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Abbreviation Meaning
MS Multiple Sclerosis
NAFLD Non-Alcoholic Fatty Liver Disease
CAD Coronary Artery Disease
A. Fib. Atrial Fibrillation
ALS Amyotrophic Lateral Sclerosis
AUC Area Under the Reciever Operator Curve
PRS Polygenic Risk Score
Imp. Improvement
PRS Polygenic Risk Score
AUC Area under the Receiver Operator Curve
NRI Net Reclassification Index
Diff. Different

Table M1. Abbreviations used throughout this investigation

Overview

The detailed analysis of polygenic risk scores began with the acquisition of GWAS summary statistics and supplementary data,

involved the adjustment of summary statistics through polygenic risk score generative method and scoring of those statistics,

and required diverse analyses of polygenic risk score predictive performance and validity. A detailed reporting of all data

required, scripts written, and plots generated is available at https://kulmsc.github.io/pgs_book/index.html.

Data Preparation

Acquisition of Summary Statistics

The majority of summary statistics were acquired from the GWAS Catalog (https://www.ebi.ac.uk/gwas/downloads/summary-

statistics). All studies were sought that had relatively high sample size, studied relatively prevalent, binary, disease traits,

contained both minor and major alleles, and did not use UK Biobank data. In total 21 traits were chosen. All summary statistics

were downloaded directly from the FTP server. Two additional summary statistics were acquired that were not within the

GWAS Catalog. Migraine data from Gormley et al. came from a 23andMe data agreement, and Multiple Sclerosis data from

the Interntional Multiple Sclerosis Genetics Consortium came from their own website.

A conversion script was deployed to regularize all of the various summary statistics. To only retain the highest quality

single nucleotide polymorphisms (SNPs), a set of stringent criteria were assumed. If a SNP broke any of the following rules it

was removed from the larger summary statistics:

• Longer than a single base pair

• Ambiguous (https://www.snpedia.com/index.php/Ambiguous_flip)

• Did not contain a rsID

• Was not found within the UK Biobank Imputed dataset
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Disease GWAS First Author Sample Size No. SNPs
Lupus Bentham 14267 5596514
A. Fib. Christophersen 133073 7596547
Asthma Demenais 142486 1972099
Celiac Disease Dubois 15283 510529
Migraine Gormley 375752 9461477
MS IMSGC 34892 21940
Vitiligo Jin 9735 6366969
Gout Kottgen 69374 2051407
Crohns Disease Liu-1 20883 83995
Ulcerative Colitis Liu-2 27432 95788
Type 2 Diabetes Mahajan 344144 44700
Stroke Malik 524354 6066909
Breast Cancer Michailidou 139274 6870259
NAFLD Namjou 9677 2319122
CAD Nikpay 187599 6528252
Rheumatoid Arthritis Okada 79799 2078058
Type 1 Diabetes Onengut 18856 94982
Ovarian Cancer Phelan 85426 7443207
ALS Rheenen 36052 6276146
Prostate Cancer Schumacher 140254 6360250
Heart Failure Shah 977323 6073796
Psoriasis Tsoi 33394 55697
Depression Wray 142646 3254439

Table M2. The genome wide association studies analyzed throughout this investigation along with their basic meta-statistics,
sample size of the analyzed cohort and the number of single-nucleotide polymorphisms in the corresponding summary
statistics.
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• Was not on chromosome 1-22

• Was removed by the LDSC munge procedure (https://github.com/bulik/ldsc/wiki)

• Standard error was significantly different from the same SNP for complementary FinnGenn summary statistics (https:

//privefl.github.io/bigsnpr/articles/LDpred2.html)

• Could not be flipped or reversed to match UK Biobank alleles

In addition to the quality control, the alleles were either flipped or reversed to match the UK Biobank alleles by utilizing the

snp_match function from the bigsnpr function. Lastly, the summary statistic were broken into a set for each chromosome.

Preparation of UK Biobank Genetic Data

Before the UK Biobank imputed data was utilized to adjust summary statistics and create scores, it was carefully quality

controlled. The individual-level quality control involved the creation of a custom population sorting algorithm. In short, the 40

genetic principal components were clustered using k-nearest neighbor and each cluster was easily identified as being either

Asian, European or African by comparing self-reported ethnicity. Individuals whose self-described ethnicity did not match

their cluster label were removed from all downstream analyses. In addition, individuals labeled by the UK Biobank as being

hetrozygosity outliers, having sex chromosome aneuploidy, or excess relatives were removed. Lastly, any individuals in a

specific scoring or adjustment computation that held more than a 10% missing genotype rate were removed. With respect to

genetic variants, any SNPs in a specific scoring or adjustment computation that had an allele frequency less than 0.01 or a

Hardy-Weinberg Equilibrium p-value (calculated through the midpoint test) less than 1×10−50 were removed.

Processing of genetic material, except when required by specific adjustment methods, utilized the bgenix and PLINK

utilities. The most efficient, and thereby utilized, combination of these utilities started with bgenix to subset the necessary

SNPs, PLINK2 to complete additional QC, and PLINK1.9 to complete scoring, clumping or other computations.

Preparation of UK Biobank Phenotypic and Covariate Data

The process of binary labeling of individuals as being either affected or unaffected by a disease of interest started with six data

sources and ultimately generated five different labels. The six data sources include non-cancer, cancer-specific and medication

self-reports of disease status at time of enrollment in the UK Biobank and ICD10, ICD9 and OPCS codes from hospital inpatient

records. If a specified code was present in any of the records then that records was noted as 1, otherwise it would be a 0. In

addition, the hospital inpatient records were linked to accurate dates of disease onset. For non-electronic health record data the

date of enrollment was considered the date for the disease onset.

From these six vectors of ones and zeros the five phenotype definitions were created by asking whether there was a single

one, or multiple ones in a subset of columns. The date of onset was taken to be the minimum date in the subset of columns.

The covariate data was created in a virtually identical manner. However, there was the additional complication of ensuring

the covariate occurred before the disease. The date of onset of covariates was therefore considered directly within calling the
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Disease Sex Cancer Non-Cancer ICD9 ICD10 OPCS Medications
Lupus A NA 1381 710 M321|M328|M329 NA NA
A. Fib. A NA 1471 4273 I48 K622|K623 1140888482
Asthma A NA 1111 493 J45|J46 NA 1141168340
Celiac Disease A NA 1456 579 NA NA NA

Migraine A NA 1265 346 G43 NA

1141163670|1141167932|
1141172728|1141185436|
1141192666|1141150620|
1141151284

MS A NA 1261 340 G35 NA

1141188640|1141188642|
1141150596|1141172620|
1141165546|1141167618|
1141189254|1141189256

Vitiligo A NA 1661 7091 L80 NA NA
Gout A NA 1466 274 M10 NA 1140875408
Crohns Disease A NA 1463 556 K51 NA 1141153242
Ulcerative Colitis A NA 1462 555 K50 NA NA
Type 2 Diabetes A NA 1223 NA E11 NA NA

Stroke A NA 1081
431|432|433|
434|435|436|
437|438

I60|I61|I62|
I633|I64|I65|
I66|I67|I68|I69

U543|Z35 NA

Breast Cancer F 1002 NA 174 C50 B27|B28|B29 1140923018|1141190734
NAFLD A NA NA 5718 K760 NA NA

CAD A NA 1075|1076 410|411|412
I21|I22|I23|
I241|I252

K40|K41|K45|
K49|K50|K75 NA

Rheumatoid Arthritis A NA 1464 714 M05|M06 U504
1141145896|1140909702|
1141188588|1141180070|
1140871188

Type 1 Diabetes A NA 1222 NA E10 NA NA
Ovarian Cancer F 1039 NA 183 C56 NA NA
ALS A NA NA 3352 G122 X852 1141195974

Prostate Cancer M 1044 NA 185 C61 NA
1141150594|1140870274|
1140921100

Heart Failure A NA 1076 428 I50 NA NA
Psoriasis A NA 1453 6960|6961 L40 NA NA
Depression A NA 1286 NA F33 NA NA

Table M3. The element within each data type used to identify the disease phenotypes. The "|" character represents an "or"
operator, in other words that if any of the elements were recorded in the data type the phenotype was considered positive. The
sex column identifies whether only one sex was analyzed for a given disease.

Self-Reported ICD ICD or
Self-Reported Any Double-Reported

Non-Cancer X X X X
Cancer X X X X
ICD9 X X X X
ICD10 X X X X
OPCS X X X X
Medication X X

Table M4. The data types considered for each phenotype definition. For the double-reported definition two or more of the data
types had to contain a positive record of the phenotype.
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Disease Extra Covariates
Lupus sex
A. Fib. age,hypertension,congenital heart disease,cardiac arrest,coronary artery disease,alcohol,sleep apnea
Asthma allergic rhinitis,smoking,bmi
Celiac Disease type 1 diabetes
Migraine age,sex,age menopause,hormone replacement therapy
MS age,sex,epstein barr virus
Vitiligo use of sun protection,melanona,non-hodgkins lymphoma
Gout age,sex,obesity,hypertension,diabetes
Crohns Disease smoking
Ulcerative Colitis smoking
Type 2 Diabetes age,sex,bmi,exercise,hypertension,hypocholesteroemia
Stroke age,sex,bmi,age started oral contraceptive,hypertension,hypocholesteroemia,smoking,alcohol,diabetes
Breast Cancer age,sex,bmi,alcohol,age menarche,age menopause,pregnant
NAFLD age,obesity,hypertension,hypocholesteroemia,diabetes
CAD age,sex,bmi,hypocholesteroemia,hypertension,diabetes,smoking
Rheumatoid Arthritis age,sex,smoking,obesity,pregnant
Type 1 Diabetes none
Ovarian Cancer age,bmi,hormone replacement therapy,pregnant,breast cancer
ALS age,diabetes,obesity
Prostate Cancer age,obesity
Heart Failure cardiac arrest,hypertension,congenital heart defects,obesity,diabetes,arrythmia
Psoriasis smoking
Depression alcohol,hormone replacement therapy,age menopause

Table M5. The extra covariates included in the analysis of each disease

ones and zeros, however this date information was not retained later for future modelling. In the final extra covariate analysis

the ICD or Self-Reported definition was used to convert the ones and zeros into a final covariate.

Additional Data

Additional data was utilized in various analyses, including external data directly downloaded and data that was computed

a priori to downstream analyses. The external data include 1000 Genomes genotypes (https://www.cog-genomi

cs.org/plink/2.0/resources#1kg_phase3, functional annotation boundaries (https://storage.go

ogleapis.com/broad-alkesgroup-public/LDSCORE/baseline_v1.1_bedfiles.tgz, https:

//storage.googleapis.com/broad-alkesgroup-public/LDSCORE/ct_and_ctg_bedfiles.tgz),

and variant severity measures (https://pcingola.github.io/SnpEff/ss_dbnsfp/). Additional data such as

external adjusted summary statistics and linkage disequilibrium matrices are specified in their respective analysis section.

The internal data that was generated included heritability values for each measure, generated from LDSC and HDL, and

genetic correlations estimated from LDSC. The heritability values were meta-analyzed when two non-NA or non-zero values

were available. When not available the single value was utilized.

Adjusting Summary Statistics

The summary statistics for each chromosome and GWAS were adjusted using various methods for the purpose of generating

polygenic risk scores. Therefore, these methods will henceforth be referred to as generative methods. The process of adjusting
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Covariate UKBB Phenotype Col. ICD10 ICD9 Non-Cancer Cancer
age 34-0.0 NA NA NA NA
sex 31-0.0 NA NA NA NA
hypertension NA I10 401 1065,1072 NA
congenital_heart_disease NA Q24 746 NA NA
cardiac_arrest NA I21,I46 410,4275 NA NA
coronary_artery_disease NA I25 414 NA NA
alcohol 1558-0.0 NA NA NA NA
sleep_apnea NA G473 NA 1123 NA
allergic_rhinitis NA J30 477 1387 NA
smoking 20116-0.0 NA NA NA NA
bmi 21001-0.0 NA NA NA NA
type_1_diabetes NA E10 250 1222 NA
exercise 884-0.0 NA NA NA NA
hypocholesteroemia NA E780 NA 1473 NA
age_started_oral_contraceptive 2784-0.0 NA NA NA NA
age_menarche 2714-0.0 NA NA NA NA
age_menopause 3581-0.0 NA NA NA NA
pregnant 2754-0.0,3140-0.0 NA NA NA NA
hormone_replacement_therapy 2814-0.0 NA NA NA NA
breast_cancer NA C50 2330 NA 1002
epstein_barr_virus 23053-0.0 NA NA NA NA
use_of_sun_protection 2267-0.0 NA NA NA NA
diabetes NA E10,E11 250 1220,1222,1223 NA
arrhythmia NA I47,I48 427 1077 NA
sle NA M32 7100 1381 NA
melanoma NA C43 172 NA 1059
non-hodgkins_lymphoma NA C82,C83 NA NA 1053

Table M6. The UK Biobank codes used to determine each extra covariate. The ICD and self-reported codes were pulled very
similar to the normal phenotypes, and if any of these data sources recorded the phenotype it was assumed to be correct, similar
to the any phenotype method. The UKBB Phenotype Col. refers to the UID as designated by the UK Biobank.
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Disease ldsc_h2 ldsc_h2_se hdl_h2 hdl_h2se h2
Lupus 0.6196 0.0829 0.3376 0.0421 0.433
A. Fib. 0.1127 0.019 0.0827 0.0188 0.0976
Asthma 0.096 0.0117 0.0397 0.0092 0.0645
Celiac Disease 0.2938 0.0527 0 0 0.294
Migraine 0.0447 0.0032 0.0341 0.0027 0.039
MS 1.3517 0.2212 0 0 0.01
Vitiligo 0.9885 0.2083 0.7602 0.084 0.826
Gout -0.1573 0.0995 0 0 0.01
Crohns Disease 13.0787 1.8819 0.1917 0.0432 0.192
Ulcerative Colitis 6.2819 0.6996 0.0879 0.0235 0.0879
Type 2 Diabetes 0.1713 0.0212 0 0 0.171
Stroke 0.0281 0.0027 0.0117 0.0023 0.0192
Breast Cancer 0.2184 0.0181 0.2342 0.0216 0.226
NAFLD 0.5875 0.2227 0 0 0.588
CAD 0.0734 0.0049 0.0497 0.0045 0.061
Rheumatoid Arthritis 0.5941 0.0366 0.0397 0.0154 0.204
Type 1 Diabetes 4.002 0.8874 0.0549 0.0213 0.0549
Ovarian Cancer 0.0546 0.0114 0.0543 0.0095 0.0544
ALS 0.0552 0.0138 0.0308 0.0073 0.0392
Prostate Cancer 0.1423 0.0215 0.1049 0.0149 0.12
Heart Failure 0.0424 0.0035 0.0379 0.0028 0.0399
Psoriasis 0.9485 0.2299 0 0 0.948
Depression 0.1298 0.0096 0.0449 0.0031 0.0656

Table M7. Computed heritabilities from all cleaned summary statistics. The colum names ldsc refers to the Linkage
Disequilibrium Score Regression method and hdl refers to the High-Definition Likelihood method.

requires the preparation of UK Biobank, and possibly additional data, the computation that does the adjustment, and lastly

data-clean up that leaves a well-formatted summary statistic file. For brevity, only the second step in this process is described

as the other two are trivial and repeated. As most generative methods require a number of hyperparameters, a grid of such

parameters is defined and therefore more than just one set of adjusted summary statistics is generated per method and disease.

The generative methods utilized and their descriptions of just the adjustment step follow.

Clumping

Implementation of the clumping method was applied through the PLINK software. The “-—clump” flag was selected with

a series of “-—clump-p1” p-value and “-—clump-p2” R2 thresholds. The variants in the output file were used to subset the

primary summary statistics.

Official Documentation: https://www.cog-genomics.org/plink/1.9/postproc

WC-2d

Implementation of the WC-2d (winners curse two dimensions) method roughly followed the steps outlined in the clumping

method, except for specification of which regions clumping applies to. Specifically, variants identified as being conserved (listed

within http://compbio.mit.edu/human-constraint/data/gff/) and pleiotropic (listed within supplementary

table 2 of the respective publication) were both clumped with a higher p-value threshold. Only one of these varieties of variants
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Name Time to Run (s) Model
Based?

Ease to
Implement Description

Clumping1 3, 19, 71 No 1 Greedy Selection of SNPs by P-Value in LD Region
Double Weight2 3, 26, 74 No 2 Reduce Winners Curse with Empirical Beta Distribution
WC-2D3 36, 97, 266 No 2 Clumping with thresholds based on functional annotation
WC-Likelihood3 24, 199, 802 No 2 Reduce Winners Curse via Thresholding Likehood Stat
WC-Lasso3 5, 28, 0113 No 2 Reduce Winners Curse with LASSO-like penalty
Tweedie4 8, 44, 203 No 2 Threshold Efron’s Statistic Created via Kernel Method
lassosum5 27, 188, 579 No 2 LD-Aware Penalization over effect distribution
LDPred6 1463, 12640, 30846 Yes 3 Bayesian Estimate of LD-Aware Multiple Regression
LDPred27 37, 280, 1001 Yes 3 LDPred, improved speed and numeric stability
prsCS8 548, 4264, 10507 Yes 3 Bayesian Estimate with a Continous Prior of Effect
SBLUP9 176, 1604, 4326 Yes 3 Approximation of multiple regression BLUP-style effects
DBSLMM10 43, 368, 602 Yes 3 Deterministic Bayesian Sparse Linear Mixed Model
SBayesR11 5, 30, 87 Yes 4 Approximation of Bayesian multiple regression framework
JAMPred12 160, 1370, 1406 Yes 4 Flexible, Bayesian Adjustment of Variable LD
SMTPred13 14, 18, 21 Partly 3 Leverages correlated trait effect estimates

Table M8. The polygenic risk score generative methods. The time to run, measured in seconds, was evaluated by running
each method on 10,000, 100,000 and 250,000 SNPs from the first chromosome of the atrial fibrillation summary statistics.
Model-based refers to methods that attempts to recover predictions that would be constructed from full knowledge of the
genetic information. An ease to implement value of 1 indicates a near-minimum level of data manipulation, 2 indicates minor
supplementary coding required, 3 indicates the added organization of multiple program inputs/outputs, and 4 indicates extra
tuning requiring to assure method convergence. Additional method descriptions are provided in the Methods section.

were allowed to have a different threshold at a time.

WC-lasso

To implement WC-lasso (winners curse lasso), the original summary statistic file was first clumped with a p-value cut-off of

0.01 and R2 cut-off of 0.1. The vector of remaining effect sizes was then modified according to the following equation that was

extracted from the original publication.

β̂
lasso
m = sign(β̂m)

∣∣∣β̂m

∣∣∣−λ I
(∣∣∣β̂m

∣∣∣> λ

)

The lambda value ranged from 0.001 to 0.1, and the output effect sizes were directly extracted without additional

modification.

WC-likelihood

The WC-likelihood (winners curse likelihood) method was implemented similar to WC-lasso, with the same initial clumping

step. The following effect adjustment step however required minimizing a likelihood function. The full function is available in

the originating publication. Computationally, the minimization was accomplished by the Python function “minimize” and the

“nelder-mead” method.
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Double Weight

The Double Weight method, was implemented very similarly to the WC-likelihood and WC-lasso methods, even though it is

not formally a member of the WC family. After the initial clumping, the effects and standard errors were read into a custom

written R script that simulated many samples of effects for each variant. Then a variant was selected to be in the final adjusted

summary statistics if it was in the top range of SNPs with a specified probability. The value for the range of SNPs varied.

Tweedie

Implementation of the Tweedie method began by an application of the clumping method, following the steps as described in the

original publication. For the initial clumping step the p-value threshold was set at 0.05 and R2 at 0.25. The modified summary

statistic file was then used within the main tweedie R script that minimized a likelihood function similar to WC-likelihood. In

order to extract the beta values the published script was modified slightly, and is located at https://github.com/kulmsc/PRS-

Ithaca/blob/master/tweedy.R. Three variations of the betas were created, one for each of the FDR, Tweedie, and FDR x Tweedie

sub-methods.

Official Documentation: https://sites.google.com/site/honcheongso/software/empirical-bay

es-risk-prediction

LDpred

To implement the LDpred method the starting summary statistic file was first converted into the STANDARD format required

by LDpred (columns of chromosome, position, reference allele, alternative allele, reference allele frequency, info, rsID, p-value,

and effect of the alterative allele). Generating this file simply required reorganizing the starting summary statistic file. The LD

range was calculated as the number of SNPs divided by 4500. The “ldpred coord” step was first run, followed by a series of

“ldpred gibbs” applications with various “f” values (the proportion of true causal variants).

Official Documentation: https://github.com/bvilhjal/ldpred

LDpred2

The implementation of LDpred2 directly followed the vignette that accompanied the original publication. While the theory was

nearly identical to LDpred, all of the coding was done in R. Additional hyperparameters were fit to investigate a greater number

of possible fractions of causal SNPs and heritabilities.

Official Documentation: https://privefl.github.io/bigsnpr/articles/LDpred2.html

lassosum

Implementation of lassosum essentially required a single function call with UK Biobank used as reference data. The

lassosum.pipeline function generated the adjusted effects with minimal intervention. A grid of "s" and "lambda" parameters

were tried directly within this pipeline.

Official Documentation: https://github.com/tshmak/lassosum
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PRScs

Implementation of the PRScs first required converting the format of the summary statistics. The primary computation was

encapsulated in the single python prscs call. The reference data employed was the European LD data listed within the PRScs

documentation. The phi parameter was changed over three different function calls, whereas the a and b parameter were held

steady.

Official Documentation: https://github.com/getian107/PRScs

sBLUP

Implementation of the sBLUP method began by down sizing the original summary statistic to only the variants included within

the HapMap (https://www.broadinstitute.org/medical-and-population-genetics/hapmap-3),

and the columns were re-arranged to the MA format used throughout the GCTA tool kit. The actual sblup option was then run

within gcta, with the wind option (the LD distance parameter) set to 100.

Official Documentation: https://cnsgenomics.com/software/gcta/#SBLUP

SBayesR

Implementation of the SBayesR method started similarly to sBLUP, with conversion of the summary statistics to the necessary

MA format. The primary SBayesR computations were then run within the gctb toolkit. The ldm files were generated from the

UK Biobank and down sized to HapMap variants, and could be downloaded directly from the documentation. Ldm files with

more variants were not used due to size limitations.

Official Documentation: https://cnsgenomics.com/software/gctb/#SummaryBayesianAlphabet

DBSLMM

Additional information was first derived, such as allele frequencies from a PLINK call applied to the UK Biobank data.

Implementation of the DBSLMM algorithm was completed easily within a single R function call. Once generated p-value and

R-squared hyperparameters were iterated over, and the adjusted effect sizes directly computed.

Official Documentation: https://github.com/biostat0903/DBSLMM

SMTpred

Implementation of SMTpred is unique in that it required not just the primary summary statistics being adjusted, but also

summary statistics of similar diseases. The exact set of similar summary statistics are determined a priori through genetic

correlation calculations. After proper formatting of the primary and similar summary statistics, they are all entered into a single

python function call that adjusts the effect sizes. The number of similar sets of summary statistics varied. In addition, SBLUP

adjusted effects are also utilized in this process.

Official Documentation: https://github.com/uqrmaie1/smtpred
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JAMPred

Implementation of the JAMPred algorithm is analogous to LDpred2 as both chiefly complete their computations within R.

However, JAMPred is far less readily able to handle the large genotypic matrices necessary. Therefore, LD pruning in PLINK

was first carried out, to reduce the size of the genotypic files. Next, the genotypic data is read into R using the bignsnpr package,

and is then carefully converted into the necessary matrix specifications while still being in a memory-efficient format. The

primary JAMPred function is then called over several iterations of lambda values, generating the adjusted effect sizes.

Official Documentation: https://github.com/pjnewcombe/R2BGLiMS

Creating Polygenic Risk Scores

With the original GWAS summary statistics adjusted under various generative methods and respective hyperparameters,

polygenic risk scores could be created. This computation was easily accomplished by using the "–score" option within

PLINK1.9, and by following the genetic data processing workflow previously described. The "sum" option was included in the

PLINK call to prevent normalization before the polygenic risk score for each chromosome were added together. To mitigate

possible allele and variant mismatching, one genotypic file was created for each score that was needed. While this specificity

slowed down the scoring, it appeared to reduce round-off error.

Tuning to the Best Score

The best generative method and set of respective hyperparameters for each disease was determined by tuning. This process

computed several statistics for each polygenic risk score within a cross-validation framework. Specifically, the tuning process

began with only 60% of all British individuals who passed QC. Then three folds were iterated through in which two thirds of

the data was used for training and the remaining third for testing. These folds were themselves repeated three times, shifting

the start of the index that determined the three groups by one ninth of the total population. This method is commonly called

repeated cross fold validation.

The training and testing groups within each iteration were used to fit and assess models, creating statistics that judged both

total model fit and the ability to stratify individuals at the tail of risk. These statistics were first computed under a survival

mode of the analysis. The survival process started by creating the data frame that contains the start and end times for each

individual. All individuals were assumed to have entered the study January 1st 1999, the earliest time that we could judge all

individuals had reliable electronic health record data. Any health event listed before this time was removed. The end time is

either the individual’s time of respective disease diagnosis, the individual’s date of death, the individual’s date of study removal

request, or the last available date of electronic health records (May 31st 2020). A Fine and Gray model adjustment was made

following the methods in the survival package, leaving anything other than the date of diagnosis as a censored time. From the

survival data frame a Fine and Gray model was fit with covariates of age, sex and the top ten genetic principal components.

This model is referred to as the base model (if the disease was sex-specific, for example breast cancer, sex was not included
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and only the specific sex was analyzed). Then a new model was generated that additionally included each of the polygenic

risk scores as a covariate, referred to as the score models. All statistics were generated for both of these models in identical

fashion. The concordance was determined through the "survConcordance" function with the test data set as an argument. The

final cumulative hazard was determined for a high, intermediate and low risk score group by a simple application of the cox

proportional hazard equation at the final time available. The groups were defined according to the lowest and highest quintiles

of hazards being selected as the high and low risk groups, respectively.

Similar to the survival analysis, binary analyses were completed to determine the predictive performance in terms of both

model fit and at the tail of risk. The survival dataframe was simply collapsed into a binary dataframe that did not include

any date information. Logistic regression base and score models were fit. Predictions from these models upon the test set

was compared to the true test labels to determine the area under the receiver operator curve (AUC), specifically using the

pROC library. The predictions were then used to create exposed or non-exposed groups. The non-exposed group was fixed as

individuals whose prediction was less than the 20th percentile value of the entire prediction vector. The exposed group varied

with the upper percentile used as a cut-off. The exposed groupings and the test labels were then used to construct a contingency

table and from there the odds ratio.

Once all folds were complete the statistics were averaged over the nine folds. The score model that generated the highest

AUC was selected to be the best score for the given disease. To give a better depiction of all models, the best score for each

model and disease was maintained for later analysis and plotting.

Testing the Predictive Performance

For each disease, the polygenic risk score determined to be the best in the tuning section was included in models that were used

to predict the witheld 40% of data. The specific fitting and prediction process was largely identical to the tuning process. The

major difference was that instead of having cross-validation, the models were directly fit upon 60% of the data used in the

tuning section, and predicted upon the full 40% of withheld data. The four statistics, concordance, cumulative hazard, AUC and

odds ratios were generated for score and base models in an identical fashion.

Along with the processes replicated from the tuning section a few additional analyses were conducted. First, disease-specific

covariates were included within both the base and score models to create extra-base and extra-score models. The predictions

from these models were used to compute AUCs, odds ratios, and other statistics described in the following paragraph. Second,

other scores that were externally derived were analyzed by exchanging the polygenic risk score determined to be the best in the

tuning phrase by each of the external scores. The AUCs, odds ratios, and other statistics were again computed for these other

models. All of the generated statistics were included in plots for each specific disease, and across all diseases.

In addition to the statistics generated in the tuning section other statistics were included to the testing analysis to better

evaluate how well the polygenic risk score improves the base model. First, precision-recall curves were computed directly by

applying the test set predictions and labels to the "pr.curve" function. Second, net reclassification improvement and integreated
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Disease Score Name First Author Pub. Year
Lupus PGS000196 Knevel 2020
A. Fib. PGS000016 Khera 2018
Asthma PGS000037 Belsky 2013
Gout PGS000199 Knevel 2020
Type 2 Diabetes PGS000014 Khera 2018
Type 2 Diabetes PGS000020 Lall 2016
Type 2 Diabetes PGS000036 Mahajan 2018
Stroke PGS000039 Abraham 2019
Breast Cancer PGS000007 Mavaddat 2018
Breast Cancer PGS000015 Khera 2018
Breast Cancer PGS000045 Kuchenbaecker 2017
Breast Cancer PGS000052 Lakeman 2019
Breast Cancer PGS000072 Graff 2020
CAD PGS000011 Tada 2015
CAD PGS000013 Khera 2018
CAD PGS000058 Morieri 2018
Rheumatoid Arthritis PGS000194 Knevel 2020
Rheumatoid Arthritis PGS000195 Knevel 2020
Ovarian Cancer PGS000082 Graff 2020
Prostate Cancer PGS000044 Pashayan 2015
Prostate Cancer PGS000067 Seibert 2018
Prostate Cancer PGS000084 Graff 2020

Table M9. The other, external scores available from the PGS Catalog
(https://www.pgscatalog.org/browse/all/) that were compared to the internally constructed scores

discrimination improvement was computed by comparing the score-included and base model through the reclassification

function within the PredictABEL package. The net reclassification improvement was specifically of the categorical type with

the same cut-offs used to compute the odds ratio employed here. Third, decision curves were constructed by comparing

the phenotype to predictions from the base and score-included models. The options cohort and opt-in were set within the

decision_curve function of the rmda package. Fourth, the number of individuals reclassified was calculated for each cut-off

used to compute the odds ratios. Specifically, the intersection of individuals within the high risk group (above the cut-off) as

defined by the score-included and base models was calculated then compared to the total number of individuals in the high risk

group. Fifth, true positive rates within the high risk group (individuals with a risk greater than the cut-off used in the odds ratio

calculations) were calculated by simply dividing those with disease by the total size of the risk group, as all individuals in this

group were assumed to be predicted positive. Lastly, the true positive and false positive rates over all individuals were extracted

from the ROC curve at the point where one minus the true positive rate minus the false positive rate was a minimum.

Translation Analyses

The first part of our translation analyses involved a decision curve analysis. The computations required to generate decision

curves have already been described in the previous paragraph.

The two following sections employed a common methodological system that interrogated lifestyle factors and medica-

tions/supplements. First, we approximately split each lifestyle factor into 3 groups that roughly fall into the 1st, 2nd-4th, and
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Lifestyle Factor Low Risk Group Intermediate Risk Group High Risk Group
Alcohol Consumed >1 per day 1-4 per week <1 per week
Smoking Status Never Previous Current
Days Mod. Activity Per Week <2 2-5 >5
Hours per Day Watch TV <3 3 >3
Hours per Day Driving 0 1 >1
Hours Sleep <7 7 >7
BMI <23.5 23.5-30.6 >30.6
Min. Walked Per Day <20 20-80 >80
Walking Pace Slow Average Brisk
Processed Meat Intake <1 per week 1 per week >1 per week
Glasses of Water Per Day <2 2-3 >3
Cheese Intake <1 per week 1 per week >1 per week
Pieces Fruit Eaten Per Day <2 2 >2
Tbsp Raw Veg. Per Day <2 2 >2

Table M10. The cut-offs used to define the lifestyle measure low, intermediate and high risk groups

5th quintile. Similarly, the PRS adjusted for age, sex and the top ten genetic principal components were split into 3 groups

that again fall into the 1st, 2nd-4th, and 5th quintiles. The absolute risk was computed for nine groups of individuals defined

by the intersections of the three lifestyle factor groups and three PRS risk groups. Following previous work, the absolute

risk was approximated by the net incidence, or the number of events in the time of the study. In addition to the net incidence

calculations, a fisher exact test was computed on all of the three PRS groups where the predicted group had the high lifestyle

measure and non-predicted group had the low lifestyle measure. A disease and lifestyle modification was considered significant

if the absolute risk reduction brought by the modification was greater in the high compared to low PRS group, and either all of

the fisher p-values were less than 0.05, any two p-values were than 0.005, or any one p-value was less than 0.0005.

The methodology used to analyze the lifestyle modifications was largely replicated for the medication and supplement

analysis. Except this time the groupings were simply individuals that either self-reported taking or not taking the respective

medication or supplement. Therefore, the fisher exact test did not pull from the high and low risk groups but rather just the

two present risk groups. The same significant thresholds were also used. In both the lifestyle and medication analyses the net

incidence was computed from phenotypes that were only reported from electronic health record data gathered after the primary

time of assessment.

Checking Polygenic Risk Score Validity

The validity of all polygenic risk scores were checked by generally stratifying the scores by various features and checking to see

whether performance, or some other measure, remained the same in each group. In all of these validity tests the polygenic risk

scores utilized in the testing phase were the focus, although the best score for each disease and generative method combination

was also included for method-specific analyses. First, sex was used to stratify the training (60% of the entire dataset) and testing

(40% of the entire dataset) into male or female specific groups. Models were trained, fit, and AUCs derived on each of these

groups.
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Disease Age Split
Lupus 70.47
A. Fib. 75.63
Asthma 69.96
Celiac Disease 71.47
Migraine 68.46
MS 67.96
Vitiligo 71.63
Gout 73.8
Crohns Disease 71.96
Ulcerative Colitis 70.71
Type 2 Diabetes 73.8
Stroke 75.22
Breast Cancer 72.13
NAFLD 70.96
CAD 74.8
Rheumatoid Arthritis 73.3
Type 1 Diabetes 72.63
Ovarian Cancer 73.3
ALS 74.3
Prostate Cancer 75.38
Heart Failure 75.96
Psoriasis 70.71
Depression 68.46

Table M11. The ages at which the population was split into young and old groups for each disease

Second, age was used for stratification. For each disease the age that divided cases into equally sized groups was used

to define young and old groups. The specific ages determined in this manner are listed in table M13. Same as for the sex

stratification, models were fit and AUCs derived.

Third, socially relevant variables were used in series to carry out the same style of stratified analysis. These variables

included time at current address (split at 20 years), income (split at £40,000), number in household (split at 2), and age finished

final education (split at 19 years).

Fourth, census variables were similarly used to carry out the same style of stratified analysis. The census data was obtained

by linking the reported home location of each individual (accurate to within 1 km) to the individual’s local super output area.

The census data for that local super output area, obtained from the United Kingdom Office for National Statistics, was then

ascribed to that individual. The specific census features utilized include median age (split at 42 years), unemployment (split at

38), very good health measure (split at 719), and population density (split at 32 persons per hectare).

Fifth, the polygenic risk score distribution within population groups were compared. Specifically, African, Asian, Non-

British European, and British individuals’ scores were grouped and their means and standard deviations compared. The method

for defining these population groups was described in the Preparation of UK Biobank Phenotypic and Covariate Data section.

Sixth, the predictive accuracy of various disease labels were compared. Specifically, all of the phenotype definitions

described in table M4 were substituted into the typical analysis data frame used throughout the testing process. However, only

the AUC measure from these new definitions were recorded.
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Seventh, the average AUC across all of the folds in the tuning section and the AUC computed within the test section for each

score was compared. While not an analysis of validity akin to the other checks, the training/tuning comparison was completed

and results grouped by method, disease and overall best score to ensure that overfitting did not occur in the larger polygenic risk

score analysis process.

Finding Patterns to Aid in Polygenic Risk Score Development

Various analyses were completed in the effort to form empirically-backed, polygenic risk score development recommendations.

The first such analysis started with the method ranking system used throughout this investigation. Specifically, the AUC

rankings that determined the best score for each method that was used in all downstream analyses. The ranking was modified to

find the best method for a given GWAS summary statistic attribute by multiplying the AUC by the attribute after each was

normalized to range from 0 to 1. The methods ranked in the top 10 by these attribute weighted AUCs were considered to be

well-performing under the attribute and simply counted. The specific attributes considered include the sample size or number of

individuals, number of SNPs less than 1e-8 or the number of SNPs with an associated p-value less than 1×10−8, number of

SNPs less than 1e-6 or the number of SNPs with an associated p-value less than 1×10−6, the number of SNPs, heritability as

reported in table M7, and case control ratio or the number of individuals with the disease divided by those without. In addition

there were two distribution metrics including distribution by length and effect. These metrics are computed by ordering the

variants by their absolute effect then splitting the variants into four groups such that the sum of the absolute effect in each group

is equal. The metric for length then divides the mean length in the top effect group by the mean length in the bottom group, and

the metric for effect divides the mean effect in the top effect group by the mean effect in the bottom group. Lastly all of the

attributes used in these rankings were reversed such that a value of 1 becomes 0 and 0 becomes 1.

Second, we continued in the general path of connecting polygenic risk score attributes to general performance. Specifically,

by first quantifying the number of variants that generated each polygenic risk score, and secondly generating the distribution

metrics as defined in the first overall analysis.

Lastly, SNPs from the best polygenic risk score for each disease was mapped to a function annotation group. Once, the SNPs

were assigned to multiple, one, or none functional annotation groups, a simple average of the absolute effect was computed for

each group. This average was then normalized by dividing by setting the range of functional annotation scores for each disease

range from 0 to 1, instead of the raw computed score. This was process was repeated, but with deleterious scores, and the

normalization process involved the product of the deleterious score and variant’s absolute weight. The functional annotations

were pulled from https://alkesgroup.broadinstitute.org/LDSCORE/ and the deleterious scores originated at

https://pcingola.github.io/SnpEff/ss_dbnsfp/.
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Disease sig6_snps sig8_snps len_pdiff effect_pdiff sample_size snps h2 cc_ratio
Lupus 0.293 0.245 0.62 0.000168 0.00474 0.591 0.45 0.429
A. Fib. 0.0844 0.0544 0.315 0.000597 0.128 0.802 0.0934 0.0983
Asthma 0.0693 0.0521 0.927 2.17e-05 0.137 0.207 0.0581 0.135
Celiac Disease 0.00298 0.00153 1 0 0.00579 0.0518 0.302 0.309
Migraine 0.0267 0.0204 0 1 0.378 1 0.0308 0.125
MS 0.116 0.122 0.306 0.000621 0.0261 0 0 0.404
Vitiligo 0.0535 0.0402 0.6 0.000183 5.99e-05 0.672 0.869 0.0368
Gout 0.0163 0.0121 0.339 0.000534 0.0617 0.215 0 0
Crohns Disease 0.322 0.282 0.534 0.00024 0.0116 0.00657 0.194 0.291
Ulcerative Colitis 0.212 0.156 0.605 0.000179 0.0183 0.00782 0.083 0.245
Type 2 Diabetes 0 0.000612 0.156 0.00149 0.346 0.00241 0.172 0.22
Stroke 0.0316 0.0151 0.678 0.00013 0.532 0.64 0.00985 0.0914
Breast Cancer 0.885 0.722 0.441 0.000347 0.134 0.725 0.23 0.931
NAFLD 0.00223 0.00312 0.675 0.000132 0 0.243 0.615 0.0772
CAD 0.134 0.0858 0.534 0.000239 0.184 0.689 0.0544 0.359
Rheumatoid Arthritis 1 1 0.331 0.000553 0.0725 0.218 0.207 0.226
Type 1 Diabetes 0.1 0.0735 0.635 0.000157 0.00949 0.00774 0.0478 0.41
Ovarian Cancer 0.109 0.116 0.0159 0.0166 0.0783 0.786 0.0473 0.171
ALS 0.00349 0.00343 0.684 0.000127 0.0273 0.663 0.0312 0.399
Prostate Cancer 0.665 0.484 0.00811 0.0325 0.135 0.671 0.117 1
Heart Failure 0.0202 0.0105 0.639 0.000155 1 0.641 0.0319 0.0154
Psoriasis 0.091 0.0873 0.197 0.00112 0.0245 0.00358 1 0.342
Depression 0.0185 0 0.471 0.000308 0.137 0.342 0.0593 0.344

Table M12. The metrics computed then normalized for each distribution that were utilized in the weighted method rankings
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