Supplementary material

1. Description of SEAIHRDS model

Classical SEIRDS model divides the population into compartments, i.e. groups. The population is divided into the following compartments: susceptible to the infection (S), those latently infected with SARSCov-2 (exposed to) (E), the infected individuals who are able to spread the disease (I), recovered from the infection (R), and those who died due to disease (D).

Given that intervention measures, applied in response to the emergence of COVID-19, are not the same for all population strata, we propose the use of multi-compartment version of standard SEIRDS model, named SEAIHRDS model. In this augmented classic deterministic model, the susceptible population was further stratified within the compartment S according to age and occupations. In addition, also two new compartments were added, asymptomatic cases of infection and a portion of the infected population who were hospitalized. To simulate the epidemic progression through different population strata-subgroups, we used appropriate, stratum-specific, model parameters and factors of effective contact reduction (anti-epidemic intervention measures - ρ), which were adapted to the relevant population groups. During the simulation, the effects of various levels of contact reduction, ranging from 20% to 75% were monitored, taking into account the realistic possibilities of maintaining a minimum work process, functioning of the society and feasibility of such measures.

Based on above assumption, the model of differential equations is formulated as follows:

$$\begin{aligned} \frac{dS_{i}(t)}{dt} &= bN(t) - \sum_{j=1}^{n} \beta_{ij} I_{j}(t) S_{i}(t) - \sum_{j=1}^{n} \beta_{ij} \eta A_{j}(t) S_{i}(t) + \omega R_{i}(t) - mS_{i}(t) \\ \frac{dE_{i}(t)}{dt} &= \sum_{j=1}^{n} \beta_{ij} I_{j}(t) S_{i}(t) + \sum_{j=1}^{n} \beta_{ij} \eta A_{j}(t) S_{i}(t) - (m+f) E_{i}(t) \\ \frac{dA_{i}(t)}{dt} &= f \alpha E_{i}(t) - (\gamma + m) A_{i}(t) \\ \frac{dI_{i}(t)}{dt} &= f(1 - \alpha) E_{i}(t) - \sum_{j=1}^{n} \sigma_{ij} I_{j}(t) - (r + m) I_{i}(t) \\ \frac{dH_{i}(t)}{dt} &= \sum_{j=1}^{n} \sigma_{ij} I_{j}(t) - \sum_{j=1}^{n} \delta_{ij} H_{i}(t) - (\varepsilon + m) H_{i}(t) \\ \frac{dR_{i}(t)}{dt} &= \sum_{j=1}^{n} r_{ij} I_{j}(t) + \sum_{j=1}^{n} \gamma_{ij} A_{j}(t) + \varepsilon H_{i}(t) - (m + \omega) R_{i}(t) \\ \frac{dD_{i}(t)}{dt} &= \sum_{j=1}^{n} \delta_{ij} I_{i}(t). \end{aligned}$$

In this model susceptible, exposed, infectious, recovered, deaths and total population are:

$$S(t) = S_{ps}(t) + S_{es}(t) + S_{hs}(t) + S_{cs}(t) + S_{ua}(t) + S_{ea}(t) + S_{p}(t)$$

$$E(t) = E_{ps}(t) + E_{es}(t) + E_{hs}(t) + E_{cs}(t) + E_{ua}(t) + E_{ea}(t) + E_{p}(t)$$

$$A(t) = A_{ps}(t) + A_{es}(t) + A_{hs}(t) + A_{cs}(t) + A_{ua}(t) + A_{ea}(t) + A_{p}(t)$$

$$I(t) = I_{ps}(t) + I_{es}(t) + I_{hs}(t) + I_{cs}(t) + I_{ua}(t) + I_{ea}(t) + I_{p}(t)$$

$$H(t) = H_{ps}(t) + H_{es}(t) + H_{hs}(t) + H_{cs}(t) + H_{ua}(t) + H_{ea}(t) + H_{p}(t)$$

$$R(t) = R_{ps}(t) + R_{es}(t) + R_{hs}(t) + R_{cs}(t) + R_{ua}(t) + R_{ea}(t) + R_{p}(t)$$

$$D(t) = D_{ps}(t) + D_{es}(t) + D_{hs}(t) + D_{cs}(t) + D_{ua}(t) + D_{ea}(t) + D_{p}(t)$$

$$N(t) = S(t) + E(t) + I(t) + R(t) - D(t)$$

$$A_{t+1} = f\alpha E_{t} - (\gamma + m)A_{t}$$

In order to simulate the possibility of controlling the epidemic with the help of vaccination, additional compartment to the model was added denoted with V(t), in which there are vaccinated persons who have successfully developed protective immunity after vaccination. The change of rate in this compartment per unit time is as follow:

$$\frac{dV_i(t)}{dt} = v_e \psi S_i(t) - mV_i - \omega V_i.$$

and compartment S(t) is slightly modified as follow:

$$\frac{dS_i(t)}{dt} = bN(t) - \sum_{j=1}^n \beta_{ij} I_j(t) S_i(t) + \omega R_i(t) - mS_i(t) - v_e \psi S_i(t) + \omega V_i(t) + \omega V$$

Fig. 1. Schematic representation of a mathematical model

1.1. Model parameterisation

A summary of all model parameters is given in Tables 1, 2 and 3.

Stratum	Population	Percentage of total population
Younger than 7 years	356,377	5.10%
Elementary school	550,527	7.88%
Secondary school	249,455	3.57%
Students	241,698	3.46%
Employed	2,197,065	31.46%
Pensioners	1,715,152	24.56%
Others	1,672,330	23.95%

Table 1. Structure of different population strata in the Republic of Serbia [23]

Table 2. Age structure of the population of the Republic of Serbia and expected percentage of hospitalized patients, patients in intensive care, and death rate caused by COVID-19.

Population	*Population	Percentage	**Expected % of	***Expected % of patients	****Infection
age		of total	hospitalized	whose treatment requires	fatality rate IFR
groups		population	patients (σ)	intensive care	(male/female)
0-9	458,199	6.56%	0.00%	5.00%	0.04%;0.01%
10-19	445,481	6.38%	0.04%	5.00%	0.00%;0.02%
20-29	1,028,226	14.73%	1.04%	5.00%	0.00%;0.01%
30-39	951,615	13.63%	3.43%	5.00%	0.00%;0.05%
40-49	968,854	13.88%	4.25%	6.30%	0.08%;0.04%
50-59	963,229	13.79%	8.16%	12.20%	0.33%;0.20%
60-69	815,244	11.68%	11.80%	27.40%	1.62%;0.62%
70-79	696,045	9.97%	16.60%	43.20%	6.11%;2.68%
80-	655,711	9.39%	18.40%	70.90%	16.40%;6.49%

*[26], **[30], ***[8], ***[31]

Table 3. SEAIHRD model parameters

Input parameters	Mark	Value	Source
Population	N _{t0}	6,982,604	[26]
Initial number of cases	lt _o	1	Fixed number
Initially immune	I _{mm0}	0	Fixed number
Basic reproduction number	R_0	2.46 (3.1)	[32]
Effective contact rate	C_{e}	0.38	Estimated
Per capita contact rate	β	0.000000378	Estimated
Daily infection rate (transfer $E \rightarrow I$)	f	0.294118	Estimated
Recovery rate of symptomatic cases	r	0.107527	Estimated
Daily rate of waning of immunity	ω	0.002739726	Estimated
Per capita birth rate	b	0.000025205	[26]
Per capita death rate unrelated to COVID-19	т	0.000036006	Estimated
Life expectancy in years	L	76.09	[27]
Duration of latent infection in days	f^{1}	3.5	[28]
Duration of infectious period in days (clinical cases)	T_R	9.3	[28]
Duration of immunity in days	I _{mm}	365.00	Assumed
Incubation period in days	Inc	5.8	[33]
Time period (day)	dt	1.00	-
Average treatment duration in hospital	days	15,9	[34]
Average time spent in intensive care	days	27	[34]
Recovery rate of hospitalized cases	ε	0.062893	Estimated
Average times taken from onset of symptoms to death	days	17	[35]
Infectious period for asymptomatic cases	days	7.25	[28, 36]
Recovery rate of asymptomatic cases	γ	0.137931	Estimated
Expected percentage of asymptomatic cases	-	30%	[37]
Infectiousness of asymptomatic cases in relation to	η	75%	[37]
symptomatic cases			

Fig.2. Summary of definitions of incubation period, latent period (pre-infectious) and infectious period for COVID-19.

1.2. Model validation

Once the model has been created, there is a need to compute objective metrics to evaluate whether the model generated good predicted values with regard to the variable under study.

During the validation process, the historical data of the actual epidemic of COVID-19 in Serbia were compared with the data obtained by the SEAIHRDS model. For validation purposes, the current epidemic of COVID-19 was simulated (scenario marked as SC0_SER_COVID-19), along with actual anti-epidemic measures, and then the results of simulation was compared with cumulative number of deaths officially recorded.

In the first phase of validation, with the help of the model, the conditions under which the COVID-19 epidemic spread were mimic, as well as the measures of interventions that were taken in order to stop the epidemic. The obtained data were then analysed using statistical tests. We used quality measures as follows:

1) Mean absolute error, given by equation

$$MAE(y,\hat{y}) = \frac{1}{N} \sum_{n=1}^{N} \left| y(t) - \hat{y}(t) \right|$$

2) Mean squared error, given by equation

$$MSE(y, \hat{y}) = \frac{1}{N} \sum_{n=1}^{N} (y(t) - \hat{y}(t))^2$$

3) Root mean square error, given by equation

$$RMSE(y, \hat{y}) = \sqrt{\frac{1}{N} \sum_{n=1}^{N} (y(t) - \hat{y}(t))^2}$$

4) Normalized mean average error, given by equation

$$NormMAE(y, \hat{y}) = \frac{MAE(y, \hat{y})}{\bar{y}}$$

 We calculate the maximum deviation between the main prediction line and SC0_SER_COVID-19 using a 95% confidence level. The equation of this measure is

$$MaxDev(y, \hat{y}) = \frac{|y(t) - \hat{y}(t)|}{y(t)}$$

Pearson's R and coefficient of determination, R², was used to check goodness of fit of SEAIHRD model with COVID-19 data recorded during the real epidemic.

The following formula was used to calculate the coefficient of determination

$$R^{2} = \frac{\sum_{n+1}^{N} (\hat{y} - \bar{y})^{2}}{\sum (y - \bar{y})^{2}}$$

and for Pearson's R,

$$R = \frac{\sum_{n=1}^{N} (x - \bar{x})(y - \bar{y})}{\sqrt{\sum_{n=1}^{N} (x - \bar{x})^2 \sum_{n=1}^{N} (y - \bar{y})^2}}$$

2. Results

2.1. Predicting the number of sick, hospitalized patients and deaths caused by COVID-19 in Serbia

Table 4 and Fig. 2 show the summarized simulation results of 5 different scenarios. Scenario number 1 represents a prediction of the possible outcome of the spread of the epidemic in the absence of any intervention measures. The other 4 scenarios represent the possible outcomes of the epidemic depending on the intensity of the applied measures. Fig. 1 and 2 show the long-term predictions of the possible dynamics of the COVID-19 epidemic in Serbia in the absence of any intervention measures.

Fig. 1, panels a) and b) show daily variations in the number of susceptible, latently infected, infected and recovered patients, at basic reproduction numbers of $R_o=2.46$ and $R_o=3$, respectively. Panels c) and d) of the same figure show daily fluctuations in susceptible, recovered and net reproduction rates R_n for $R_o=2.46$ and $R_o=3$, respectively. Panels e) and f) of Fig. 1 show daily variations in R_n , true and apparent disease incidences at basic reproduction numbers of $R_o=2.46$ and $R_o=3$.

Fig. 2, panels a) and b) show a prediction of necessary hospital capacities. Panels c) and d) of Fig. 2 show predicted numbers of sick and dead due to COVID-19 at R_0 =2.46 and R_0 =3 and age structure of hospitalized patients and deaths.

Number of persons

a) Distribution of the total number of the susceptible, latently infected, asymptomatic infectious individuals, infected and recovered on a daily basis since the epidemic onset (R_o =2.46)

c) Daily fluctuations of the susceptible, recovered and net disease transmission rates ($R_{\rm o}{=}2.46)$

b) Distribution of the total number of the susceptible, latently infected, asymptomatic infectious individuals, infected and recovered on a daily basis since the epidemic onset (R_o =3.1)

d) Daily fluctuations of the susceptible, recovered and net disease transmission rates (R_{\circ} =3.1)

f) Daily fluctuations of apparent incidence, true incidence and net disease transmission rates ($R_0=2.46$)

Fig.1. Model prediction of latently infected, diseased, recovered and daily fluctuations of R_n.

0

1 98 -Hospital bed occupancy per day

-Intensive care beds occupancy

195 292 389 486 583 680 777 874 971

Days since the epidemic onset

Fig. 2. Model prediction of required hospital capacities under the assumption of different intervention measures.

a) Comparative overview of cumulative incidences (CI). Results obtained from simulated scenarios 1-5 (R_0 =2.46)

b) Comparative overview of cumulative incidences (CI). Results obtained from simulated scenarios 1-5 (R_o=3.1)

e) Comparative overview of expected number of patients in intensive care on a daily basis. Results obtained from simulated scenarios 1-5 with $R_0=2.46$

d) Comparative overview of hospitalized patients on a daily basis. Results obtained from simulated scenarios 1-5 (R_{\circ} =3.1)

f) Comparative overview of expected number of patients in intensive care on a daily basis. Results obtained from simulated scenarios 1-5 with R_{o} =3.1

Fig.3. Model prediction of expected number of hospitalized patient and patient in intensive care units.

Patients in intensive care

d) Comparative overview of ICU bed occupancy (Ro=3.1)

Fig. 4. Model prediction of required hospital capacities needed to treat patients with COVID-19.

Scenario mark	S	C1	S	C2	S	C3	S	C4	S	C5
Basic										
reproductive number	R _o =2.64	R _o =3.1								
Cumulative										
incidence (CI)	6,229,144	7,133,221	308,581	2,219,251	1,286,227	2,419,079	1,375,416	2,489,197	1,408,262	2,514,936
Apparent CI	4,360,401	4,993,254	216,007	1,553,476	900,359	1,693,355	962,791	1,742,438	985,783	1,760,456
Overall										
hospitalized	278,781	320,567	13,970	98,337	56,631	105,930	60,319	108,554	61,685	109,538
Overall in										
intensive care	85,633	98,333	4,260	29,753	17,085	32,058	18,202	32,855	18,612	33,147
Overall deaths	20,894	23,951	1,031	7,194	4,113	7,754	4,383	7,948	4,483	8,018

Table 4. Results of different simulated scenarios (Ro = 2.46 and Ro = 3.1). The data refers to the period of 365 days from epidemic onset.

2.2. Predicting the number of sick, hospitalized patients and deaths caused by COVID-19 in Serbia in the case of the application of current anti-epidemic measures in simulation

c) Age structure of hospitalized patients (R_o=2.46)

e) Expected age structure of the dead (Ro=2.46)

d) Comparative overview of hospitalized patients on a daily basis. Results obtained from simulated scenarios 1-5 (R_0 =3.1)

- Cumulative incidence: 1,611,871
- Apparent incidence: 1,128,309
- Total hospitalized patients: 70,945
- Total in ICU: 21,380
- Total recovered: 1,606,715
- Total deceased: 5,155

f) Overview of expected number of infected, hospitalized and patients in intensive care units and deceased in the first year of epidemic (R_o =2.46).

Fig. 5. Predictions of possible epidemic dynamics in case of application of current anti-epidemic measures

2.3. Predicting the number of sick, hospitalized patients and deaths caused by COVID-19 in Serbia in the case of the application of vaccination strategy in simulation

Fig. 6. Results of simulated COVID-19 control based solely on vaccination, scenarios 6-9 (Ro=2.46; Ro=3.1).

Depending on the efficacy of the potential vaccine, the required vaccination coverage should be 87% (v_e =68%), 74.19% (v_e =80%), 69.82% (v_e =85%), 65.94% (v_e =90%) and 95.41% (v_e =71%), 84.68% (v_e =80%), 79.70% (v_e =85%), 75.27% (v_e =90%) for R_o=2.46 and R_o=3.1, respectively.

Table 6. Results of simulated scenarios 6-10 (Ro = 2.46 and Ro = 3.1). The data refers to the period of 1 year of epidemic.

Scenario mark	SC6 (V	′ _e =50%)	SC7 (V	e=68%)	SC8 (V	′ _e =80%)	SC9 (V	′ _e =85%)	SC10 (\	√ _e =90%)
Basic reproductive number	R _o =2.64	R ₀ =3.1	R _o =2.64	R ₀ =3.1	R ₀ =2.64	R ₀ =3.1	R ₀ =2.64	R ₀ =3.1	R ₀ =2.64	R _o =3.1
Cumulative incidence (CI)	2,840,334	3,642,845	1,130,361	2,277,004	315,832	1,260,081	169,680	859,450	91,870	531,339
Apparent CI	1,988,234	2,549,992	791,253	1,593,903	221,082	882,057	118,776	601,615	64,309	371,937
Overall hospitalized	126,962	162,932	50,776	101,760	14,210	56,323	7,624	38,427	4,122	23,761
Overall in intensive care	38,976	50,047	15,550	31,252	4,349	17,291	2,335	11,795	1,263	7,293
Overall deaths	9,502	12,211	3,777	7,624	1,056	4,216	567	2,875	307	1,777

2.4. Results of the model validation

Table 7. Regression model

date	x (D_ _{observed})	y (d_seaihrd)	ŷ=ax+b	Regre	ession Statistics
1-Dec-20	1,652.00	2,802.90	2,667.83	Multiple R	0.981678289
2-Dec-20	1,704.00	2,825.59	2,698.98	R Square	0.963692263
3-Dec-20	1,765.00	2,848.32	2,735.53	Adjusted R Square	0.963124954
4-Dec-20	1,834.00	2,871.11	2,776.86	Standard Error	86.24143528
5-Dec-20	1,891.00	2,893.95	2,811.01	Observations	66
6-Dec-20	1,949.00	2,916.84	2,845.75		
7-Dec-20	2,005.00	2,939.77	2,879.30		
8-Dec-20	2,062.00	2,962.75	2,913.44		
9-Dec-20	2,116.00	2,985.77	2,945.79		
10-Dec-20	2,172.00	3,008.83	2,979.34		
11-Dec-20	2,227.00	3,031.93	3,012.29		
12-Dec-20	2,275.00	3,055.08	3,041.04		
13-Dec-20	2,331.00	3,078.25	3,074.59		
14-Dec-20	2,380.00	3,101.47	3,103.94		
15-Dec-20	2,433.00	3,124.71	3,135.69		
16-Dec-20	2,482.00	3,147.99	3,165.04		
17-Dec-20	2,529.00	3,171.30	3,193.20		
18-Dec-20	2,580.00	3,194.64	3,223.75		
19-Dec-20	2,632.00	3,218.00	3,254.90		
20-Dec-20	2,686.00	3,241.39	3,287.25		
21-Dec-20	2,733.00	3,264.81	3,315.41		
22-Dec-20	2,782.00	3,288.24	3,344.76		
23-Dec-20	2,833.00	3,311.70	3,375.31		
24-Dec-20	2,882.00	3,335.17	3,404.66		
25-Dec-20	2,931.00	3,358.66	3,434.02		
26-Dec-20	2,983.00	3,382.17	3,465.17		
27-Dec-20	3,030.00	3,405.69	3,493.32		
28-Dec-20	3,073.00	3,429.23	3,519.08		
29-Dec-20	3,119.00	3,452.77	3,546.64		
30-Dec-20	3,163.00	3,476.32	3,573.00		
31-Dec-20	3,211.00	3,499.88	3,601.75		
1-Jan-21	3,250.00	3,523.45	3,625.12		
2-Jan-21	3,288.00	3,547.02	3,647.88		
3-Jan-21	3,325.00	3,570.59	3,670.04		
4-Jan-21	3,364.00	3,594.16	3,693.41		
5-Jan-21	3,405.00	3,617.73	3,717.97		
6-Jan-21	3,444.00	3,641.30	3,741.33		

7-Jan-21	3,479.00	3,664.86	3,762.30
8-Jan-21	3,513.00	3,688.42	3,782.67
9-Jan-21	3,548.00	3,711.97	3,803.63
10-Jan-21	3,582.00	3,735.51	3,824.00
11-Jan-21	3,610.00	3,759.04	3,840.77
12-Jan-21	3,639.00	3,782.56	3,858.15
13-Jan-21	3,664.00	3,806.07	3,873.12
14-Jan-21	3,687.00	3,829.55	3,886.90
15-Jan-21	3,708.00	3,853.03	3,899.48
16-Jan-21	3,730.00	3,876.48	3,912.66
17-Jan-21	3,750.00	3,899.91	3,924.64
18-Jan-21	3,771.00	3,923.33	3,937.22
19-Jan-21	3,791.00	3,946.71	3,949.20
20-Jan-21	3,810.00	3,970.08	3,960.58
21-Jan-21	3,830.00	3,993.42	3,972.56
22-Jan-21	3,849.00	4,016.73	3,983.95
23-Jan-21	3,868.00	4,040.01	3,995.33
24-Jan-21	3,886.00	4,063.26	4,006.11
25-Jan-21	3,905.00	4,086.48	4,017.49
26-Jan-21	3,924.00	4,109.66	4,028.88
27-Jan-21	3,944.00	4,132.81	4,040.86
28-Jan-21	3,965.00	4,155.93	4,053.44
29-Jan-21	3,983.00	4,179.01	4,064.22
30-Jan-21	4,000.00	4,202.05	4,074.40
31-Jan-21	4,020.00	4,225.04	4,086.38
1-Feb-21	4,038.00	4,248.00	4,097.17
2-Feb-21	4,056.00	4,270.91	4,107.95
3-Feb-21	4,071.00	4,293.78	4,116.94
4-Feb-21	4,085.00	4,316.61	4,125.32

ANOVA

	df	SS	MS	F	Significance F
Regression	1	12634297.88	12634297.88	1698.709676	8.41222E-48
Residual	64	476005.4502	7437.58516		
Total	65	13110303.33			

		Standard					Lower	Upper
	Coefficients	Error	t Stat	P-value	Lower 95%	Upper 95%	95.0%	95.0%
Intercept	1678.20184	46.85425976	35.817487	4.63985E-44	1584.599696	1771.80398	1584.59969	1771.80398
x (D_observed)	0.599050366	0.014534623	41.21540581	8.41222E-48	0.570014119	0.62808661	0.57001411	0.62808661

Fig. 7. Scatter diagram: deaths_observed vs deaths_predicted by SEAIHRDS model

Fig. 8. The observed number of deceased individuals (blue), number of deceased individuals modeled with SEAIHRD model (orange), and predicted number of deceased individuals (green) by model and corrected with real data (95% confidence interval between dotted lines).

Table 11. Measures of the prediction quality

	MAE	%Error	MSE	RMSE	Normalized MAE	Normalized MSE	Max Deviation
Deceased	73	2.04%	7,212.20	84.92	2.05%	0.06%	4.82%