
  

 

1/33 

Title  1 

Multi-Omic Profiling of Plasma Identify Biomarkers and Pathogenesis of COVID-19 in 2 

Children 3 

 4 

Authors 5 

Chong Wang1,2†, Xufang Li1†, Wanshan Ning3†, Sitang Gong1, Fengxia Yang1, Chunxiao 6 

Fang1, Yu Gong1, Di Wu2, Muhan Huang2, Yujie Gou3, Shanshan Fu3, Yujie Ren1,2, Ruyi 7 

Yang2, Yang Qiu2*, Yu Xue3*, Yi Xu1*, Xi Zhou1,2* 8 

 9 

Affiliations  10 

1 Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, 11 

Guangzhou, Guangdong, 510120, China 12 

2 State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-13 

Science, Chinese Academy Sciences, Wuhan, Hubei 430071, China  14 

3 MOE Key Laboratory of Molecular Biophysics, Hubei Bioinformatics and Molecular Imaging 15 

Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, 16 

Huazhong University of Science and Technology, Wuhan, Hubei 430074, China  17 

 18 

†
These authors contributed equally 19 

* E-mail: zhouxi@wh.iov.cn (X.Z.), xueyu@hust.edu.cn (Y.X.), xuyi70@163.com (Y.Xu.), and 20 

yangqiu@wh.iov.cn (Y.Q.) 21 

  22 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 6, 2021. ; https://doi.org/10.1101/2021.03.04.21252876doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

mailto:zhouxi@wh.iov.cn
mailto:yangqiu@wh.iov.cn
https://doi.org/10.1101/2021.03.04.21252876


 2 / 33 

 

Abstract 23 

Although children usually develop less severe disease responding to COVID-19 than adults, 24 

little is known about the pathogenesis of COVID-19 in children. Herein, we conducted the plasma 25 

proteomic and metabolomic profiling of a cohort of COVID-19 pediatric patients with mild 26 

symptoms. Our data show that numerous proteins and metabolites involved in immune as well as 27 

anti-inflammatory processes were up-regulated on a larger scale in children than in adults. By 28 

developing a machine learning-based pipeline, we prioritized two sets of biomarker combinations, 29 

and identified 5 proteins and 5 metabolites as potential children-specific COVID-19 biomarkers. 30 

Further study showed that these identified metabolites not only inhibited the expression of pro-31 

inflammatory factors, but also suppressed coronaviral replication, implying that these factors 32 

played key roles in protecting pediatric patients from both viral infection and infection-induced 33 

inflammation. Together, our study uncovered a protective mechanism responding to COVID-19 in 34 

children, and sheds light on potential therapies.  35 

 36 

Teaser 37 

Anti-inflammatory metabolites were highly elevated in the plasma of COVID-19 pediatric patients 38 

with mild symptoms.  39 

 40 

MAIN TEXT 41 

 42 

Introduction 43 

The pandemic of Coronavirus Disease 2019 (COVID-19) caused by severe acute respiratory 44 

syndrome coronavirus 2 (SARS-CoV-2) has become the worst public health crisis once a century, 45 

which has caused over 97 million human infections and 2 million deaths all over the world. It had 46 

been found that all people are susceptible to SARS-CoV-2 without significant differences in sex or 47 

age 1-3, and SARS-CoV-2 infects children under 18-year-old at a similar rate as adults4. Reports 48 

from different countries showed that the symptoms are milder in the overwhelming majority of 49 

children with COVID-19 (CC) compared to that of adults with COVID-19 (AC)1-3, 5-11. Most children 50 

have minor symptoms or an asymptomatic SARSCoV2 infection and severe conditions such as 51 

acute respiratory distress syndrome and multisystem inflammatory syndrome are rare in CC12-14.  52 

Several theories have been discussed to explain the differences in clinical symptoms between 53 

CC and AC15. One possible theory is the differences in the composition and functional 54 

responsiveness of immune systems between children and adults16. Children have a qualitatively 55 

different response to SARS-CoV-2 compared to adults17. Besides, young children were usually 56 
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infected with other simultaneous viruses in the mucosa of lungs and airways18, which would restrict 57 

the infection of SARS-CoV-2 via virus to virus interactions and competition. Another possible 58 

explanation is the differences in the maturity and function of the viral entry receptor angiotensin-59 

converting enzyme (ACE2) between children and adults. In addition, children have the better 60 

overall physical conditions compared to adults, which probably make children more resistant for 61 

SARS-CoV-219. However, the detailed mechanisms for the differences in clinical symptoms 62 

between children and adults remain to be determined.  63 

Multiple reports showed that immune system of CC is less likely to elicit an excessive 64 

inflammatory response and cytokine storm, as observed in AC, suggesting that global molecular 65 

alterations in CC might be much milder and the deterioration process of COVID-19 was not 66 

strongly induced in CC. Considering that the intrinsic differences between children and adults, we 67 

proposed that molecules associated with COVID-19 in CC were also induced, whereas some 68 

protective mechanisms were elicited to antagonize the deterioration of the disease. To test this 69 

hypothesis, we collected plasma samples from a cohort including 18 CC cases and 12 healthy 70 

children (HC), and conducted the proteomic and metabolomic profiling. By comparing the omics 71 

data of CC with those of adult with COVID-19 (AC) that identified previously by us20, 21, we 72 

uncovered numerous molecular alterations in CC against AC cases, which may contribute to the 73 

pathogenesis of COVID-19 in children. Moreover, we developed a new pipeline named inference 74 

of biomarker combinations with minimal bias (iBM), and predicted 5 proteins and 5 metabolites as 75 

potential CC-specific biomarkers. In addition, some of metabolite biomarkers were experimentally 76 

examined their roles in suppressing viral replication and/or modulating inflammation in vitro. Our 77 

findings provided valuable knowledge about plasma biomarkers associated with CC, shed lights on 78 

the better understanding of mild COVID-19 symptom in children, and may reveal potential 79 

therapeutic targets. 80 

 81 

Results  82 

Study design and blood samples 83 

We collected the blood samples of 30 children including 18 CC and 12 HC cases from 84 

Guangzhou Women and Children's Medical Center (Fig. 1A). All CC cases were diagnosed as mild 85 

symptoms based on the Diagnosis and Treatment Protocol for Novel Coronavirus Pneumonia (6th 86 

edition) of the National Health Commission of China22, and discharged from the hospital after 87 

recovery. No severe or critically ill CC cases were charged in our hospital (Table 1). The 12 HC 88 

cases, whose throat swab and serological tests were negative for SARS-CoV-2, were enrolled for 89 

comparison (Table S1). The clinical data of CC is shown in Table 1. 90 
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For each blood sample, plasma was separated, and total proteins were extracted, denatured and 91 

digested into peptides by trypsin (Fig. 1A). Then, the 30 plasma samples were separated into 2 92 

batches and individually subjected to tandem mass tag (TMT) labeling (Table S2). For each batch, 93 

individual samples were labeled with TMT 16-plex reagents, and a pooling mixture of all the 30 94 

samples was included and labeled as a standard control to eliminate the batch effect. After 95 

fractionation, each batch of peptide mixtures was analyzed by liquid chromatography with tandem 96 

mass spectrometry (LC-MS/MS). The hydrophilic and hydrophobic metabolites were extracted 97 

from each plasma sample, respectively and then determined via using liquid chromatography 98 

electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) system. The identification of 99 

metabolites was conducted by using home-made database with retention time and ion pairs or 100 

searching against the public databases based on MS/MS spectra for those metabolites without 101 

authentic standards in our database.  102 

Recently, we conducted metabolomic and proteomic profilings of plasma samples from adults 103 

with or without SARS-CoV-2 infection, and identified numerous molecular alterations associated 104 

with COVID-19 in adults20, 21. From our two previous studies, we obtained the TMT-based 105 

quantitative proteomic data of 43 AC cases and 13 healthy adults (HA), and metabolomic data of 106 

34 AC and 10 HA cases. In total, there were 1033 proteins and 1129 metabolites quantified from 107 

AC and HA cases.  108 

 109 

A multi-omic profiling of plasma samples 110 

The proteomic profiling detected 9445 peptides from the 30 plasma samples, with an average 111 

number of 4716.1 peptides per sample (Fig. S1A). We mapped the peptides to corresponding 112 

protein sequences, and quantified proteins using the reporter ion MS2 module of the MaxQuant 113 

software package23. We found that 757 proteins were quantified in at least one sample (Table S3), 114 

with average numbers of 666 and 666 proteins in the 18 CC and 12 HC samples, respectively (Fig. 115 

S1B). We checked the raw MS/MS data and found that 4877 peptides (48.4%) could be matched 116 

by ≥ 2 spectral counts (Fig. S1C). The average spectral counts were calculated as 2.6 for all peptides, 117 

indicating a high quality of peptide identification. Also, we found that 626 proteins (79.2%) could 118 

be traced and supported by ≥ 2 peptides, with an average number of 11.1 peptides (Fig. S1D). Thus, 119 

our proteomic data was also highly reliable at the protein level. After the metabolomic profiling, 120 

from the principal component analysis (PCA) results, it was found that the 4 QC samples can be 121 

clustered in the center, indicating a high quality of metabolomic identification (Fig. S1E). We in 122 

total obtained 1174 metabolites from the 30 samples (Table S4), with an average number of 1140.7 123 

metabolites per sample (Fig. S1F). The multiquant software package was used for quantification.  124 
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From the multi-omic profiling, the intensity-based abundances (IBAs) of proteins and 125 

metabolites were obtained. For each batch of the proteomic data, the relative protein abundances 126 

(RPA) were obtained by normalizing the control sample, and proteins not quantified in control were 127 

discarded. To ensure the data quality, only 575 proteins and 1158 metabolites mutually quantified 128 

in > 80% samples for further analysis, and a heatmap was illustrated after a hierarchical clustering 129 

(Fig. S2). It could be found that CC and HC cases have distinct molecular signatures. For each 130 

protein or metabolites, normal distribution imputation (NI) was applied to impute the missing 131 

values24. To measure the variability of proteomic and metabolomic quantification, the coefficient 132 

of variation (CV) was calculated for each molecule, with median values of 0.172 and 0.135 for the 133 

proteomic data, and 0.122 and 0.122 for the metabolomic data in CC and HC samples, respectively 134 

(Fig. 1B). The low CV values supported a high reproducibility of the multi-omic quantification. 135 

Then, the principal component analysis (PCA) was conducted for the proteomic (Fig. 1C) and 136 

metabolomic data (Fig. 1D). From the results, it was found that CC and HC cases could be clearly 137 

distinguished using either the data type, indicating molecular alterations were quite significant in 138 

both omic levels. In addition, we calculated the average Pearson correlation coefficient (PCC) for 139 

each pair of samples using the proteomic (Fig. 1E) or metabolomic data (Fig. 1F), and the results 140 

supported that similar molecular alterations triggered in CC cases.  141 

 142 

Characterization of CC-specific molecular alterations 143 

To identify molecular alterations in CC against HC cases, we directly used RPAs of the 144 

proteomic data and IBAs of the metabolomic data, and in total detected 121 and 418 potential DEPs 145 

and DEMs, respectively (Fig. 2A-B, |log2(FC)| > 0.25, Adjusted P < 0.05). It could be found that 146 

more proteins and metabolites were down-regulated in CC cases, indicating a general suppressive 147 

effect of normal biological and metabolic processes in children upon SARS-CoV-2 infection (Fig. 148 

2A-B and Table S5-S6). However, up-regulated molecules exhibited stronger changes in expression, 149 

supporting that COVID-19-associated molecular alterations are not mild in children.  150 

To further identify molecular alterations in CC against AC cases, the intrinsic differences 151 

between adults and children were eliminated by calculating normalized abundance values (NAVs) 152 

of proteins and metabolites in CC or AC cases against their counterparts in HC or HA samples. 153 

Again, 332 proteins and 783 metabolites simultaneously quantified in > 80% children and adults 154 

were reserved to ensure the data quality, and the PCA analysis demonstrated that CC and AC 155 

samples can be clearly distinguished either by the proteomic or metabolomic data (Fig. S3A-B). 156 

Using NAVs, we identified 196 DEPs and 449 DEMs in CC against HC cases (Fig. 2C-D, 157 

|log2(FC)| > 0.25, Adjusted P < 0.05, Table S7-S8). We found much more metabolites were down-158 
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regulated in CC cases, whereas up-regulated metabolites exhibited stronger changes in expression. 159 

This result not only support some strong molecular alterations in CC cases, but also suggested that 160 

different biological and metabolic processes are affected upon COVID-19 in CC against AC cases. 161 

Next, we used the annotations of Gene Ontology (GO) biological processes and Kyoto 162 

Encyclopedia of Genes and Genomes (KEGG) pathways, and performed functional enrichment 163 

analyses for proteins and metabolites, respectively (Fig. 2E-F and Table S9-S10). We found that a 164 

considerable number of biological processes and metabolic pathways enriched in CC vs. AC and 165 

CC vs. HC cases were overlapped, such as platelet degranulation (GO:0002576), blood coagulation 166 

(GO:0007596), fibrinolysis (GO:0042730) and plasminogen activation (GO:0031639) in the 167 

proteomic level (Fig. 2E), and ABC transporters (KEGG ID: map02010), biosynthesis of amino 168 

acids (KEGG ID: map01230) and pyrimidine metabolism (KEGG ID: map00240) in the metabolic 169 

level (Fig. 2F). These enriched processes in CC and AC are consistent with the COVID-19-170 

associated pathophysiological processes identified by other previous omics studies, and that further 171 

confirmed that COVID-19-associated molecular alterations occurred in CC cases, as did in AC 172 

cases. 173 

We sought to examine the CC-specific molecules by overlapping DEPs and DEMs of CC vs. 174 

HC and CC vs AS, and identified 44 and 249 CC-specific DEPs and DEMs, respectively (Fig. 2G-175 

H and Table S11-S12). We performed functional enrichment analyses for CC-specific DEPs (Fig. 176 

2I) and DEMs (Fig. 2J and Table S9-S10), respectively. The biological processes and metabolic 177 

pathways based on these CC-specific molecules were mainly enriched in blood coagulation-related 178 

processes in the proteomic level, and anabolism-related processes involved in amino acid 179 

biosynthesis in the metabolic level (Fig. S3C-D), suggesting the importance of these physiological 180 

changes in children in response to COVID-19. 181 

 182 

Machine learning-based inference of CC-specific biomarker combinations 183 

Although 44 and 249 CC-specific DEPs and DEMs were identified (Fig. 2G-H), different 184 

molecules were altered with distinct extents in CC cases. Identification of optimal biomarker 185 

combinations will not only be helpful for an accurate classification of different types of patients, 186 

but also for uncovering the pathogenesis of COVID-19 in children. Here, we developed a new 187 

computational pipeline named iBM, which consisted of three steps, including mutual DEPs or 188 

DEMs selection (MDS), candidate combination generation (CCG) to randomly select 10,000 189 

biomarker combinations, and final combination prioritization (FCP) to get the protein or metabolite 190 

combination with a maximal accuracy and a minimal bias from the 5-fold cross-validation (Fig. 191 

3A). The accuracy of a model was evaluated by calculating the total area under curve (AUC) value, 192 
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and we also computed the total root mean squared error (RMSE) to measure the prediction bias. In 193 

the step of FCP, a widely used machine learning algorithm, penalized logistic regression (PLR)25-27, 194 

was used for model training and parameter optimization (Fig. 3A). The CC-specific biomarker 195 

combinations were separately determined for the proteomic and metabolic data.   196 

From the results, there were 8098 protein combinations and 8376 metabolite combinations 197 

with a total AUC value of 1 (Table S13-S14), indicating that too many combinations could achieve 198 

a perfect accuracy on the existing data. However, a minimal RMSE value between predicted scores 199 

and observed values will ensure the robustness and reliability of the model on the new data. With 200 

total RMSE values of 1.83% and 7.01E-07, we prioritized two optimal biomarker combinations, 201 

containing 5 proteins coagulation factor XI and IX (F11 and F9), enolase (ENO1), fibrinogen alpha 202 

(FGA) and gamma (FGG) chains, and 5 metabolites methylmalonic acid (MMA), dihydroorotic 203 

acid (DHOA), indoleacetaldehyde (IAAID), tryptophan (TRP) and mannitol (Fig. 3A). Both of two 204 

biomarker combinations can perfectly distinguish CC group from AC and HC groups with AUC 205 

value of 1 (Fig. 3B-G). Moreover, the results of confusion matrices and RMSE analyses of these 206 

biomarker combinations also showed high accuracy for classifying different groups (Fig. 3C, D, F, 207 

G and H-O). 208 

Also, we calculated the total AUC values and total RMSE values for individual proteins or 209 

metabolites. For the 5 proteins, the total AUC values ranged from 0.77 to 1, and the total RMSE 210 

values ranged from 6.57% to 36.13% (Fig. S4A-E, Table S15). For the 5 metabolites, all the total 211 

AUC values were 1, while the total RMSE values ranged from 10.97% to 28.72% (Fig. S4F-J, 212 

Table S15). Although individual molecules can reach a perfect accuracy on the current data, the 213 

combination of multiple molecules was undoubtedly important to reduce the prediction bias.  214 

 215 

The alterations of CC-specific molecules in plasma are linked with the mild symptoms of 216 

COVID-19 in children 217 

The promising biomarkers for CC as well as other CC-specific molecules may also partially 218 

explain the differences in clinical symptoms between CC and AC cases. Of the protein biomarker 219 

combination, 4 proteins, including F11, F9, FGA and FGG were involved in the blood coagulation 220 

cascade, and all of them were higher expressed in CC cases than those in AC cases (Fig. 3L-M). 221 

F11 and F9 contribute the initiation of the thrombin generation during blood coagulation by 222 

proteolytic activation of a serial of coagulation factors28. FGA and FGG contribute to form the fibrin 223 

clot in response to explosive generation of thrombin mediated by coagulation factors29. Moreover, 224 

plasma serine protease inhibitor (SERPINA5) that negatively regulate the blood coagulation 225 

cascade28 was the most significantly upregulated one among all the CC-specific DEPs (Table S11). 226 
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Thus, the remarkably alternations of coagulation-related proteins in CC plasma suggest that 227 

COVID-19-associated coagulation and the accompanying immune response/inflammation in CC 228 

are more active than those in AC. 229 

On the other hand, a large number of CC-specific molecules implicated in antioxidant and/or 230 

anti-inflammatory processes were also significantly altered in CC. For example, ENO1, one of the 231 

components in the protein biomarker combination, was significantly downregulated in CC cases 232 

compared to that in AC cases (Fig. 3L-M). ENO1 is a key glycolytic enzyme in the last steps of the 233 

catabolic glycolytic pathway. Previous study showed that the suppression of ENO1 in pulmonary 234 

artery smooth muscle cells prevented the hypoxia-induced metabolic reprogramming from 235 

mitochondrial respiration to glycolysis30, the process of which enhance the oxidant stress and 236 

inflammation31. Moreover, for the components of the metabolite biomarker combination, DHOA 237 

that was significantly upregulated in CC cases (Fig. 3N-O), is involved in the pyrimidine 238 

metabolism and the secretion of DHOA can reduce the toxicity of glucose metabolism 239 

reprogramming in response to hypoxia32. TRP is metabolized to other indole compounds such as 240 

IAAID. The downstream products of TRP are key family of agonists to activate the aryl 241 

hydrocarbon receptor (AhR) that regulate the immunosuppression and restriction of inflammatory33. 242 

The remarkably elevated level of tryptophan and its downstream product indoleacetaldehyde 243 

suggested that AhR activity was more active in CC cases (Fig. 3N-O). Furthermore, mannitol has 244 

been found to be a hydroxyl radical scavenger that plays important roles in reducing inflammation34, 245 

and importantly, it was the most significantly upregulated one among all the CC-specific DEMs 246 

(Table S12). Besides, MMA is a dicarboxylic acid that is primarily a by-product of propionate 247 

metabolism. Previous study showed that the elevated circulating MMA level caused a significant 248 

upregulation of Sex-determining region Y box 4 (SOX4) expression and consequently elicited 249 

transcriptional reprogramming35, while the role of MMA in regulation of immune response and 250 

inflammation is unclear. 251 

In addition to the molecules involved in the optimal biomarker combination, we also identified 252 

other molecules that contain the potentials to relieve the exacerbated inflammation. For instance, 253 

uric acid (UA), an end product of purine catabolism, is a major antioxidant in the blood and can be 254 

helpful for protection against free-radical oxidative damage36. The plasma level of uric acid in CC 255 

cases was 109-folds higher than that in AC cases (Table S12).  256 

Together, our findings indicated that the molecules involved in anti-oxidant and anti-257 

inflammation were significantly elevated in the circulating system in CC cases compared with AC 258 

cases. Consistent with it, the clinical data showed that the coagulation indicators, such as APTT, 259 

PT and D-dimer, the status of immune cell activation, such as the ratios of CD3+CD4+ and 260 
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CD3+CD8+, and the levels of inflammatory factors, such as IFN-γ and IL-1β, in the CC cases were 261 

overall normal, albeit some results in certain cases fell outside the normal range (Table 1).  262 

 263 

Effects of regulating metabolism on coronaviral RNA replication and cytokine expressions in 264 

vitro 265 

After identifying that CC-specific molecules may contribute to the mild COVID-19 symptom 266 

in children, it is intriguing to exploit the potential role of these metabolites on immune response 267 

and/or inflammation in the context of authentic viral infection. To this end, we used mouse hepatitis 268 

virus (MHV, strain A59)37, a well-known surrogate for SARS-CoV-238, and tested the effects of 269 

MMA, DHOA and mannitol on the viral replication and cytokine expressions.  270 

Rat lung epithelial L2 cells were treated with different metabolites at the concentration of 5 or 271 

10 μM for 1 hr, and then infected with MHV at a multiplicity of infection (MOI) of 0.1, respectively. 272 

At 12 hrs post infection, total cellular RNAs were extracted and the viral RNA accumulation as 273 

well as the mRNA levels of IL-6, IL-1β, TNF-α, TNF-β and IL-10 were examined via using qRT-274 

PCR. As expected, MHV infection resulted in significantly enhanced mRNA levels of cytokines 275 

(Fig. 4E-H). Moreover, all these metabolites can reduce the mRNA levels of cytokines in MHV-276 

infected cells but not in mock cells, and the types of cytokines to change was different in response 277 

to treatment with distinct metabolites (Fig. 4E-G), suggesting that these metabolites regulate the 278 

expressions of cytokines via different pathways. Interestingly, while DHOA or TRP treatment 279 

showed no effect on MHV replication, we found that the RNA accumulation level of MHV was 280 

significantly reduced in the presence of MMA or mannitol (Fig. 4A, D). Together, these results 281 

provided experimental data to support that molecules involved in anti-inflammation were 282 

significantly elevated in CC. 283 

  284 
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Discussion  285 

The infection rate of SARS-CoV-2 to children is similar to that of adults, but the disease of 286 

COVID-19 is very mild in most cases of CC. Therefore, better understanding the mechanisms 287 

underlying the milder COVID-19 symptom in children has particular importance to uncover the 288 

pathogenesis of this disease. For this purpose, we conducted omics study to profile plasma protein 289 

and metabolite alterations in CC cases, and identified CC-specific molecule alternations by 290 

comparing with the omics data of AC cases. Moreover, we prioritized two optimal biomarker 291 

combinations, each of them containing 5 protein biomarkers or 5 metabolite biomarkers, by using 292 

the machine learning-based pipeline. These biomarker combinations as well as the individual 293 

biomarker in the combinations can accurately distinguish CC group from AC and HC groups. 294 

Moreover, the alternations of these host molecules provide very valuable insight for the 295 

pathogenesis of COVID-19 in children. In addition, some of metabolite biomarkers were 296 

experimentally examined their roles in suppressing viral replication and/or modulating 297 

inflammation in vitro.  298 

The identified alternations of plasma proteins and metabolites in this study as well as their 299 

enriched processes/pathways in CC are in line with the previous omics data with the plasma of AC 300 

cases20, 21, 39-42, indicating that COVID-19-associated molecular alterations occurred in children, as 301 

did in adults, in response to SARS-CoV-2 infection. However, we found that many molecules 302 

exhibited different changes in expression to different extents in CC cases compared to those in AC 303 

cases. Particularly, the plasma proteins involved in coagulation cascade were significantly higher 304 

expressed in CC cases compared with AC cases. Coagulation system plays important roles in 305 

immune responses against infections, and prevent damage to tissues and facilitate the repair of 306 

damaged areas43. While over-activation of coagulation cascade during the immune response to 307 

infection usually cause exacerbating production of pro-inflammatory cytokines, and coagulation-308 

induced thrombin also exerts the activity to further augment inflammation43. Therefore, our findings 309 

suggest that COVID-19-associated coagulation and the accompanying immune 310 

response/inflammation in CC are strongly active. On the other hand, the levels of many negative 311 

regulators of inflammation and oxidation, such as TRP, IAAID, DHOA, mannitol and UA in CC 312 

cases were significantly upregulated compared with those in AC cases, indicating a feedback. 313 

Moreover, our findings showed that these metabolites not only can relieve the expressions of 314 

different pro-inflammatory factors, but also contain the unexpected activity to inhibit MHV 315 

replication in cells. These result further confirm that immune response in CC is strengthened and 316 

suggest that SARS-CoV-2 replication in CC is restricted by the enhanced levels of COVID-19-317 

associated plasma molecules. Correspondingly, we speculated that the immune system of CC is in 318 
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a relatively balanced state, in which its activation is stronger than that of AC and is sufficient to 319 

restrict SARS-CoV-2 infection and the collateral damages, and meanwhile, the molecules involved 320 

in anti-oxidant and anti-inflammation processes are also strongly activated in CC, thereby 321 

preventing the exacerbation of inflammation and the deterioration of disease (Fig. 5).  322 

Identification of the alternations of plasma molecules between CC and AC also provides 323 

promising therapeutic targets for COVID-19. In this study, we tested the effects of MMA, DHOA, 324 

TRP and mannitol on the expression levels of cytokines, as well as the viral replication in MHV-325 

infected cells. Interestingly, the changes in the types of cytokine were different in response to 326 

distinct metabolite treatments, suggesting that the action to mode of these metabolites are dependent 327 

on different cellular signaling pathways. Moreover, we found that MMA or mannitol treatment can 328 

efficiently inhibit MHV replication. Mannitol is reported to be a hydroxyl radical scavenger that 329 

plays important roles in relieving inflammation34. A recent study showed that the SARS-CoV-2 330 

infection in monocytes triggers mitochondrial ROS production, which induces stabilization of 331 

hypoxia-inducible factor-1α (HIF-1α) and consequently metabolism reprogramming that facilitates 332 

the viral replication and inhibits immune responses requires44. It is possible that the hydroxyl radical 333 

scavenging activity of mannitol relieves the cellular levels of ROS, and in turn suppresses MHV 334 

replication. For MMA, its exact role in regulation of immune response or inflammation is not clear. 335 

Previous study showed that MMA treatment in A549 cells triggered the induction of SOX435, and 336 

interestingly, a recent study found that SOX4 can suppress hepatitis B virus replication via 337 

inhibiting hepatocyte nuclear factor 4α45. The detailed roles of the identified CC-specific 338 

metabolites such as MMA, DHOA and mannitol, require further investigation and the potential 339 

therapeutic targets should be further experimentally validated. 340 

In summary, our findings provide highly valuable multi-omics data resource for the research 341 

community to better understand COVID-19-associated host responses, identify a serial of children-342 

specific COVID-19 biomarker candidates, shed lights on the pathogenesis of COVID-19 in children, 343 

and provide promising potential therapeutic targets.  344 
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Materials and Methods 345 

Ethics and Human Subjects 346 

All work performed in this study was approved by the Guangzhou Women and Children's 347 

Medical Center Ethics Committee and Written informed consent was waived by the Ethics 348 

Commission of the designated hospital for emerging infectious diseases. Diagnosis of SARS-CoV-349 

2 infection was based on the New Coronavirus Pneumonia Prevention and Control Program (6th 350 

edition) published by the National Health Commission of China22. HC subjects were recruited at 351 

Guangzhou Women and Children's Medical Center. The throat swabs and serological testing of H 352 

volunteers were negative for SARS-CoV-2. All blood samples were collected after fasting 353 

overnight and by added with ethylene diamine tetraacetic acid (EDTA) plus potassium (K+). All 354 

the blood samples were treated according to the biocontainment procedures of the processing of 355 

SARS-CoV-2-positive samples. 356 

 357 

Preparation of protein and peptide samples 358 

Firstly, the cellular debris of serum sample was removed by centrifugation at 12,000 g at 4 °C 359 

for 10 min. Then, the supernatant was transferred to new centrifuge tubes. The top 12 high 360 

abundance proteins were removed by Pierce™ Top 12 Abundant Protein Depletion Spin Columns 361 

Kit (Thermo Fisher). Finally, the protein concentration was determined with BCA kit according to 362 

the manufacturer’s instructions. 363 

For digestion, the protein solution was reduced with 5 mM dithiothreitol for 30 min at 56 °C 364 

and alkylated with 11 mM iodoacetamide for 15 min at room temperature in darkness. The protein 365 

sample was made buffer exchange by 8M UREA three times and then made buffer exchange by the 366 

label buffer three times. Finally, trypsin was added at 1:50 trypsin-to-protein mass ratio for the 367 

digestion overnight at 37℃. Recover the peptide by centrifugation at 12,000 g at room temperature 368 

for 10 min and repeat the recovery step by H2O. 369 

For TMT labeling, samples are divided to two groups according to the comparison design and 370 

processed according to the manufacturer’s protocol for TMT pro 16plex Label Reagent (Thermo 371 

Fisher) kit. Briefly, one unit of TMT pro reagent (defined as the amount of reagent required to label 372 

100 μg of protein) were thawed and reconstituted in 10 μl ACN. The peptide mixtures were then 373 

incubated for 2 hrs at room temperature and pooled, desalted and dried by vacuum centrifugation. 374 

The labeling efficiency (calculated from the ratio of number of TMT labeled sites divided by 375 

number of all the potential labeling sites) had to pass the threshold of 95% before proceeding to the 376 

fractionation step. 377 
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The sample was then fractionated into fractions by high pH reverse-phase HPLC using Agilent 378 

300Extend C18 column (5 μm particles, 4.6 mm ID, 250 mm length). Briefly, peptides were first 379 

separated with a gradient of 2% to 32% acetonitrile in 10 mM ammonium bicarbonate pH 10 over 380 

60 min into 60 fractions46. Then, the peptides were combined into 6 fractions and dried by vacuum 381 

centrifuging. 382 

 383 

Extraction of hydrophilic and hydrophobic metabolites 384 

To extract hydrophilic compounds, sample was thawed on ice, 6 volumes of ice-cold methanol 385 

was added to 1 volume of plasma, whirled the mixture for 3 min and centrifuge it at 12,000 rpm at 386 

4 ℃ for 5 min. Then collect the supernatant and leave in a refrigerator at - 20°C. After 30 min, 387 

centrifuge at 12000 r/min at 4°C for 3 min, and then collected the supernatant and subjected them 388 

to LC-MS/MS analysis. 389 

To extract hydrophobic compounds, sample was thawed on ice, whirl around 10 s, and then 390 

centrifuge it with 3000 g at 4°C for 5 min. Take 50 μL of one sample and homogenized it with 1mL 391 

mixture (include methanol, MTBE and internal standard mixture). Whirled the mixture for 2 min. 392 

Then added 200 μL of water and whirled the mixture for 1 min, and centrifuged it with 12,000 g at 393 

4°C for 10 min. Extracted 200 μL supernatant and concentrated it. Dissolved powder with 200 μL 394 

mobile phase B and subjected to LC-MS/MS analysis. 395 

 396 

LC-MS/MS-based proteomic analysis 397 

LC-MS/MS data acquisition was carried out on a Exploris 480 mass spectrometer coupled 398 

with an Easy-nLC 1200 system (both Thermo Scientific)40, 47. Peptides were loaded onto a home-399 

made reversed-phase analytical column (100 μm × 250 mm, 1.9 μm particle size, 120 Å pore size, 400 

Dr. Maish GmbH, Germany) and then separated. Mobile phase A (2% acetonitrile, 0.1% formic 401 

acid) and mobile phase B (90% acetonitrile, 0.1% formic acid) were used to establish a 60 min 402 

separation gradient (0 min – 7% B; 4 min – 11% B; 53 min – 32% B; 57 min – 80% B; 60 min – 403 

80% B). A constant flow rate was set at 500 nL/min. For the analysis in data-dependent acquisition 404 

(DDA) mode, each scan cycle consisted of one full-scan mass spectrum (R = 60 K, AGC = 100%, 405 

max IT = 50 ms, scan range = 400–1200 m/z) followed by 25 MS/MS events (R = 45 K, AGC = 406 

100%, max IT = Auto). High energy collision dissociation (HCD) collision energy was set to 35. 407 

Isolation window for precursor selection was set to 1.6 Da. Former target ion exclusion was set for 408 

30 s. 409 

 410 

Protein database search 411 
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MS/MS raw data were analyzed with Proteome Discoverer (v2.4.1.15) using the Andromeda 412 

database search algorithm. The reference database contained 20,380 Swiss-Prot/reviewed human 413 

protein sequences downloaded from the UniProt database 414 

(https://www.uniprot.org/proteomes/UP000005640, on November 15, 2019), and reverse decoy 415 

sequences were generated. Then, spectra files were searched against the merged database using the 416 

following parameters: Type, TMT; Variable modifications, Oxidation (M), Acetyl (Protein N-term); 417 

Fixed modifications, Carbamidomethyl (C), TMTpro (peptide N-Terminus), TMTpro (K); 418 

Digestion, Trypsin (Full). The MS1 match tolerance was set as 10 parts per million (ppm); the MS2 419 

tolerance was set as 0.02 Da. Search results were filtered with 1% false discovery rate (FDR) at 420 

both protein and peptide levels. Proteins denoted as decoy hits, or only identified by sites were 421 

removed, and the remaining proteins were used for further analysis.  422 

 423 

UPLC conditions of hydrophilic and hydrophobic compounds 424 

The sample extracts of hydrophilic compounds were analyzed using an LC-ESI-MS/MS 425 

system (UPLC, Shim-pack UFLC SHIMADZU CBM A system, MS, QTRAP® 6500+ System). 426 

The samples were injected onto a Waters HSS T3 column (1.8 µm, 2.1 mm × 100 mm). Column 427 

temperature, flow rate and injection volume were set 40°C, 0.4 mL/min and 2 μL, respectively. 428 

Mobile phase was composed of water containing 0.1% formic acid (A) and acetonitrile containing 429 

0.1% formic acid (B). The gradient program initiated from 5% B increased to 90% B in 11.0 min, 430 

and held for 1 min and then decreased 5% B for re-equilibrium. 431 

The sample extracts of hydrophobic compounds were analyzed using an LC-ESI-MS/MS 432 

system (UPLC, Shim-pack UFLC SHIMADZU CBM A system, MS, QTRAP® 6500+ System). 433 

The samples were injected onto a Thermo Accucore™ C30 column (2.6 μm, 2.1 mm × 100 mm). 434 

Mobile phase was composed of acetonitrile/water (60/40, v/v) containing 0.1% formic acid, and 10 435 

mmol/L ammonium formate (A) and acetonitrile/isopropanol (10/90, v/v) containing 0.1% formic 436 

acid and 10 mmol/L ammonium formate (B). The gradient program initiated A/B（80:20, V/V）437 

at 0 min, 70:30 V/V at 2.0 min, 40:60 V/V at 4 min, 15:85 V/V at 9 min, 10:90 V/V at 14 min, 5:95 438 

V/V at 15.5 min, 5:95 V/V at 17.3 min, 80:20 V/V at 17.3 min, 80:20 V/V at 20 min. The flow rate, 439 

column temperature and injection volume were set 0.35 ml/min, 45°C and 2 μL, respectively. The 440 

effluent was alternatively connected to an ESI-triple quadrupole-linear ion trap (QTRAP)-MS.  441 

 442 

ESI-Q TRAP-MS/MS of hydrophilic and hydrophobic compounds 443 
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LIT and triple quadrupole (QQQ) scans were acquired on a triple quadrupole-linear ion trap 444 

mass spectrometer (QTRAP), QTRAP® LC-MS/MS System, equipped with an ESI Turbo Ion-445 

Spray interface, operating in positive and negative ion modes and controlled by Analyst 1.6.3 446 

software (Sciex). The ESI source operation parameters were as follows: ion source, turbo spray; 447 

source temperature 550°C; ion spray voltage (IS) 5500 V in positive ion mode (or -4500 V in 448 

negative ion mode); ion source gas I (GSI), gas II (GSII), curtain gas (CUR) were set at 45, 55, and 449 

35 psi, respectively; the collision gas (CAD) was medium. Instrument tuning and mass calibration 450 

were performed with 10 and 100 μM polypropylene glycol solutions in QQQ and LIT modes, 451 

respectively. QQQ scans were acquired as MRM experiments with collision gas (nitrogen) set to 5 452 

psi. Declustering potential (DP) and collision energy (CE) for individual MRM transitions was done 453 

with further DP and CE optimization. A specific set of MRM transitions were monitored for each 454 

period according to the metabolites within this period. Each sample analysis was conducted by both 455 

positive and negative ion modes, and the MRM transitions were listed in Table S16.  456 

 457 

Plasma metabolites and lipids data analysis 458 

The mass spectrum data were processed by Software Analyst 1.6.3. The repeatability of 459 

metabolite extraction and detection can be judged by total ion current (TIC) and multi peak MRM. 460 

Based on home-made MWDB (metadata database) and other databases, qualitative analysis of 461 

information and secondary general data was carried out according to retention time (RT) and mass-462 

to-charge ratio. Metabolite structure analysis referred to some existing mass spectrometry public 463 

databases, mainly including massbank (http://www.massbank.jp/), knapsack 464 

(http://kanaya.naist.jp/knapsack/), HMDB (http://www.hmdb.ca/), and Metlin 465 

(http://metlin.scripps.edu/index.php). The metabolite identification was conducted by reference 466 

standards in our home-made database and public databases (Table S4). 467 

For the quality control (QC) of metabolomic analysis, we pipette 10 μL of each sample to pool 468 

a QC sample. When running sample sets on column, one QC sample was injected after 10 samples 469 

in the sequence. Metabolite quantification was accomplished by using multiple reaction monitoring 470 

(MRM) of triple quadrupole mass spectrometry. Opened the mass spectrum file under the sample 471 

machine with multiquant software to integrate and calibrate the chromatographic peaks. The peak 472 

area of each chromatographic peak represented the relative content of the corresponding substance. 473 

Finally, exported all the integral data of chromatographic peak area to save, and used the self-built 474 

software package to remove the positive and negative ions of metabolites. We calculated CV values 475 

of the metabolites in QC samples, and removed the metabolites whose CV values were larger than 476 
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0.5. When the metabolites were detected in both positive and negative ionization modes, we 477 

removed the metabolites with larger CVs in either positive or negative mode.  478 

 479 

Cell culture, virus and infection 480 

L2 cell line was kindly provided by Prof. Chen (Wuhan University, China) and maintained in 481 

Dulbecco’s modified Eagle’s medium (DMEM) (Gibco) supplemented with 10% fetal bovine 482 

serum (FBS) (Gibco), 100 U/ml penicillin and 100 μg/ml streptomycin at 37°C in a humidified 483 

atmosphere with 5% CO2. MHV strain A59 was kindly provided by Prof. Chen (Wuhan University, 484 

China).  485 

    MMA (STBF5304V), DHOA (SLCD3296) and mannitol (WXBD1141V) were commercially 486 

purchased from Sigma-Aldrich. TRP (10211562) was commercially purchased from Alfa Aesar. 487 

For detection of the effects of MMA, DHOA, TRP and mannitol upon MHV infection, each one of 488 

the tested compounds at the concentration of 5 or 10 μM was added to L2 cells. After 1 hr incubation, 489 

L2 cells were infected with MHV at MOI=0.1. At 12 hr post infection, the infected L2 cells were 490 

collected and total cellular RNAs were extracted. The viral RNA accumulation and the mRNA 491 

levels of IL-6, IL-1β, TNF-α, TNF-β and IL-10 were determined via qRT-PCR. For measuring viral 492 

RNA replication, the level of MHV RNA in cells without treatment was defined as 100%. For 493 

measuring mRNA levels of cytokines, the mRNA level of each one of the tested cytokines in cells 494 

without infection was defined as 1-fold. 495 

 496 

Data normalization and imputation 497 

For each batch of the plasma proteomic data, the IBA of a protein in one sample was first 498 

normalized using its corresponding expression in the control of the same batch to calculate the RPA, 499 

which eliminated the batch effect prior to the comparative analysis of CC and HC samples.  500 

To identify molecular alterations exclusively in CC but not HC samples, the mean RPA value 501 

of a protein i in HC or HA samples was first calculated as below: 502 

𝑅𝑃𝐴̅̅ ̅̅ ̅̅  (𝐻𝐶)𝑖 =
∑ 𝑅𝑃𝐴 (𝐻𝐶)𝑗

𝑁
𝑗=1

𝑁
 503 

𝑅𝑃𝐴̅̅ ̅̅ ̅̅  (𝐻𝐴)𝑖 =
∑ 𝑅𝑃𝐴 (𝐻𝐴)𝑗

𝑀
𝑗=1

𝑀
 504 

Where N and M denoted the numbers of HC and HA samples, respectively. Then, the NAV of the 505 

protein i in each CC or AC sample was calculated as below: 506 

𝑁𝐴𝑉 (𝐶𝐶)𝑖 =
𝑅𝑃𝐴 (𝐶𝐶)𝑖

𝑅𝑃𝐴̅̅ ̅̅ ̅̅  (𝐻𝐶)𝑖

 507 
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𝑁𝐴𝑉 (𝐴𝐶)𝑖 =
𝑅𝑃𝐴 (𝐴𝐶)𝑖

𝑅𝑃𝐴̅̅ ̅̅ ̅̅  (𝐻𝐴)𝑖

 508 

Analogously, the NAVs of all metabolites in each CC or AC samples were also computed. 509 

To ensure the data quality for identification of potential DEPs or DEMs, we only reserved 510 

proteins or metabolites quantified in > 80% samples (> 24 samples for CC vs. HC analysis, > 68 511 

samples for the proteomic analysis of CC vs. AC, and > 59 samples for the metabolomic analysis 512 

of CC vs. AC). Using NI, the missing values were imputed with values representing a normal 513 

distribution around the detection limit of the mass spectrometer. For each sample, the mean and 514 

standard deviation (S.D.) of the distribution of the raw protein or metabolite intensities were 515 

calculated. Then a new distribution with a downshift of 1.8 S.D. and a width of 0.3 S.D. was 516 

automatically modeled. The total data set was imputed before statistical analysis. After imputation, 517 

the mean μ and S.D σ were counted for each protein or metabolite in CC and HC samples, 518 

respectively, and CV was calculated as below: 519 

CV =
𝜎

𝜇
 520 

Before model training, the proteomic or metabolomic data of each sample was further 521 

normalized using the z-score transformation, one of the mostly used normalization methods43. For 522 

each sample, the median expression value m and S.D. δ were first calculated for the proteomic or 523 

metabolomic data. For a protein or metabolite i with the abundance of NAVi, its normalized z-score 524 

was calculated as below: 525 

𝑧𝑖 =
𝑁𝐴𝑉𝑖 − 𝑚

𝛿
 526 

After transformation, the z-scores of proteins or metabolites followed a logarithmic normal 527 

distribution (log2) centered at zero. 528 

The proteomic and metabolomic data normalization and imputation were conducted using 529 

Perseus 1.6.1424. To test whether different types of patients could be distinguished, PCA was 530 

performed using Scikit-learn 0.22.1 (https://scikit-learn.org/stable/), a useful toolkit for data mining 531 

and analysis. The Pearson correlation analysis was performed by an R packge, corrplot 532 

(https://cran.r-project.org/web/packages/corrplot/index.html). 533 

 534 

Statistical analysis of the quantitative omic data 535 

Using RPA values of the proteomic data and IBA values of the metabolomic data, we 536 

identified potential DEPs and DEMs that were significantly altered in CC cases against HC samples. 537 

Then, using NAVs of the omic data, we further identified potential DEPs and DEMs that were 538 

significantly altered in CC cases against AC cases. The FC value was calculated based on the mean 539 
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of the same patient group for each pair of groups, and proteins or metabolites with |log2(FC)| > 0.25 540 

were reserved. The statistical significance was calculated for reserved proteins and metabolites, 541 

using the unpaired two-sided Welch’s t-test and adjusted P values were calculated using Benjamini 542 

& Hochberg correction (Adjusted P < 0.05). The statistical analyses were conducted using the 543 

ttest_ind function in scipy.stats.  544 

 545 

The enrichment analysis 546 

The two-sided hypergeometric test was adopted for the GO- or KEGG-based enrichment 547 

analysis of the DEPs or DEMs. Here, we defined: 548 

N = number of human proteins or metabolites annotated by at least one term 549 

n = number of human proteins or metabolites annotated by term t 550 

M = number of the DEPs or DEMs annotated by at least one term  551 

m = number of the DEPs or DEMs annotated by term t 552 

Then, the E-ratio was calculated, and the P value was computed with the hypergeometric 553 

distribution as below: 554 

E-ratio = 

𝑚

𝑀
𝑛

𝑁

 555 

P value = ∑
(

𝑀
𝑚′)(

𝑁−𝑀
𝑛−𝑚′)

(
𝑁
𝑛

)

𝑛
𝑚′=𝑚 , (E-ratio > 1) 556 

In this study, adjusted P values were calculated using Benjamini & Hochberg correction and 557 

only statistically over-represented GO terms for the proteomic data and KEGG pathways for the 558 

metabolomic data were considered. GO annotation files (released on 03 January 2020) were 559 

downloaded from the Gene Ontology Consortium Web site (http://www.geneontology.org/), and in 560 

total we obtained 19,288 human proteins annotated with at least one GO biological process term. 561 

KEGG annotation files (released on 4 September 2020) were downloaded from the ftp server of 562 

KEGG (ftp://ftp.bioinformatics.jp/), which contained 6,182 metabolites annotated with at least one 563 

KEGG pathway term. 564 

 565 

Performance evaluation 566 

To evaluate the accuracy of iBM, the numbers of true positive (TP), true negative (TN), false 567 

positive (FP) and false negative (FN) hits were counted. Then, we calculated two measurements, 568 

including sensitivity (Sn), specificity (Sp) as below: 569 

 𝑆𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 570 
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 𝑆𝑝 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 571 

The 5-fold cross-validation was performed, while Sn and Sp values were calculated, 572 

respectively. The receiver operating characteristic (ROC) curve was illustrated and AUC value was 573 

calculated based on Sn and 1-Sp scores.  574 

To estimate the prediction bias of a model, the root mean squared error (RMSE), an important 575 

measure of the residuals between predicted values and observed values, was calculated as below:  576 

RMSE = √
1

𝑛
∑(𝑂𝑖−𝑃𝑖)2

𝑛

𝑖=1

 577 

Where n represented the number of plasma samples in the data set. Pi denoted the predicted 578 

probability value ranged from 0 to 1, while Oi was equal to 0 for non-COVID-19 cases and 1 for 579 

COVID-19 cases, respectively.  580 

 581 

Inference of optimal biomarker combinations 582 

We separately identified potentially CC-specific biomarker combinations with minimal RMSE 583 

for the proteomic and metabolomic data, by developing a three-step pipeline named iBM that 584 

included mutual DEPs or DEMs selection (MDS), candidate combination generation (CCG), and 585 

final combination prioritization (FCP).  586 

In the step of MDS, mutually identified DEPs or DEMs of CC patients against HC cases and 587 

CC cases against AC cases were reserved as a candidate pool. Then, CCG was adopted to select 588 

different sets of biomarker combinations with ≤ 5 proteins or metabolites. This number was much 589 

smaller than the sample size and could efficiently avoid over-fitting. From the pool, 10,000 590 

candidate biomarker combinations were randomly generated for the proteomic and metabolomic 591 

data, respectively. The initial weight value of each protein or metabolite was set to 1.  592 

In the step of FCP, the 5-fold cross-validation was conducted for model training. For each 593 

candidate combination, we randomly generated a training data set and a testing data set with a ratio 594 

of approximately 4:1. The testing data set was only used to test the performance but not for training, 595 

and the final total AUC value was calculated as below: 596 

Total AUC = √AUCCC 𝑣𝑠.  HC ∗ AUCCC 𝑣𝑠.AC 597 

The least absolute shrinkage and selection operator (LASSO, L1 regularization) penalty and 598 

the ridge regression (L2 regularization) penalty in PLR
25-27

, were iteratively used to optimize the 599 

weight values of the 5 proteins or metabolites. To simplify the composition of a combination, one 600 

or multiple protein or metabolite was randomly dropped if the total AUC value of the 5-fold cross-601 
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validation was increased. Such a procedure was repeatedly performed until the AUC value was not 602 

increased any longer. All biomarker combinations with total AUC equal to 1 were reserved for the 603 

proteomic and metabolomic data, respectively (Table S11-S12). The total RMSE value of all 604 

samples was calculated for each combination, and the final result was determined based on the 605 

minimal total RMSE value.  606 

The PLR algorithm was implemented in Python 3.7 with Scikit-learn 0.22.1. The source code 607 

of iBM is available at: https://github.com/Ning-310/iBM. 608 

 609 

Construction of a working model associated with immune system of CC 610 

We constructed a working model of CC-specific immune response around 5 CC-specific 611 

protein biomarkers and 5 CC-specific metabolite biomarkers. Based on the pathway annotations in 612 

KEGG, working model included the 13 CC-specific DEPs and 25 CC-specific DEMs mainly 613 

involved in 6 KEGG pathways, including platelet activation, complement and coagulation cascades, 614 

glycolysis/gluconeogenesis, pyrimidine metabolism, biosynthesis of amino acids and tryptophan 615 

metabolism.  616 

 617 
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Figure 1. Study design and quality control of proteomic and metabolomic data.  A Overview 759 

of plasma samples collection from COVID-19 children, including CC (n = 18) and HC (n = 12) 760 

cases. The workflow for processing the proteomic and metabolomic data was shown, including the 761 

plasma separation, TMTpro 16-plex labeling, metabolite extraction, LC-MS/MS analysis, database 762 

search and further computational analyses. The proteomic data of 43 AC and 13 HA cases, and 763 

metabolomic data of 34 AC and 10 HA cases from our two previous studies were also used for 764 

further computational analyses. B CV of the proteomic and metabolomic data. C,D The PCA 765 

analysis of the proteomic (C) and metabolomic (D) data. E,F PCC for each pair of samples using 766 

the proteomic (E) and metabolomic (F) data. 767 
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Figure 2. CC-specific proteomic and metabolomic alterations. A,B Volcano plots show the 770 

protein (A) and metabolite (B) alterations in CC against HC cases. C,D Volcano plots show the 771 

protein (C) and metabolite (D) alterations in CC against AC cases. Proteins and metabolites with 772 

log2 (FC) below 0.25 or beyond −0.25 with adjusted P lower than 0.05 were considered as 773 

significantly differential expression. E GO-based enrichment analysis for DEPs of CC against HC 774 

cases and CC against AC cases (Two-sided hypergeometric test, m ≥ 5, adjusted P < 10-5). F KEGG-775 

based enrichment analysis for DEMs of CC against HC cases and CC against AC cases (Two-sided 776 

hypergeometric test, m ≥ 5, adjusted P < 10-3). G,H CC-specific DEPs (G) and DEMs (H) were 777 

identified by overlapping DEPs and DEMs of CC vs. HC and CC vs AC, respectively. I GO-based 778 

enrichment analysis of CC-specific DEPs shown in the term of biological processes (Two-sided 779 

hypergeometric test, m ≥ 5, adjusted P < 0.01). J KEGG-based enrichment analysis of CC-specific 780 

DEMs (Two-sided hypergeometric test, m ≥ 5, adjusted P < 0.01).  781 
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Figure 3. Inference of CC-specific biomarker combinations using a machine learning strategy. 784 

A The workflow of iBM, including MDS, CCG and FCP to prioritize CC-specific protein or 785 

metabolite biomarker combination with a maximal accuracy and a minimal bias from the 5-fold 786 

cross-validation. B From the 5-fold cross-validation, AUC values of protein combination for 787 

distinguishing the CC from HC cases and CC from AC cases were calculated, respectively. C,D 788 

The confusion matrix of the protein combination for distinguishing the CC from HC cases (C) and 789 

CC from AC cases (D). E From the 5-fold cross-validation, AUC values of metabolite combination 790 

for distinguishing the CC from HC cases and CC from AC cases were calculated, respectively. F,G 791 

The confusion matrices of the metabolite combination for distinguishing the CC from HC cases (F) 792 

and CC from AC cases (G). H,I The results of RMSE analyses of protein biomarker combinations 793 

for distinguishing the CC from HC cases (H) and CC from AC cases (I). J,K The results of RMSE 794 

analyses of metabolite biomarker combinations for distinguishing the CC from HC cases (J) and 795 

CC from AC cases (K). L,M The expression level of 5 protein biomarkers in CC against HC cases 796 

(L) and CC against AC cases (M). N,O The expression level of 5 metabolite biomarkers in CC 797 

against HC cases (N) and CC against AC cases (O). The center line within each box shows the 798 

median, and the top and bottom of each box represent the 75th and 25th percentile values, 799 

respectively. The upper and lower whiskers extend from the hinge to the largest and smallest value 800 

no further than 1.5 times the distance between the first and third quartiles, respectively. 801 
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Figure 4. Effects of regulating metabolism on MHV RNA replication and cytokine expressions 804 

in vitro. A-D L2 cells were treated with MMA (A), DHOA (B), TRP (C) or mannitol (D) at the 805 

concentration of 5 or 10 μM, respectively, for 1 hr, and then infected with MHV at MOI=0.1, 806 

respectively. At 12 hr post infection, the total cellular RNAs were extracted. E-H The viral RNA 807 

accumulation and the mRNA levels of IL-6, IL-1β, TNF-α, TNF-β and IL-10 were determined via 808 

qRT-PCR. For measuring viral RNA replication, the level of MHV RNA in cells without treatment 809 

was defined as 100%. For measuring mRNA levels of cytokines, the mRNA level of each one of 810 

the tested cytokines in cells without infection was defined as 1-fold. The qRT-PCR and were 811 

measured by t-test (GraphPad Prism). *P < 0.05, **P < 0.01.   812 
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 813 

 814 

Figure 5. Key proteins and metabolites characterized in a working model associated with 815 

immune system of CC. In the working model, the plasma proteins involved in coagulation cascade 816 

were significantly higher expressed in CC cases compared with AC cases, suggesting COVID-19-817 

associated coagulation and the accompanying immune response/inflammation in CC may be 818 

strongly active. On the other hand, the levels of many negative regulators of inflammation and 819 

oxidation, such as TRP, IAAID, DHOA, mannitol and UA in CC cases were significantly 820 

upregulated compared with those in AC cases, indicating a feedback. Moreover, metabolite 821 

Mannitol, MMA can enhance the IFN system and/or inhibit MHV replication with unknown 822 

mechanism in cells. As a whole, immune system of CC is in a relatively balanced state, in which 823 

its activation is stronger than that of AC and is sufficient to restrict SARS-CoV-2 infection and the 824 

collateral damages, and meanwhile, the molecules involved in anti-oxidant and anti-inflammation 825 

processes are also strongly activated in CC, thereby preventing the exacerbation of inflammation 826 

and the deterioration of disease. 827 
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Table 1. Characteristics of COVID-19 pediatric patients.  828 

 829 

Children with COVID-19 n=18 

Age-year 

Median (IQR) 

 

7 (5, 12) 

Sex-no.(%)  

Female 5 (27.78%) 

Male 13 (72.22%) 

Throat swab for SARS-CoV-2 (days) 

Median (IQR) 

Sampling time from the disease onset (days)  

Median (IQR) 

 

6 (4, 14)                   

 

7 (10, 13)    

Co-infection-no.(%)  

Other viruses ND  

Bacteria ND 

  Fungus ND 

Clinical outcome-no.(%)  

Discharged 18 (100%) 

Blood routine- Median (IQR)             

WBC (×109/L, normal range 5-12) 6.90 (5.50, 8.55) 

Lymphocyte (×109/L, normal range 1.5-4.8) 2.60 (2.07, 4.19) 

Neutrophil (×109/L, normal range 2-7.2) 2.58 (2.15, 3.24) 

CD19+ (cells/μl, normal range 90-660) 396.35 (236.82, 800.53) 

CD3+ (cells/μl, normal range 690-2540) 1232.74 (967.60, 2305.85) 

CD3+CD4+ (cells/μl, normal range 410-1590) 655.44 (459.88, 1150.56) 

  CD3+CD8+ (cells/μl, normal range 190-1140) 482.67 (386.66, 859.49) 

  NK (cells/μl, normal range 90-590) 334.34 (194.04, 438.04) 

Platelet (109/L, normal range 140-440) 299.50 (263.00, 333.75) 

RBC (×1012/L, normal range 4-4.5) 4.66 (4.37, 5.36)  

Haemoglobin (g/L, normal range 105-145) 124.50 (119.00, 141.75) 

APTT (s, normal range 28-45) 40.50 (37.40, 42.60) 

PT (s, normal range 11-15) 13.40 (13.15, 13.90) 

D-dimer (μg/mL, normal range, 0-1.5 ) 0.31 (0.26, 0.40) 

Cytokines- Median (IQR)  

IFN-γ (pg/mL, normal range 0-6.56) 4.62 (3.97, 6.07) 

IL-10 (pg/mL, normal range 0-8.14) 1.98 (1.74, 2.91) 

IL-12p70 (pg/mL, normal range 0-6.9) 2.89 (1.77, 4.38) 

IL-17A (pg/mL, normal range 0-3.71) 5.98 (3.67, 8.76) 

IL-1β (pg/mL, normal range 0-3.12) 0.94 (0.59, 1.70) 

IL-2 (pg/mL, normal range 0-5.03) 4.33 (2.71, 5.01) 

IL-22 (pg/mL, normal range 0-2.61) 2.53 (1.66, 4.40) 

IL-4 (pg/mL, normal range 0-4.62) 3.37 (2.89, 5.42) 

IL-5 (pg/mL, normal range 0-3.73) 2.45 (1.94, 3.47) 

IL-6 (pg/mL, normal range 0-8.88) 3.84 (2.33, 6.58) 

IL-8 (pg/mL, normal range 0-15.71) 6.55 (4.37, 9.34) 

TNF-α (pg/mL, normal range 0-5.35) 5.35 (4.12, 6.95) 
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