and the probability that a student seeks care after developing symptoms (generally assumed 100% in lower simulations, but see Appendix 3 SI: Fig. 4). Symptomatic demand for tests was determined as the number of individuals in the I2 compartment who appeared at the rate of symptoms in infected individuals (50%) and the rate of care-seeking (100% here). The ability to identify infectious individuals through screening was determined by the frequency of testing (limited by daily screening limits), the sensitivity of the screening test, the compliance of students with screening testing (generally assumed 100% in below simulations unless specified), and prevalence of infection over time. Finally, infected cases were assumed to have contacts and these contacts were assigned via a random draw from a Poisson distribution with a mean of 5 (Prem et al., 2017); however, contact tracing limits constrained the number of contacts available to isolate per day. Screened individuals and contacts of test-positive individuals were removed from the mixing population by the rate of compliance, reducing the number of isolated and quarantined individuals as compliance decreased from 100%.

The length of the simulations was 150 days. R_0 was assumed to be 3, a rather fast-paced epidemic but not unreasonable given the epidemic trajectory on high-density populations (Salje et al., 2020). $R_{\text{effective}}$ was assumed to be R_0 multiplied by the proportion of non-immune individuals. β was assumed to be the $R_{ ext{effective}}$ distributed over a nine-day infectious period. Immunity was assumed to be 5% which is reasonable based on disease incidence data from our institution at the time of writing (Healthy Gallatin, n.d.), though immunity will continue to increase with vaccination and pathogen spread (we vary immunity in Appendix 3 SI: Fig. 2). Stochastic introductions of cases to resemble community-to-campus transmission were assumed as one case every 10 days to both on-campus and off-campus subpopulations. The total population size was 20,000 with 25% of students in the on-campus subpopulation (relevant if epidemiological assumptions about on- and off-campus populations differ). Contact tracing was not considered in the body of the paper, providing a very conservative comparison of screening testing strategies to symptomatic-only testing strategies (as contact tracing increases, the efficacy of screening testing grows, relative to symptomatic-only testing). We do, however, show the effect of added contact tracing capacity in Appendix 3 SI: Fig. 3. We assumed that 50-100% of the population complies with behavioral controls post-testing (compliance), while 100% of students with symptoms seek care (care-seeking). We show how assumptions about compliance and care-seeking affect epidemic size in Appendix 3 SI: 4. Finally, within our model, we assumed that positive cases were isolated for 10 days. In general, 95% quantiles were reported for model output and diagnostics based on between 25-200 repetitions (specified in figure legends). As diagnostics of our model, we present how moderating model inputs (R_o , initial prevalence, initial immunity, community case introduction, contact tracing limitations, student compliance, student care-seeking, testing sensitivity, and testing strategies) within reasonable parameter space moderate total case count in simulations (Appendix 3 SI: Fig. 1-7).

All code and simulations were performed in R version 3.6.3 (*R: A Language and Environment for Statistical Computing.*, 2020) and all model scripts and associated code are available at https://github.com/wilrogers/COVID-Modeling.

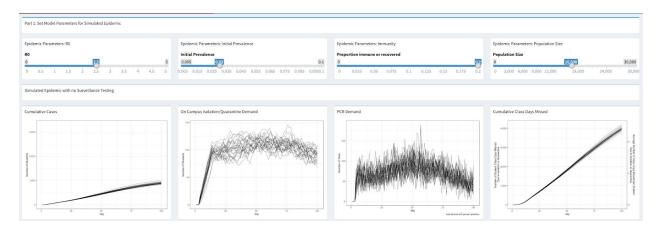
Table 1: Model parameters

Parameter	Value	Source
LAMP Sensitivity	77%	Chang et al. (in prep)
LAMP Specificity	98%	Chang et al. (in prep)
RT-qPCR Sensitivity	98%	Wang et al., 2020
RT-qPCR Specificity	98%	Wang et al., 2020
Incubation period	5 days	Lauer et al., 2020
Time to symptom onset	2 days	He et al., 2020
Percent symptomatic	50%	Zhang et al., 2020
Time to recovery	7 days	He et al., 2020
Initial prevalence	1%	Local University
Initial immunity	5%	Local University
R _o	3	Salje et al., 2020
Percent on-campus	25%	Local University
Daily probability of community introduction on- and off-campus	10%	Assumed
Size of community introduction on- and off-campus	1	Assumed

References

Denny, T. N., Andrews, L., Bonsignori, M., Cavanaugh, K., Datto, M. B., Deckard, A., DeMarco, C. T., DeNaeyer, N., Epling, C. A., Gurley, T., Haase, S. B., Hallberg, C., Harer, J., Kneifel, C. L., Lee, M. J., Louzao, R., Moody, M. A., Moore, Z., Polage, C. R., ... Wolfe, C. R. (2020). Implementation of a Pooled Surveillance Testing Program for Asymptomatic SARS-CoV-2 Infections on a College Campus—Duke University, Durham, North Carolina, August 2–October 11, 2020. *Morbidity and Mortality Weekly Report*, 69(46), 1743–1747. https://doi.org/10.15585/mmwr.mm6946e1

- He, X., Lau, E. H. Y., Wu, P., Deng, X., Wang, J., Hao, X., Lau, Y. C., Wong, J. Y., Guan, Y., Tan, X., Mo, X., Chen, Y., Liao, B., Chen, W., Hu, F., Zhang, Q., Zhong, M., Wu, Y., Zhao, L., ... Leung, G. M. (2020). Temporal dynamics in viral shedding and transmissibility of COVID-19. *Nature Medicine*, *26*(5), 672–675.
 https://doi.org/10.1038/s41591-020-0869-5
- Healthy Gallatin. (n.d.). Press Releases & Weekly Reports. *Healthy Gallatin*. Retrieved February 24, 2021, from https://www.healthygallatin.org/about-us/press-releases/
- Lauer, S. A., Grantz, K. H., Bi, Q., Jones, F. K., Zheng, Q., Meredith, H. R., Azman, A. S.,
 Reich, N. G., & Lessler, J. (2020). The Incubation Period of Coronavirus Disease 2019
 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application.
 Annals of Internal Medicine, 172(9), 577–582. https://doi.org/10.7326/M20-0504
- Prem, K., Cook, A. R., & Jit, M. (2017). Projecting social contact matrices in 152 countries using contact surveys and demographic data. *PLOS Computational Biology*, *13*(9), e1005697. https://doi.org/10.1371/journal.pcbi.1005697
- R: A language and environment for statistical computing. (2020). [R]. R Core Team. https://www.R-project.org/
- Salje, H., Tran Kiem, C., Lefrancq, N., Courtejoie, N., Bosetti, P., Paireau, J., Andronico, A., Hozé, N., Richet, J., Dubost, C.-L., Le Strat, Y., Lessler, J., Levy-Bruhl, D., Fontanet, A., Opatowski, L., Boelle, P.-Y., & Cauchemez, S. (2020). Estimating the burden of SARS-CoV-2 in France. *Science*, 369(6500), 208–211. https://doi.org/10.1126/science.abc3517
- Wang, H., Liu, Q., Hu, J., Zhou, M., Yu, M., Li, K., Xu, D., Xiao, Y., Yang, J., Lu, Y., Wang, F., Yin, P., & Xu, S. (2020). Nasopharyngeal Swabs Are More Sensitive Than Oropharyngeal Swabs for COVID-19 Diagnosis and Monitoring the SARS-CoV-2 Load. Frontiers in Medicine, 7. https://doi.org/10.3389/fmed.2020.00334
- Zhang, H.-J., Su, Y.-Y., Xu, S.-L., Chen, G.-Q., Li, C.-C., Jiang, R.-J., Liu, R.-H., Ge, S.-X.,

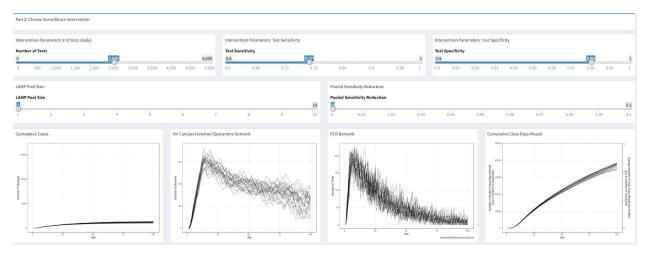

Zhang, J., Xia, N.-S., & Quan, T. (2020). Asymptomatic and symptomatic SARS-CoV-2 infections in close contacts of COVID-19 patients: A seroepidemiological study. *Clinical Infectious Diseases*, ciaa771. https://doi.org/10.1093/cid/ciaa771

Appendix 2: Shiny app tutorial

The Shiny app for simulating an epidemic and evaluating testing interventions contains three distinct parts. The first component focuses on parameters for simulating the epidemic, without new, targeted interventions. This captures the baseline outcome at a particular location or institution. The second component of the Shiny app allows researchers to specify parameters for an intervention; in particular, sensitivity and specificity of the test, along with testing frequency can be manipulated. The final component of the model assesses the impact of the intervention by comparing public health metrics and monetizing economic costs for current strategies relative to various interventions. Given the uncertainty in model parameters and differences across locations, the Shiny app provides a user-friendly interface for researchers and decision makers to evaluate intervention strategies.

Part 1: Setting Model Parameters for Simulated Epidemic

There are four model parameters that need to be set to capture likely outcomes of an ongoing epidemic. R_0 , initial prevalence, and proportion of the population that is vaccinated, recovered, or otherwise immune all control the dynamics of the epidemic. The final parameter is population size, which scales the epidemic to match the population of interest. Given these model parameters, the Shiny app generates four graphics that capture the cumulative number of positive cases as well as other metrics: quarantine/isolation housing demand, PCR testing demand, and cumulative class days missed. A snapshot of the default values can be seen in Appendix 1 SI: Fig. 1.



SI Figure 1: Part 1 of the Shiny application allows users to set parameters for the epidemic and visualize potential outcomes under those settings. The first panel contains cumulative positive cases, the second

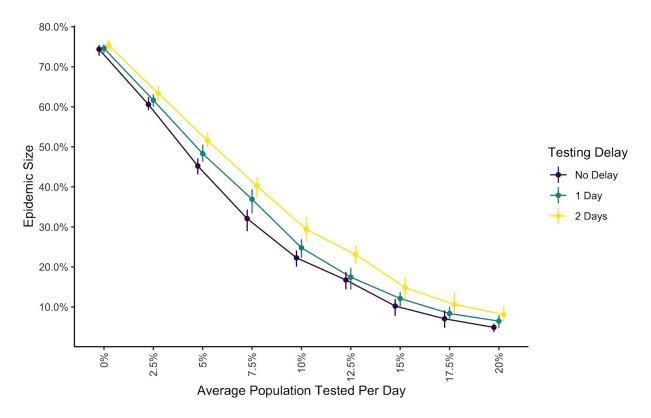
panel shows the demand for quarantine or isolation housing, the third panel contains the symptomatic PCR testing demand, and the fourth panel shows cumulative class days missed by students in isolation or quarantine.

Part 2: Choose Surveillance Intervention

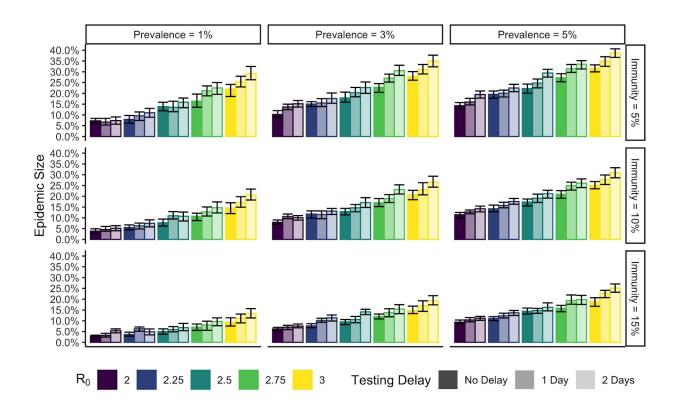
The second component of the shiny app focuses on setting a testing intervention strategy. Users can select a daily frequency of testing along with setting test specificity and sensitivity. The Shiny app also permits pooled testing, so users can assess the impact of pooled testing strategies and potentially account for reduced test sensitivity as a function of pool size. Using the testing intervention, the Shiny app generates the same four graphics as Part 1. A snapshot of the second part of the Shiny app can be seen in Appendix 1 SI: Fig. 2.

SI Figure 2: Part 2 of the Shiny application allows users to set testing intervention parameters for the epidemic and assess the likely outcomes. As in Figure A1.1, the output contains cumulative positive cases, demand for quarantine or isolation housing, symptomatic PCR testing demand, and cumulative class days missed by students in isolation or quarantine.

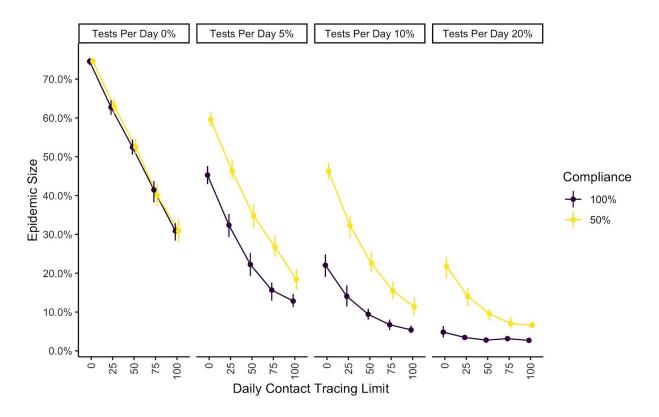
Part 3: Choose Surveillance Intervention

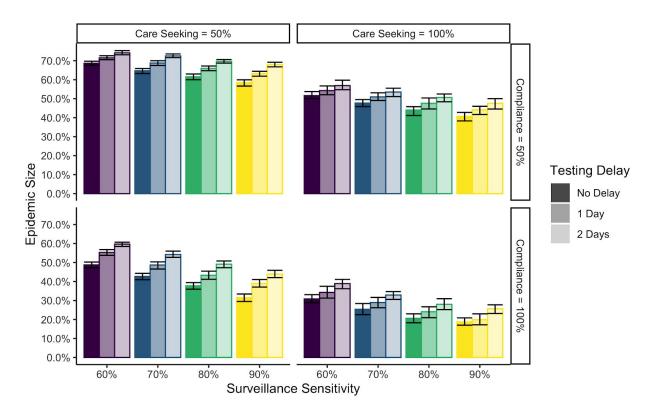

The final piece of the Shiny app summarizes the total epidemic size with and without a testing intervention. In addition to public health metrics, the app also allows economic considerations of a testing intervention. Users can enter the cost of a screening test as well as the cost of symptomatic testing.

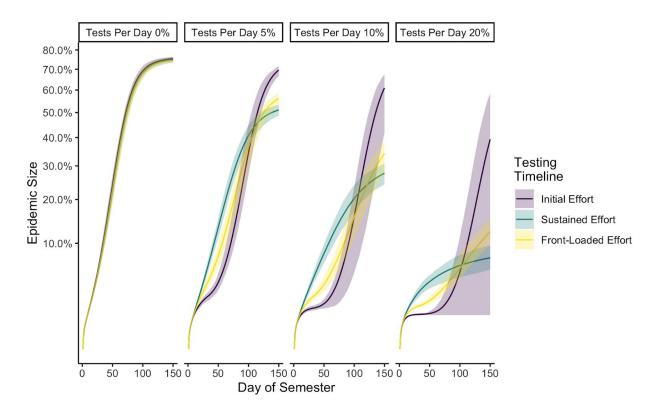
Furthermore, economic costs can be associated with quarantine and isolation housing as well as missed class time. Finally, the app reports estimated costs associated with the status quo and a testing intervention.

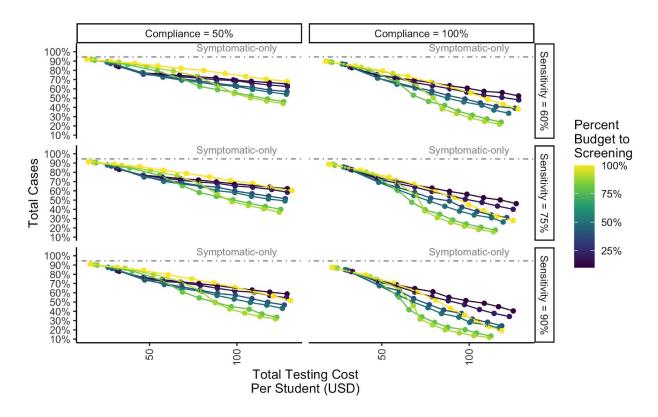


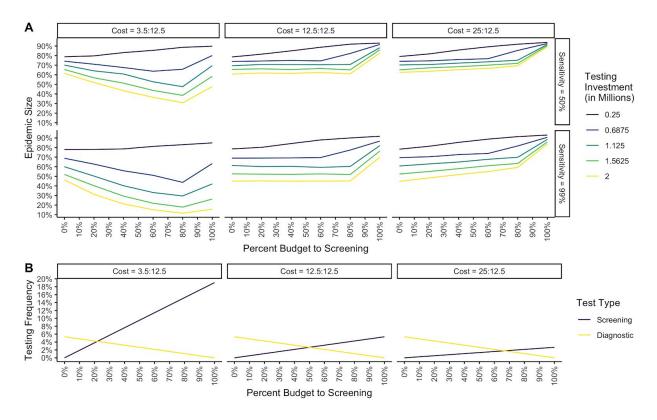
SI Figure 3: Part 3 of the Shiny application allows users to set economic costs associated with testing, isolation, and missed class time. This part of the shiny app also summarizes and compares expected costs between the status quo and a testing intervention.


Appendix 3: Model sensitivity to input


SI Figure 1: Epidemic size as a result of frequency of screening testing within a population of 20,000 (0-20%) and across three levels of testing delays ("no delay", "1 day", and "2 days"). This simulation used the constant testing timeline, with 100% compliance and care-seeking, 1% initial prevalence, 5% immunity, 0.5 symptomatic rate, R_0 of 3, PCR sensitivity and specificity of 99%, LAMP sensitivity of 77.1%, LAMP specificity of 98%, one community introduction per 10 days to both on- and off-campus, no contact tracing, no pooling, and a 150 day semester with 50 simulations per combination.


SI Figure 2: Epidemic size across varying levels of initial prevalence (1-5%) and initial immunity (5-15%) with various testing delays ("no delay", "1 day", and "2 days") and R_0 (2-3). This simulation used the constant testing timeline with 2000 tests per day (10% of the population), compliance and care-seeking of 100%, 0.5 symptomatic rate, PCR sensitivity and specificity of 99%, LAMP sensitivity of 77.1%, LAMP specificity of 98%, one community introduction per 10 days to both on- and off-campus, no contact tracing, no pooling, and a 150 day semester with 50 simulations per combination.


SI Figure 3: Epidemic size as a result of varying degrees of contact tracing effort (0 to 100 traces per day) across high (100%) and low compliance (50%) of students with testing and varying degrees of average screening tests per day (0-20%). This simulation used the constant testing timeline, with 100% care-seeking, 1% initial prevalence, 5% immunity, 0.5 symptomatic rate, R_0 of 3, PCR sensitivity and specificity of 99%, LAMP sensitivity of 77.1%, LAMP specificity of 98%, one community introduction per 10 days to both on- and off-campus, no contact tracing, no pooling, and a 150 day semester with 50 simulations per combination.


SI Figure 4: Epidemic size across high (100%) and low (50%) compliance and care-seeking along with various testing delays ("no delay", "1 day", and "2 day") and screening test sensitivity (60-90%). This simulation used the constant testing timeline with 2000 tests per day (10% of the population), 1% initial prevalence, 5% immunity, 0.5 symptomatic rate, R_0 of 3, PCR sensitivity and specificity of 99%, LAMP specificity of 98%, one community introduction per 10 days to both on- and off-campus, no contact tracing, no pooling, and a 150 day semester with 100 simulations per combination.

SI Figure 5: Epidemic size (square root-y axis) across varying testing strategies ("initial", "sustained", and "front-loaded" testing efforts) and testing levels (0-20%). This simulation used the constant testing timeline with 2000 tests per day (10% of the population), compliance and care-seeking of 100%, 0.5 symptomatic rate, PCR sensitivity and specificity of 99%, LAMP sensitivity of 77.1%, LAMP specificity of 98%, one community introduction per 10 days to both on- and off-campus, no contact tracing, no pooling, and a 150 day semester with 50 simulations per combination.

SI Figure 6: Epidemic size (y-axis) and total cost (x-axis; inclusive of testing and isolation costs) as they vary across levels of compliance (50-100%), sensitivity (60-90%), and the percent of testing budget devoted to screening versus diagnostic testing (0-100%) across assumed testing investments of \$0 to \$2 million USD. This simulation used the constant testing timeline, with 100% care-seeking, 1% initial prevalence, 5% immunity, 0.5 symptomatic rate, R_0 of 3, PCR sensitivity and specificity of 99%, LAMP specificity of 98%, one community introduction per 10 days to both on- and off-campus, no contact tracing, no pooling, and a 150 day semester with 25 simulations per combination. We assumed that LAMP tests were 3.5 USD, PCR tests were 12.5 USD, and that the cost to isolate on-campus students was 25 USD.

SI Figure 7: (A) Epidemic size (y-axis) and percent of testing investment devoted to screening (x-axis) as they vary across levels of cost ratios of the screening test to the cost of the diagnostic test (3.5:12.5 USD, 12.5:12.5 USD, 25:12.5 USD), sensitivity (50-98%), and across assumed testing investments of 0.25 to 2 million USD. Additionally, (B) the frequency of testing based on an initial investment of 2 million USD with varying cost ratios between screening and diagnostic tests with varying levels of budget devotion to screening testing. This simulation used the constant testing timeline, with 100% compliance and care-seeking, 1% initial prevalence, 5% immunity, 0.5 symptomatic rate, R_0 of 3, PCR sensitivity and specificity of 99%, LAMP specificity of 98%, one community introduction per 10 days to both on- and off-campus, no contact tracing, no pooling, and a 150 day semester with 25 simulations per combination. We assumed that LAMP tests were 3.5 USD, PCR tests were 12.5 USD, and that the cost to isolate on-campus students was 25 USD.

Appendix 4: Description of university testing programs in the US

In March 2020, as cases of COVID-19 increased, most universities and residential colleges in the United States cancelled in-person classes, sent resident students home, and finished the semester online. As the fall semester approached, after a summer marked by rising numbers of COVID-19 cases, many of those same universities opted to reopen, prompting influxes of students from across the country. This migration of students to residential campuses posed a unique challenge to controlling SARS-CoV-2 epidemics both on campuses and in the surrounding communities. Additionally, a majority of university students are under the age of 30, increasing the likelihood that they may be asymptomatic carriers. This creates a situation where individuals can become infected but fail to guarantine, increasing transmission not only on campus, but potentially in the surrounding communities. Due to these unique challenges, many universities developed strategies to control viral spread, including having students test and/or quarantine for two weeks upon arrival to campus (similar to front-loaded scenario in our models), limiting the number of students staying on-campus, reducing in-person instruction, and implementing test, trace, and isolate programs to identify and quarantine active cases. Although some universities tested only symptomatic individuals, screening testing programs offer the best, if not the only measure to identify and isolate asymptomatic carriers of SARS-CoV-2. Numerous college campuses nationwide have implemented asymptomatic screening testing programs. We compiled the testing plans of the 74 land-grant universities in the United States (excluding those institutions in associated US territories such as Micronesia). Of the 72 institutions with published COVID-19 testing plans, 53 included screening testing programs. Of those institutions that implemented screening testing programs, all have opted to continue or expand their testing programs for the spring 2021 semester, indicating that these programs had significant value to the institutions that implemented them for the fall. A direct comparison of the efficacy of screening testing plans based on absolute case counts is confounded by the fact that universities with robust screening testing are likely to catch all or most of their on-campus cases, leading to higher case counts, while those institutions that test less frequently will find fewer cases. To overcome this confound, we offer the salient details of a few screening testing programs below, and clarify how these examples can be used to guide policy decision making for universities considering screening testing plans going forward.

Land Grant Institution	Asymptomatic testing?	Fall 2020 Testing Program Details	Spring 2021 testing plan
University of Arkansas-Fayetteville	No	Symptomatic PCR testing	TBD
University of Arkansas-Pine Bluff	No	Symptomatic PCR testing	TBD
University of Idaho	No	Symptomatic PCR testing	Implementing surveillance testing program, details TBD
White Earth Tribal and Community College	No	Mostly online classes	TBD
Leech Lake Tribal College	No	Mostly online classes	TBD
Alcorn State University	No	Symptomatic PCR testing	TBD
Montana State University	No	Symptomatic PCR testing	Implementing surveillance testing program for residential students at the beginning of the semester
University of Nevada Reno	No	Symptomatic PCR testing	TBD
North Carolina A and T State University	No	Symptomatic PCR testing	TBD
Oklahoma State University	No	Symptomatic PCR testing	TBD
Langston University	No	None indicated	TBD
South Carolina State University	No	One special testing event was held, most courses held online	Mostly virtual delivery and limited housing available
Virginia State University	No	No published plan	TBD
University of Missouri	No	Symptomatic PCR testing	TBD
University of Alaska Fairbanks	No	Symptomatic PCR testing and arrival testing for students and employees arriving from out of state or living in residence halls.	TBD
Central State University	No	Symptomatic testing, and arrival testing	TBD
Kentucky State University	Yes	Periodic testing events throughout the semester	TBD
Fond du Lac Tribal and Community College	Yes	Periodic testing events throughout the semester	TBD
Mississippi State	Yes	Periodic testing events throughout	TBD

T Iniconside	the semester	
University	the semester	

Alabama A and M University	Yes	Initial testing of all students returning to campus and sentinel testing (2.5% of random student population) during the semester	Remote learning for the spring
Auburn University	Yes	Opt-in sentinel population (2.5-5% of community) testing	Continuing, potentially expanding current surveillance strategy, details TBD
Tuskegee University	Yes	Initial entry test for all students, sentinel testing (15% of student body) throughout the semester	TBD
University of Arizona	Yes	Random PCR tests of asymptomatic students and staff	Continuing, potentially expanding current surveillance strategy, details TBD
University of California-Berkeley	Yes	Required for resident students 2x/week and recommended/available to all	Continuing current surveillance strategy and flexible course delivery options
Colorado State University	Yes	Saliva-based screening freely available to students, faculty and staff	Continuing current surveillance strategy and flexible course delivery options
University of Connecticut	Yes	Entry and random surveillance testing required for all students	In person following an initial 2 week online period so all students can quarantine
University of Delaware	Yes	Random surveillance testing	Continuing current testing program
Delaware State University	Yes	Twice weekly for all dorm residents and staff and students receiving in person classes; most courses delivered online	Continuing current testing program
University of Florida	Yes	Testing for symptomatic students, those working in the clinic, and arriving from specific states	Expanding testing to all undergraduates
Florida A and M University	Yes	Sentinel testing of both students and faculty	TBD
University of Georgia	Yes	500+ tests a day for students, staff and faculty	Continuing current surveillance strategy and flexible course delivery options
Fort Valley State University	Yes	Mandatory random testing of 5% of students residing on campus	
University of Hawaii	Yes	Surge testing, large scale testing performed at different points	Continuing current surveillance strategy

		during the semester	
University of Illinois	Yes	Mandatory twice a week testing for all students	Continuing current surveillance strategy and flexible course delivery options
Purdue University	Yes	Random testing throughout semester for students, faculty, and staff	Continuing current surveillance strategy and flexible course delivery options
Iowa State University	Yes	On campus testing for students, staff and faculty	Continuing current surveillance strategy and flexible course delivery options
Kansas State University	Yes	Voluntary asymptomatic testing for students, staff and faculty, expanded throughout the semester	TBD
University of Kentucky	Yes	Arrival testing followed by random surveillance	TBD
Louisiana State University	Yes	Free testing available to anyone on campus, but participation is not required	Continuing current surveillance strategy and flexible course delivery options

Southern University and A and M College	Yes	Free testing available to anyone on campus, but participation is not required	Continuing current surveillance strategy and flexible course delivery options
University of Maine	Yes	Arrival testing followed by random surveillance	Continuing current surveillance strategy and flexible course delivery options
University of Maryland College Park	Yes	Arrival testing followed by required monthly testing for all students that are on campus	Continuing current surveillance strategy and flexible course delivery options
University of Massachusetts Amherst	Yes	Weekly tests required for all students	Continuing current surveillance strategy with a majority of classes online and limited students allowed on campus
Massachusetts Institute of Technology	Yes	All students are tested twice a week	Continuing current surveillance strategy and flexible course delivery options
Michigan State University	Yes	Free testing available to anyone on campus but not required. Periodic testing of a volunteer sentinel population throughout semester	Additional on campus classes and expanded testing with required registration in surveillance programs for on campus students and undergrads

University of Minnesota	Yes	Single saliva-based test for each student	TBD
Lincoln University	Yes	Random testing throughout semester for both students, faculty and staff	Starting remote in Jan., with plan to transition to in-person classes in March
University of Nebraska Lincoln	Yes	Free testing available to anyone on campus but participation is not required	TBD
University of New Hampshire	Yes	Required testing of all students twice a week	Continuing current surveillance strategy and flexible course delivery options
Rutgers, the State University of NJ	Yes	Available on request based on risk assessment for the limited number of individuals currently on campus	Expanding on campus activities, testing program TBD
New Mexico State University	Yes	Required arrival testing, and weekly surveillance testing of athletes and 25% of student population	Continuing current surveillance strategy and flexible course delivery options
Cornell University	Yes	Testing of all students twice per week	Continuing current surveillance strategy and two negative tests mandatory to return to campus
North Carolina State University	Yes	Limited voluntary surveillance testing	Continuing current surveillance strategy, and requiring a negative test to return to campus
North Dakota State University	Yes	Free asymptomatic testing started for students at a few scheduled testing events	Expanding current program to regular voluntary surveillance testing of all students
Ohio State University	Yes	Free testing available to anyone on campus but participation is not required	TBD
Oregon State University	Yes	Available to a subset of students on a limited basis	Expanding to all faculty, staff and students voluntarily and requiring resident students' participation
Pennsylvania State University	Yes	Daily tests of ~1% of the population	Arrival testing followed by continuing or expanding existing program
University of Rhode Island	Yes	Mandatory surveillance testing of all students throughout the semester, staff participation is voluntary	Continuing current survelliance strategy with expansion TBD and flexible course delivery options
Clemson University	Yes	Already updated for spring, unknown fall status	Required routine surveillance testing
South Dakota State	Yes	Students are eligible, voluntary	Continuing current surveillance

University			strategy
University of Tennessee	Yes	Testing available for all asymptomatic students and staff; required saliva pooled testing for campus residents	TBD
Tennessee State University	Yes	Free testing available to anyone on campus but participation is not required	TBD, 85% remote learning
Texas A and M University	Yes	Free testing available to anyone on campus and general public but participation is not required	Continuing current surveillance strategy and flexible course delivery options
Prairie View A and M University	Yes	Free testing available to anyone on campus but participation is not required	TBD
Utah State University	Yes	Free testing available to anyone on campus but participation is not required	TBD

University of Vermont	Yes	All students are tested weekly	Continuing current surveillance strategy and flexible course delivery options, with possible return testing required
Virginia Tech	Yes	Free testing available to anyone on campus but participation is not required	Required arrival testing, surveillance not yet announced
Washington State University	Yes	Asymptomatic testing is available to anyone on campus, course delivery is primarily virtual	Mostly virtual delivery, continuing current surveillance and increasing all around testing capacity for all
West Virginia University	Yes	Goal to test 200 people/week with a saliva based assay	Continuing current surveillance strategy and flexible course delivery options
West Virginia State University	Yes	Random tests of on- campus individuals	Continuing current surveillance strategy and flexible course delivery options, with testing required for return to campus
University of Wisconsin-Madison	Yes	Surveillance testing available to students, faculty and staff, required in campus housing	Expanding testing program to test all students twice/week with saliva-based qPCR
University of Wyoming	Yes	Undergraduate students tested twice weekly with saliva-based pooled testing, follow up PCR test required	Continuing, potentially expanding current surveillance strategy, details TBD

		for members of positive pools	
	No Information		
Red Lake Nation College	Available	No Information Available	No Information Available