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Abstract 18 

As a response to the pandemic caused by SARS-Cov-2 virus, on 15 March, 2020, the Republic of 19 

Serbia introduced comprehensive anti-epidemic measures to curb COVID-19. After a slowdown in the 20 

epidemic, on 6 May, 2020, the regulatory authorities decided to relax the implemented measures. 21 

However, the epidemiological situation soon worsened again. As of 7 February, 2021, a total of 406,352 22 

cases of SARSCov-2 infection have been reported in Serbia, 4,112 deaths caused by COVID-19. In order 23 

to better understand the epidemic dynamics and predict possible outcomes, we have developed an 24 

adaptive mathematical model SEAIHRDS (S-susceptible, E-exposed, A-asymptomatic, I-infected, H-25 

hospitalized, R-recovered, D-dead due to COVID-19 infection, S-susceptible). The model can be used to 26 

simulate various scenarios of the implemented intervention measures and calculate possible epidemic 27 

outcomes, including the necessary hospital capacities. Considering promising results regarding the 28 
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development of a vaccine against COVID-19, the model is extended to simulate vaccination among 29 

different population strata. The findings from various simulation scenarios have shown that, 30 

with implementation of strict measures of contact reduction, it is possible to control COVID-19 and 31 

reduce number of deaths. The findings also show that limiting effective contacts within the most 32 

susceptible population strata merits a special attention. However, the findings also show that the 33 

disease has a potential to remain in the population for a long time, likely with a seasonal pattern. If 34 

a vaccine, with efficacy equal or higher than 65%, becomes available it could help to significantly slow 35 

down or completely stop circulation of the virus in human population.  36 

The effects of vaccination depend primarily on: 1. Efficacy of available vaccine(s), 2. Prioritization 37 

of the population categories for vaccination, and 3. Overall vaccination coverage of the population, 38 

assuming that the vaccine(s) develop solid immunity in vaccinated individuals.  With expected basic 39 

reproduction number of Ro=2.46 and vaccine efficacy of 68%, an 87% coverage would be sufficient to 40 

stop the virus circulation.  41 

Keywords: COVID-19, SEAIHRDS mathematical model, prediction, vaccination 42 

 43 

1. Introduction  44 

On 11 March, 2020, the World Health Organization characterised the disease caused by the 45 

novel SARS-Cov-2 virus as a pandemic [1]. The Initial epidemic outbreak in China spread outside the 46 

Wuhan area, and subsequently on a global scale. On 6 March, 2020, the first case of the novel 47 

coronavirus infection was reported in the Republic of Serbia. Taking into consideration the escalation of 48 

the disease and limited effects of the initially implemented measures, the state of emergency was 49 

declared throughout the country on 15 March, 2020. Comprehensive anti-epidemic measures (e.g. 50 

lockdown of entire country) were introduced in the entire country [2].  51 

Due to the absence of specific pharmaceutical intervention, Serbia, like other countries, 52 

implemented an anti-epidemic strategy based on physical distancing, school and university closures, 53 

reduced number of workers present in the workplaces, closure of places of worship for public religious 54 

services, reduced working hours of cafés and restaurants, avoiding mass gatherings, events, sports 55 

games, tracing and identification of infected people’s contacts, etc. After a slowdown in the epidemic, as 56 
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shown in the relevant officially published data, the regulatory authorities decided to relax the introduced 57 

measures on 6 May, 2020. However, the epidemiological situation soon worsened again, resulting in the 58 

reinstatement of some measures, as well as the introduction of new measures [2]. Although the return of 59 

extensive measures has yielded favourable results, the further development of the epidemic is not clear.  60 

For these reasons, mathematical modelling has a crucial role in understanding the epidemic and 61 

predicting possible outcomes. Modelling is a particularly useful tool for devising strategies for combating 62 

the epidemic, capacity planning, and selection of efficient measures, especially in the absence of specific 63 

pharmaceutical treatments [3, 4, 5]. Mathematical modelling based on differential equations dates back to 64 

the first half of 20th century. In 1927, Kermack and McKendrick developed the basic model of disease 65 

transmission consisting of three compartments: susceptible (S), infected (I) and removed (R). The model 66 

was based on a connected system of nonlinear differential equations as a special case of the general 67 

epidemiological model [6, 7]. Subsequent models, became more complex and adapted to the needs of 68 

research [5].   69 

Since the outbreak of COVID-19, many published papers have dealt with the implementation of 70 

mathematical modelling and prediction of possible outcomes of COVID-19 epidemics. Most of these 71 

research efforts have been based on the implementation of the SIR (susceptible-infected-removed) 72 

model. Many of the other models provide a clear picture of dynamics of COVID-19 spreading, including 73 

the overloading of the relevant health systems. For example, Ferguson et al., developed one of the first 74 

models for COVID19 simulation, which was, among other things, used to plan the health care resources 75 

[8]. Wu et al., developed the SEIR model to examine the dynamics of SARS-Cov-2 transmission from 76 

person to person. This model was also used to calculate the basic reproduction number Ro, which we use 77 

in this paper as one of the key parameters [9]. The classical SIR model assumes that there is 78 

homogenous mixing of infected and susceptible populations and that the total population is constant and 79 

does not change over time. Moreover, according to the classical SIR model, there is a monotonous 80 

decline in susceptible population towards zero [10]. However, such assumptions are not objective in the 81 

case of COVID-19 spreading and they are the basic problem in the modelling of this pandemic. In reality, 82 

the human population fluctuates constantly [11]. In order to account for such fluctuation, and better 83 

understand the COVID-19 epidemic in the Republic of Serbia, we have employed mathematical modelling 84 
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of the epidemic using the available data on the characteristics of the disease, such as incubation period, 85 

latent period, recovery period, severity of clinical signs, and mortality rate caused by COVID-19.   86 

Unlike the classic SIR model, the SEAIHRDS (S-susceptible, E-exposed, A-asymptomatic, I-87 

infected, H-hospitalized, R-recovered, D-dead due to COVID-19 infection, S-susceptible) epidemic model, 88 

developed for this research, simulates the spreading of COVID-19 in an open population. Taking into 89 

account that the population is constantly changing and that various measures are applied for different 90 

strata or subgroups of the population (such as preschool children, children attending primary school, high 91 

school students, students, employees, the unemployed and retirees), as well as changes in the intensity 92 

of applied measures, we have proposed the use of a model that takes these circumstances into account. 93 

Based on input disease parameters taken from scientific literature and specific data related to Serbia, this 94 

model simulates daily disease occurrence, including the number of hospitalized patients and cases which 95 

require intensive care. The model also predicts the expected number of deaths, as well as hospital 96 

capacities necessary to accommodate the patients. It provides a possibility to simulate different scenarios 97 

of disease control and intervention measures. Considering the expectations of successful development of 98 

the vaccine against COVID-19 in the near future, we added an option to model vaccination of different 99 

strata of the population as a set of disease control strategies. 100 

 101 

2. Methodology 102 

This section presents the research methodology and the proposed model, which were used to 103 

predict the further dynamics of the epidemic in Serbia. We also presented the data that were used to 104 

model the epidemic, a simulated strategy to combat COVID-19, and a sensitivity analysis. 105 

 106 

2.1. SEAIHRDS mathematical model  107 

Classical SEIRDS model divides the population into compartments, i.e. groups, and follows the 108 

disease dynamics at all times. The population is divided into the following compartments: the portion of 109 

the population susceptible to the infection is denoted by S, those latently infected with SARSCov-2 110 

(exposed to) are denoted by E,  the infected individuals who are able to spread the disease are denoted 111 

by I, the ones recovered from the infection are denoted by R, and those who died due to disease with D. 112 
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Assuming that individuals mix homogenously, the force of infection λ (the rate at which susceptible 113 

persons are infected) is related to per capita contact rate �. Also, the risk of infection is closely related to 114 

the number of infectious individuals in the population It. It depends on the number of infectious individuals 115 

(It) and how frequently they make contacts with other persons. In a situation of homogenous mixing 116 

among the population, the force of infection λ can be express as follows: 117 

λ(t) = �I(t)                                                                                                                                                                                                  (1) 118 

The change of rates in every compartment per unit time in SEIRDS model is presented in the following 119 

series of differential equations: 120 

St+1=bNt − �StIt− mSt  +ωRt                 (2)  121 

Et+1=�StIt – ƒE − mEt                                                              (3) 122 

It+1=ƒEt – (r+m)It  – δIt                       (4) 123 

Rt+1=rIt – (m+ω)Rt                                            (5) 124 

Dt+1= δIt                          (6) 125 

where ƒ is rate of onset of infectiousness expressed as the reciprocal of the latent infection period, r is 126 

the rate at which infectious individuals are recovered, δ is the rate at which infectious individuals die from 127 

COVID-19 infection and ω is rate of waning of immunity. The total population at any particular interval of 128 

time t is: 129 

Nt = St+ E+ It+ Rt+ Dt+bNt-1-mSt-1                       (7) 130 

where parameters b and m are per capita daily birth rate and death rate unrelated to COVID-19.  131 

However, considering that implemented anti-epidemic measures against COVID-19 do not have 132 

an identical impact on the population’s age subgroups and that COVID-19 pathogenesis varies in different 133 

age subgroups, we propose the use of multi-compartment version of standard SEIRDS model. The 134 

model, named SEAIHRDS, monitors the dynamics of following compartments: susceptible individuals (S), 135 

latently infected with SARSCov-2 (E) (exposed to/presymptomatic), asymptomatic infectious individuals 136 

(A), infectious individuals with symptoms/clinically ill (I), hospitalized patients (H), recovered individuals 137 

(R), and those who died due to disease (D). In this model the susceptible population was further stratified 138 

within the compartment S according to age and occupations. Grouping into various strata was done 139 

according to the real age structure of the Republic of Serbia population as follows: pre-school children 140 
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(�ps), elementary school children (�es), high school children (�hs), college students (�cs), unemployed 141 

population (�ua), employed population (�ea), and elderly/retired (�r) (Table 1). To simulate the epidemic 142 

progression through different population strata-subgroups, we used appropriate, stratum-specific, model 143 

parameters and factors of effective contact reduction (anti-epidemic intervention measures - ρ), which 144 

were adapted to the relevant population groups:  lockdown of the entire country, closures of pre-school, 145 

school and college sessions closures, reduced number of workers allowed in the workplaces, work from 146 

home, restrictions of mobility of elderly people, etc. During the simulation, we monitored the effects of 147 

various levels of contact reduction, ranging from 20% to 75%, taking into account the realistic possibilities 148 

of maintaining a minimum work process, functioning of the society and feasibility of such measures.   149 

Given that intervention measures, applied in response to the emergence of COVID-19, are not 150 

the same for all population strata, homogeneous mixing can be expected only within same population 151 

stratum. The rate of effective contacts �, after the application of intervention measures, is no longer 152 

identical at the level of all strata of the population. Effective contacts are limited by the intensity and types 153 

of measures applied and are identical only when it comes to individuals within the same population strata. 154 

Furthermore, persons in different population strata become infected at different rates depending on how 155 

frequently they interact with other persons in their own subgroup and other subgroups. If we assume that 156 

force of infection differs between different strata of population, the equation for the force of infection would 157 

be as follows:  ����� � ∑ ���
�
��� 	����                                                                                              (8) 158 

where λi(t) is force of infection in the ith population strata, �ij is the rate at which susceptible persons in the 159 

ith population strata and infectious persons in jth population strata come into effective contact per unit of 160 

time, and Ij(t) is the number of infectious persons in jth population strata. Also, in this model the number of 161 

recovered and dead is conditioned with different ages and genders.   162 

Now our model will be expressed as follows: 163 

����	


�	
� 
���� � ∑ ���	������

�
��� ��� � ∑ ����������

�
��� ��� � ������ � ������             (9) 164 

����	


�	
� ∑ ���	������

�
��� ��� � ∑ ����������

�
��� ��� � �� � ƒ������                               (10) 165 

����	


�	
� ƒ������ � �� � �������                  (11)  166 

���	


�	
� ƒ�1 � ������� � ∑ ���	�����

���  � �� � ��	����   (12) 167 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 4, 2021. ; https://doi.org/10.1101/2020.10.21.20216986doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.21.20216986
http://creativecommons.org/licenses/by-nc-nd/4.0/


����	


�	
� ∑ ���	���� � ∑ ���������

��� � �� � ��
��� ������                                                                                  (13)   168 

����	


�	
� ∑ ���	���� � ∑ ���������

��� � ������  � �� ��
���  �������  (14) 169 

����	


�	
� ∑ ���	�����

���   (15) 170 

where α is the proportion of asymptomatic cases, η accounts for the relative infectiousness of 171 

asymptomatic carriers (in comparison to symptomatic carriers), r is the rate at which infectious individuals 172 

whit symptoms are recovered, γ is the rate at which asymptomatic infectious individuals are recovered, � 173 

is rate at which infectious individuals are hospitalized, ε is the rate at which hospitalized patients are 174 

recovered, δ is the rate at which infected individuals die from COVID-19 infection and ω is rate of waning 175 

of immunity (Supplementary material). 176 

 177 

2.2. Determining the herd immunity threshold and control of COVID-19 by vaccination policy  178 

Considering the undergoing worldwide efforts to develop a vaccine against COVID-19 and 179 

promising results, we extended the model to simulate and analysed the effects of a hypothetical 180 

vaccination on the epidemic dynamics, and to estimate the extent of coverage of vaccination which can 181 

interrupt the chain of infection. The control of COVID-19 by vaccination means targeting the entire 182 

susceptible population with mass vaccination until critical herd immunity achieved. In such situation there 183 

is a “race” between the exponential growth of epidemic and mass vaccination.  The level of herd immunity 184 

threshold (HIT) can be calculated by the following formula: HIT = 1− 1/Ro = (Ro−1)/Ro                                         (16) 185 

and the critical vaccination coverage required to achieve herd immunity can be obtained by multiplying 186 

herd immunity threshold with reciprocal value of vaccine efficacy, ve: 187 

  �� �
�

��
�1 �

�

��

� (17) 188 

Most people infected with SARS-CoV-2 develop an immune response followed by the 189 

development of specific antibodies between 10 and 21 days after getting infected [12]. Specific IgM and 190 

IgG antibodies against SARS-CoV-2 develop 6 to 15 days after the onset of the disease [13-17]. 191 

According to some studies, the presence of antibodies has been confirmed in less than 40% of the 192 

patients within 1 week after the onset of the disease, whereas percentage reaches 100% of subjects 15 193 

days after the onset of disease [18]. Although duration of the immune response against CVOVID 19 is still 194 
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unknown, comparing with other coronaviruses, where immunity wane within 12 to 52 weeks after the first 195 

symptoms appear [19, 20], while in the case of SARS-CoV-1 infection the presence of IgG antibodies was 196 

confirmed in 90% and 50% of infected patients, respectively, over two and three years, respectively [29], 197 

we assumed that durable immunity against COVID-19 is possible [20, 21].  Immunity to HCoVOC43  and 198 

HCoV-HKU1 appears to wane appreciably within 1 year [21, 22], whereas SARS-CoV-1 infection can 199 

induce longer-lasting immunity [23]. S. F. Lumley et. in a study conducted on 1,246 persons recovered 200 

from COVID-19 found no symptomatic re-infections over 6 months [24].  201 

Based on these findings, and fact that SARS-Cov-2 virus is also beta coronavirus, we assumed 202 

that in the event of the development of a successful vaccine, immunity against the SARS-Cov-2 virus 203 

could last for a year, as well as after recovery after a natural infection. In a study conducted to determine 204 

the dynamics of SARS-Cov-2 transmission in the post pandemic period, Kissler et al. applied a similar 205 

approach in defining the possible length of the immunity period [20]. 206 

For the purpose of modelling a control strategy based on vaccination, additional compartment to 207 

the model was added denoted with V(t), in which there are vaccinated persons who have successfully 208 

developed protective immunity after vaccination. The vaccination parameter, υ, is the daily rate of 209 

vaccination of susceptible population and it represents the proportion of susceptible population 210 

immunized per unite time.  The critical daily rate of vaccination, !c, is !c = (b+ω)(Ro -1), required to 211 

interrupt the infection [5]. The basic reproduction number under the vaccination is Rop = (1-p)Ro. The 212 

proportion of effectively protected persons, p, is conditioned by parameter the vaccine efficacy, ve. This 213 

parameter represents a proportion of person who successfully developed protective immunity after 214 

vaccination, whereas total number of actively protected individuals in time t is V(t) = number of vaccinated 215 

x ve [5]. In this compartment the daily rate of waning of immunity at which immunity of vaccinated 216 

population fades out is ω, and it is reciprocal to the period of lasting of immunity. Vaccinated persons, 217 

after losing their immunity, become sensitive again and removed to the compartment S. The change of 218 

rate in this compartment per unit time is as follows: 219 

����	


�	
� ��  ����� � ��� � ���.  (18) 220 

The compartment S(t) is slightly modified as follows:  221 

����	


�	
� 
���� � ∑ ���	�����

��� ����� � ��_! ��� � ��������� ����� � ���. (19) 222 
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The other of compartments of SERIDS model remain unchanged. 223 

  224 

2.3. Model parametrisation    225 

In proposed model, � is per capita effective contact rate at which specific persons come into 226 

effective contact per unit of time. An effective contact is defined as a contact sufficient to cause disease 227 

transmission [10, 24, 26].  We calculated the parameter � by using the formula: 228 

 �= Ro/NTR                                  (20)                   229 

where Ro is a basic reproduction number of the disease, i.e. the average number of newly infected people 230 

with COVID-19 (secondary infection cases), infected by one infectious individual in a totally susceptible 231 

population, N is total population, and TR is the average duration of infectious period [10, 25, 26]. The R 232 

values of 2.46 and 3.1 are adopted from the relevant literature. The Ro values were based on the data 233 

obtained during the initial phase of the epidemic in Italy [27]. Since the implemented measures and 234 

disease transmission were simulated through various population strata, we corrected the � parameter 235 

with a relevant, stratum-specific contact reduction factor ρi. In this way, we obtained the per capita contact 236 

rate specific for each separate stratum based on following formula   237 

�i = �(1-ρi).                                                  (21) 238 

The values of the ρi factor in different population strata ranged from 0.25 to 0.75 (effective contact 239 

reduction ranged from 25% to 75%).    240 

Parameters such as daily birth and death rates were calculated based on the data published by 241 

the Office of Statistics of the Republic of Serbia, and data published by the World Bank regarding the life 242 

expectancy in the Republic of Serbia [28, 29]. The latter study reported that the life expectancy in Serbia 243 

was 79.06 years in 2017 [29]. By using this figure, we expressed the daily death rate as a value reciprocal 244 

to life expectancy m = 0.000036. We calculated the daily per capita birth rate of b= 0.000025 based on 245 

the figure of 9.2 births in the Republic of Serbia per 1000 people in a year. These estimates were needed 246 

to realistically simulate fluctuations of the total population. To simplify the calculations, we assumed that 247 

the general morality rate m is applicable for all population strata.  248 
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The infectivity rate, i.e. the rate of transfer from compartment E to I, was derived as a value 249 

reciprocal to the COVID-19’s average latent period.  The data on the average duration of latent infection 250 

(ƒ-1) and the average period during which an infected person is shading the SARS-Cov-2 virus (TR) were 251 

adopted from the relevant literature as ƒ-1 = 3.5 days [30, 31] and TR = 9.3 days, respectively [30].  Also 252 

the data on the percentage of hospitalized patients and those whose therapy requires intensive care, 253 

used for prediction of required hospital capacities, as shown in Table 1, were taken from literature [30, 8].  254 

Parameters such as δ and r are related to the infectious fatality rate (IFR) for COVID-19 and 255 

average times taken from onset of symptoms to death (TD) or recovery (TR). These parameters were 256 

calculated using the following formulas:  257 

δ = IFRstratum /TD   and (22) 258 

r =(1-IFRstratum)/TR (23) 259 

The IFRs, shown in Table 2, were taken from literature and compared with local IFR value which 260 

was calculated based on officially registered deaths published by the health system of the Republic of 261 

Serbia [2]. The Calculation of local IFR is presented in section 2.4. Population data, (e.g. total population, 262 

age structure, and stratification) are presented in Tables 1 and 2.  A summary of all model parameters is 263 

given in Table 3. 264 

 265 

2.4. Setting disease control scenarios  266 

Five different scenarios were developed for simulating the COVID-19 epidemic control based on 267 

non-pharmaceutical interventions. SC1 implies a base-case scenario where the epidemic spreads in 268 

susceptible population without any anti-epidemic measures being implemented. In the other scenarios, 269 

the extent of contacts was reduced, for each population stratum separately, according to objective 270 

possibilities and measures which were implemented during the actual epidemic in the Republic of Serbia. 271 

Scenarios are presented in Table 4.  272 

The timing of the simulation of anti-epidemic measures, i.e. the reduction of individual contacts 273 

corresponds to the actual date when the implementation of measures in the real epidemic in Serbia 274 

began (March 15, 2020). Considering that it is not realistic to expect the desired level of reduction of 275 

physical contacts to be achieved in one day, in each scenario, a period of gradual introduction of 276 
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measures was simulated (lag period of 7 days). Since each individual scenario was simulated at R0 of 277 

2.46 and 3.10, different contact reduction rates were applied accordingly.   278 

Additional four scenarios of control of COVID-19 were simulated based on vaccination policy. We 279 

assumed that vaccine efficacy was 50%, 68%, 80%, and 85%. The initial conditions assumed that all 280 

other anti-epidemic measures are excluded from the model and replaced with mass vaccination. 281 

Indicators of epidemic dynamics were monitored, such as: CI, hospitalized patients, patient in intensive 282 

care units and deaths. 283 

 284 

2.5. Model sensitivity analysis and calibration  285 

Considering the world experience with detection of COVID-19 cases, as well as the unreliable 286 

data on COVID-19 infections which are currently available worldwide, model calibration is very 287 

challenging, and can result in obtaining inaccurate values for the parameters [40]. This is especially due 288 

to the facts that a significant percentage of the infected individuals do not exhibit any symptoms. The 289 

other issue is small percentage of tested population [40].   290 

As part of the national seroepidemiological study, 1,006 subjects were tested in Serbia from May 291 

11th to June 25th, 2020, for the purpose of estimating the extent of COVID-19 infection. According to the 292 

published data, seroconversion was confirmed in 6,4% of the subjects. On the other hand, a total of 293 

13,372 cases of the infection were reported, which means that those who were infected constitute around 294 

0.19% of the overall population. However, it is our opinion that the data on reported deaths caused by 295 

COVID-19 infection is more reliable for use in model calibration, e.g. infection fatality rate. Alex et al. 296 

reached a similar conclusion when simulating COVID-19 by using the SEIRD model with heterogeneous 297 

diffusion [40]. When we compared the data recorded during the beginning of the epidemic in Serbia with 298 

the results obtained during the simulation, such as the initial doubling time, the two data series matched 299 

well. However, later, the obtained results did not match well the officially registered data on the number of 300 

infected, especially after the beginning of the implementation of measures in Serbia. We attribute these 301 

differences to the methodology by which official authorities register cases of infection, and collect the 302 

data.  303 
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The parameter that determines the number of deaths is the IFR. It is the number of persons who 304 

die of the COVID-19 among all infected individuals regardless of whether the infected show symptoms of 305 

the disease or not. As with many diseases, IFR is not always equivalent to the number of reported deaths 306 

caused by COVID-19. This is because a significant number of deaths, although caused by COVID-19, will 307 

not be recognized as deaths caused by COVID-19 [41]. Also, there are many asymptomatic cases of 308 

infection which are never detected [42, 43, 44, 45].  309 

 However, according to new findings, the overall estimate of the proportion of people who become 310 

infected with SARS-CoV-2 and remain asymptomatic throughout infection was 20% (95% confidence 311 

interval) with a prediction interval of 3%–67% in 79 studies that addressed this question [46, 47]. Michael 312 

A. Johansson et al. reported that 30% of individuals with infection never develop symptoms and are 75% 313 

as infectious as those who do develop symptoms, and concluded that persons with infection who never 314 

develop symptoms may account for approximately 24% of all transmission [39].  315 

Due the fact that there is a lag in time between when people are infected and when they die, 316 

patients who die on any given day were infected much earlier, and thus the denominator of the mortality 317 

rate should be the total number of patients infected at the same time as those who died [41]. David et al. 318 

estimated mortality rate by dividing of deaths on a given date by the total number of persons confirmed as 319 

COVID 19 cases 14 days before [29, 41]. It is based on the assumption that maximum incubation period 320 

is14 days [34]. However, if we take into account that the number of registered cases of COVID-19 321 

infection is usually significantly lower than the actual number, assuming that the data on deaths are 322 

accurate, the real IFR value is significantly lower than the calculated value [40]. If we apply this to the 323 

situation in Serbia, the daily value of IFR on July 10th, 2020, when the largest number of deaths was 324 

registered in one day, was 9.33%, considering that 18 deaths were registered on July 10th and 14 days 325 

earlier 193 confirmed cases of COVID-19 infection.  The raw values of IFR for the period between March 326 

6th and August 10th were as follows: median of IFR = 2.11%, and average value of IFR = 7.15% bounded 327 

in interval 4.17%-10.13%. When we compared these values with those published by the WHO, CDC and 328 

other authors [43, 44, 48] we concluded that they differ significantly. Considering these findings, the IFR 329 

values adopted in the model (for various population groups and genders) were primarily taken from the 330 

literature, with a remark that the selection of IFR values was based on preliminary comparison of the 331 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 4, 2021. ; https://doi.org/10.1101/2020.10.21.20216986doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.21.20216986
http://creativecommons.org/licenses/by-nc-nd/4.0/


overall Serbian IFR with similar IFRs found in the literature, taking into account the registered deaths and 332 

most probable number of infected individuals [33]. To make this possible, the first step was to correct the 333 

local raw IFR value mentioned above. Based on real data we first calculated the population at risk of 334 

dying from COVID-19 infection for each individual day since the outbreak, ending on August 10th, 2020. 335 

The number at risk on a given day should correspond to the number of deaths from COVID-19 infection, 336 

considering the lag period from infection to death. For this calculation, we used the data on the number of 337 

deaths Dt in Serbia registered on daily bases [2]. We hypothesized that the distribution of time periods tn 338 

from the moment of COVID19 infection to death follows the lognormal distribution defined by the 339 

parameters m = 26.8 and σ = 12.4 days [48, 49]. 340 

Based on the formula: Ir(t) = ∑ 	�	��
 
�
��� " ��	��
 by reverse, we calculated the population at risk of 341 

dying from COVID-19 infection for each individual day, where mt is the probability that the time between 342 

infection and death is t days and follows the lognormal distribution (m = 26.8, σ = 12.4) [48, 49]. After that, 343 

the daily IFR values were calculated according to the formula IFR(t) = Dt /Ir(t) [50]. Based on IFR values 344 

calculated in this way, we made descriptive statistics and obtained the mean value of IFR = 0.70%, 345 

bounded in the interval 0.46-0.94% and a median of 0.19%. It is important to note here that this value 346 

corresponds with the COVID-19 IFR values found in Eastern European countries and Spain [50, 33]. 347 

Taking these findings into account, we decided to take the IFR values specific to certain population strata 348 

recorded in Spain as the most appropriate for our case [33]. The adopted IFR values are listed in Table 3.  349 

In this section, we used sensitivity analysis to estimate the amount of change on outcomes when 350 

varying the input values used in the model. Sensitivity analysis is one of the methods most frequently 351 

used for the evaluation of disease spread models [51, 52]. A sensitivity analysis is carried out to 352 

characterise the impact of uncertainty of input parameters on model outputs. Sensitivity analysis consists 353 

of assessing the impact that changes in input parameters have on model outcomes. We evaluate two 354 

aspects of the model: the global behavior of the model when perturbing a group of key parameters 355 

together, and the impact of changes when perturbing the key parameters used in the model individually. 356 

The model sensitivity analysis was conducted by changing the most sensitive model parameters: 357 

R0, β, ƒ-1, r, b, m, γ, ε, η, ω, τ�d . The values of these parameters were increased by 5%, 10% and 25% 358 

relative to the base scenario and changes in output indicators were observed.  359 
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Finaly, validation of the model was performed by comparing the historical data of the real 360 

epidemic in Serbia with the data obtained with the SEAIHRDS model. For validation purposes, the current 361 

epidemic of COVID-19 was simulated, along with actual anti-epidemic measures. Taking into account the 362 

risks described above related to the accuracy of historical data from the COVID-19 epidemic in Serbia 363 

and significantly higher confidence in the accuracy of data related to the number of deaths from COVIDA-364 

19 compared to data on the number of infected, for the purpose of model validation, only data on the 365 

cumulative number of deaths were used. The reason for this assumption is that there is still uncertainty 366 

about the proportion of the infected population that is not reported due to a mild form of the disease or 367 

the patients are asymptomatic. 368 

In statistical analysis the coefficient of determination, R2, was used to check goodness of fit of 369 

SEAIHRD model with COVID-19 data recorded during the real epidemic. The regression coefficient 370 

compares predicted values (y) against actual data (x). To address model uncertainties, bias, mean 371 

absolute error (MAE), mean square error (MSE), the root mean square error (RMSE), maximum deviation 372 

(MaxDev) and normalized root mean square error (NRMSE) were also estimated (Supplementary 373 

material). 374 

 375 

3. Results 376 

3.1. Predicting the number of sick, hospitalized patients and deaths caused by COVID-19 in the 377 

absence of any intervention measures 378 

After the simulation, the model predicted that with Ro = 2.46, and without the implementation of 379 

any anti-epidemic measures, the initial doubling time of the infection could be five days. The epidemic 380 

wave could peak 219 days after the outbreak, and it could yield 99,819 infected individuals in a day. 381 

Afterwards, the infection rate could decline for 215 days, eventually reaching the daily incidence of 492 382 

newly infected, after which the next epidemic wave could start. The second wave could peak 706 days 383 

after the onset of epidemic and yielding 25,232 infected individuals in a day. The third epidemic wave 384 

could peak 429 days later, with 13,709 infected individuals in a day. The true cumulative incidence in the 385 

first year of the epidemic could be 6,229,144 infected people with SARS-Cov-2 virus, while the apparent 386 
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cumulative incidence could be 4,360,401 infected. A total of 20,894 patients could die due to COVID-19 387 

consequences.  388 

With Ro = 3.1, the following results were obtained: the initial doubling time of the infection was five 389 

days, true cumulative incidence 7,133,221, apparent cumulative incidence 4,993,254, and the total 390 

deaths of 23,951. Fig. 1, panels a) and b) show daily variations in the number of susceptible, latently 391 

infected, infected and recovered patients, at basic reproduction numbers of Ro=2.46 and Ro=3, 392 

respectively. Panels c) and d) of the same figure show daily fluctuations in susceptible, recovered and net 393 

reproduction rates Rn for Ro=2.46 and Ro=3, respectively. Panels e) and f) of Fig. 1 show daily variations 394 

in Rn, true and apparent disease incidences at basic reproduction numbers of Ro=2.46 and Ro=3. The 395 

shaded area corresponds to the period when the daily number of new COVID-19 infected individuals 396 

increasing, and therefore all of the following hold: Rn>1, proportion susceptible >1/Ro and the proportion 397 

of population that is recovered (immune) is below the herd immunity threshold. Fig. 2 panels a) and b) 398 

show a prediction of necessary hospital capacities. Panels c) and d) of Fig. 2 show predicted numbers of 399 

sick and dead due to COVID-19 at Ro=2.46 and Ro=3 and age structure of hospitalized patients and 400 

deaths.  401 

 402 

3.2. Predicting the number of sick, hospitalized patients and deaths caused by COVID-19 in the 403 

conditions of application of restrictive anti-epidemic measures 404 

When the spread of COVID-19 epidemic through totally susceptible population in the Republic of 405 

Serbia is simulated, under an assumption of only incidental movement among the population, basic 406 

reproduction number of Ro = 2.46, and with lock-down of entire country, a significant slowdown of the 407 

epidemic was observed. Initial infection doubling time was 6 days. The peak of the epidemic wave could 408 

occur 702 days after the epidemic onset,  when there could be 2,848 infected in one day. In the first year 409 

of the epidemic 308,581 people could be infected and 1,031 people could die.   410 

When the basic reproductive number was increased to R0 = 3.1, and for certain segments of the 411 

population the contact reduction factor ρi increased compared to the values from the scenario with R0 = 412 

2.46 (reduction of contacts in public places and contacts of persons over 65 years by 55% and 65%, 413 

respectively), the results changed significantly. The model predicted that with R0 = 3.10, the initial 414 
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infection doubling time could be 5 days, the peak of epidemic wave could occur after 246 days and it yield 415 

8,110 infected people in one day. In the first year of the epidemic 2,219,251 people could be infected and 416 

7,194 could die.  417 

Table 5 provides the overview of epidemic indicators obtained from the simulations of all five 418 

scenarios with Ro = 2.46 and Ro = 3.1. Figures 3. and 4 provide a comparative overview of results of all 419 

five simulated scenarios. Panels a) and b) of Fig. 3 show the values of cumulative incidences on a daily 420 

basis for Ro=2.46 and Ro=3.1, respectively. Panels b) and c) of Fig. 3 show the expected total number of 421 

hospitalized patients and patients in intensive care units (ICU) for Ro=2.46 and Ro=3.1, respectively. Fig. 422 

4 provides overview of required hospital capacities e.g. hospital bed occupancy and the occupancy of 423 

beds in ICU on daily bases for Ro=2.46 and Ro=3.1, respectively. The results show that after applying 424 

various measures to slow down the circulation of SARS-Cov-2, the number of newly infected people, 425 

hospitalized patients and the occupancy of hospital capacities are the lowest in the situations where 426 

rigorous anti-epidemic measures are applied to all population strata (Scenario 2 in Table 5 and in Fig. 3 427 

and Fig. 4). Openings of pre-school and elementary school’s facilities leads to a visible jump in the 428 

number of infected and hospitalized in all strata. This finding clearly shows that children, although least 429 

susceptible to developing more severe clinical pictures, are important when transmitting SARS-Cov-2 430 

(Scenario 3 in Table 5 and Fig. 3). Opening of the high schools and colleges also leads to a visible 431 

increase in the number of newly infected and hospitalized patients, including an increase in the number of 432 

deaths (Scenario 5 in Table 5 and Fig. 3). Without the application of any intervention measures, the 433 

greatest burden on the health system could be expected 228 days from the beginning of the epidemic at 434 

Ro=2.46 or 168 days at Ro=3.1.  435 

Depending on the Ro value used in simulation, it could be necessary to provide 42,351 (61,739) 436 

hospital beds and an additional 20,173 (28,740) in intensive care units. In the case of Scenario 2, there is 437 

a significant slowdown in the epidemic. According to the predictions obtained by the simulation of 438 

Scenario 2, after 713 (259) days at the moment of maximum occupancy of hospital capacities, it might be 439 

necessary to provide 1,387 (3,940) beds in COVID-19 hospitals and 784 (2,162) beds in intensive care 440 

units (Fig. 4). 441 
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3.3. COVID-19 simulation and disease control by implementing a hypothetical vaccine   442 

Assuming that the disease is spreading at the basic reproduction number of Ro=2.46, the herd 443 

immunity threshold (when the disease can be expected to slow down and the chain of infection is 444 

expected to be broken) would be 59.35%, while at Ro=3.1, it would be 67.74%. Depending on the efficacy 445 

of the potential vaccine, the required vaccination coverage should be 87% (ve =68%), 74.19% (ve =80%), 446 

69.82% (ve=85%), 65.94% (ve=90%) and 95.41% (ve=71%), 84.68% (ve=80%), 79.70% (ve=85%), 75.27% 447 

(ve=90%) for Ro=2.46 and Ro=3.1, respectively. The different ways of including vaccination in the 448 

SEAIHRD model are detailed in the supplementary material. Fig. 5 shows different scenarios of COVID-449 

19 control strategies based solely on vaccination. 450 

 451 

3.4. Results of the model sensitivity analysis 452 

The results of the sensitivity analysis are presented in tables 6 and 7. The tables show increased 453 

values of input parameters and the percentage of the parameter increase relative to the basic scenario, 454 

as well as the values of output results obtained after the simulation of the changed scenario.  455 

3.5. Results of the model validation 456 

The model was validated on the most recent historical data (from January 1, 2021 to February 1, 457 

2021). As shown in Table 8. all measures of the prediction quality of deceased due to COVID-19 are low. 458 

The average difference between the actual number of people who died of COVID-19 and predicted one is 459 

only 2.05% and the maximum deviation between the predicted and actual number will not exceed 4.82% 460 

with a probability of 95%. 461 

Based on Fig. 6 and Table 9, we can conclude that the SEAIHRD model fits historical data quite 462 

well. Pearson's r and coefficient of determination (R2) have shown strong the linear relationship between 463 

real deceased and the number of deaths predicted by SEAIHRD model.  464 

More information on validation results are detailed in the supplementary material. 465 

 466 

 467 
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4. Conclusions and discussion  468 

For the needs of this research, we augmented the classic deterministic model by adding the 469 

compartments of vaccinated, asymptomatic, hospitalized and latently infected subjects. By adding birth 470 

and death rates, we enabled daily fluctuations of the overall simulated population, which brought us 471 

closer to the real conditions in which the disease is transmitted. When we assumed that the recovered 472 

lose immunity over time, we obtained dynamic oscillations of epidemic waves through susceptible 473 

population.  474 

The input values for the parameters used to simulate the COVID-19 were obtained either from 475 

literature review or were calculated on the basis of data have taken from the literature and other official 476 

sources. Whereas some of these inputs are well documented; other input values are either not so well 477 

documented or based on potential subjective opinions (i.e., expert opinion, historical data from epidemic 478 

etc.). In any case, well documented or not input values have potential to impact results and, therefore, 479 

should be carefully evaluated. The results of conducted sensitivity analysis show that the sources of 480 

uncertainty are different for each output considered and it is necessary to consider multiple output 481 

variables for a proper assessment of the model. The most influential parameter is r than R0 and ƒ--1 . 482 

The model was tested on Serbian COVID-19 statistic data and obtained validation results allow 483 

us to conclude that the proposed model has good prediction ability and performance. However, although 484 

we obtained satisfactory results during the validation of the model, worth noticing also that some of the 485 

model parameters were estimated based on available data that might be less precise due to the difficulty 486 

of being measured. That could be the reason why the values of some parameters e.g. recovery rate, 487 

contact rate, daily infection rate, that are estimated in hospitals may differ from those acquired by this 488 

study. For that reasons SEAIHRD model can be used for the long-term rough predictions of the epidemic. 489 

Obtained long-term predictions reflect the general dynamic of the outbreak and are especially useful for 490 

the healthcare system workers and  governmental officials. 491 

When we simulated different disease control scenarios of the COVID-19 epidemic based on non-492 

pharmaceutical intervention measures, scenario number 2 proved to be the most effective approach to 493 

the disease control, because it implemented the most comprehensive anti-epidemic measures (entire 494 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 4, 2021. ; https://doi.org/10.1101/2020.10.21.20216986doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.21.20216986
http://creativecommons.org/licenses/by-nc-nd/4.0/


country lock down). However, the basic problem of this approach is the feasibility and practicability to 495 

maintain the measures in the long term.  496 

The model predicted that students, children and younger school-age generations have an 497 

important role in transmitting COVID-19, especially if they come into contact with a more vulnerable 498 

population. The model showed that, in the case of returning school children of all ages to schools, an 499 

increase of 10.48% in the estimated deaths and 12.16% of the number of infected is possible, when 500 

compared to the conditions before opening of the schools (Scenarios 2 and 4). However, most dead and 501 

seriously diseased people are found in the older population. This is particularly important when planning 502 

intervention measures, especially when deciding on which restrictions to be lifted and how (opening 503 

schools, students’ return to faculties etc.). The model predicted that COVID-19 has a potential to spread 504 

rapidly and linger in population. Due to a large number of the infected persons and duration of the 505 

disease, there are significant needs for hospital capacities, especially in the conditions when the disease 506 

is suppressed by implementing partly relaxed anti-epidemic measures, or in the case of absence of any 507 

measures. According to the prediction, without the application of any intervention measures, at the 508 

moment of the greatest load, depending of actual Ro, the health system should provide 42,351 (Ro=2.46) 509 

hospital beds for the care of the patients and an additional 20,733 in intensive care units. On the other 510 

hand, in the case of the application of the strictest anti-epidemic measures, the needs decrease to only 511 

1,387 beds in COVID-19 hospitals and additional 784 beds in intensive care units. In the case of 512 

continued implementation of current measures, which are significantly less intense than the measures 513 

applied at the beginning of the epidemic, it is necessary to provide 3,537 beds in COVID-19 hospitals and 514 

1,945 beds in intensive care units in the entire country. The model also shows that the needs for hospital 515 

capacities decline with the ending of the first epidemic wave, since daily incidence decreases and during 516 

the second and third waves it never reaches the initial peaks, but these needs still remain substantial. For 517 

example, in the case of Scenario 1, at the top of the second epidemic wave, it is necessary to provide 518 

11,845 beds in COVID-19 hospitals and 6,378 in intensive care units, which makes 27.96% and 30,76% 519 

of the required capacities of the first wave of the epidemic.  520 
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Based on the cyclical patterns of the epidemic waves and duration of simulated epidemics, the 521 

model predicted that the disease has a potential to linger in population and that it will most probably have 522 

a seasonal pattern. Therefore, potential vaccines can have an enormous potential and significance for 523 

COVID-19 control. Depending on the efficacy of future vaccines, the disease can be stopped and curbed 524 

almost solely by implementing the measure of vaccination.  However, the necessary conditions for these 525 

predictions and expectations are the efficacy of potential vaccines and the ability of a health systems to 526 

implement vaccination to a satisfactory extent and rapidly, especially with regards to the most sensitive 527 

categories of population. Depending on the Ro, a vaccine that would have an efficacy ≥ 68-71% could 528 

stop the pandemic and break the chain of infection. However, even vaccines with lower efficacy could be 529 

useful as they would significantly reduce the number of cases and deaths, especially if used in 530 

combination with the other disease control measures. The effects of vaccination depend primarily on: 1. 531 

Efficacy of available vaccine(s), 2. Prioritization of the population categories for vaccination, and 3. 532 

Overall vaccination coverage of the population, assuming that the vaccine(s) develop solid immunity in 533 

vaccinated individuals. With expected basic reproduction number of Ro=2.46 and vaccine efficacy of 534 

68%, an 87%- coverage would be sufficient to stop the virus circulation. The required minimal vaccination 535 

coverage should be 87% (ve =68%), 74.19% (ve =80%), 69.82% (ve=85%) and 95.41% (ve=71%), 84.68% 536 

(ve=80%), 79.70% (ve=85%) for Ro=2.46 and Ro=3.1, respectively. The minimum daily vaccination rate 537 

should be 0.47% for vaccines with an efficiency of 85%, and 0.59% for vaccines with an efficiency of 538 

68%. 539 

Based on the obtained results, we can conclude that at this point, without the application of 540 

specific pharmaceutical products, COVID-19 suppression is highly dependent on the basic reproduction 541 

number (Ro), and that more intensive contacts and relaxed measures can result in a dramatic spread of 542 

the virus. The choice of intervention measures depends on the feasibility of their implementation and their 543 

efficacy in different social contexts. COVID-19 will likely have to be suppressed in this way for a certain 544 

period of time. This will most probably last until sufficient quantities of a reliable and effective vaccine are 545 

available, and thereafter until optimal vaccination coverage is achieved.   546 
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Tables 685 

Table 1. Structure of different population strata in the Republic of Serbia [23] 686 

Stratum Population Percentage of total population  

Younger than 7 years 356,377 5.10% 

Elementary school 550,527 7.88% 

Secondary school 249,455 3.57% 

Students  241,698 3.46% 

Employed   2,197,065 31.46% 

Pensioners 1,715,152 24.56% 

Others 1,672,330 23.95% 

 687 

 688 

Table 2. Age structure of the population of the Republic of Serbia and expected percentage of 689 

hospitalized patients, patients in intensive care, and death rate caused by COVID-19.  690 

Population 

age 

groups  

*Population Percentage 

of total 

population 

**Expected % of 

hospitalized 

patients (σ) 

***Expected % of patients 

whose treatment requires 

intensive care   

****Infection 

fatality rate IFR 

(male/female) 

0-9 458,199 6.56% 0.00% 5.00% 0.04%;0.01% 

10-19 445,481 6.38% 0.04% 5.00% 0.00%;0.02% 

20-29 1,028,226 14.73% 1.04% 5.00% 0.00%;0.01% 

30-39 951,615 13.63% 3.43% 5.00% 0.00%;0.05% 

40-49 968,854 13.88% 4.25% 6.30% 0.08%;0.04% 

50-59 963,229 13.79% 8.16% 12.20% 0.33%;0.20% 

60-69 815,244 11.68% 11.80% 27.40% 1.62%;0.62% 

70-79 696,045 9.97% 16.60% 43.20% 6.11%;2.68% 

80- 655,711 9.39% 18.40% 70.90% 16.40%;6.49% 

*[28], **[32], ***[8], ***[33] 691 

 692 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 4, 2021. ; https://doi.org/10.1101/2020.10.21.20216986doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.21.20216986
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 3. SEAIHRD model parameters 693 

Input parameters  Mark Value  Source 

Population Nt0 6,982,604 [28] 

Initial number of cases   It0 1 Assumed 

Initially immune  Imm0 0 Assumed 

Basic reproduction number  R0 2.46 (3.1) [34] 

Effective contact rate  Ce 0.38 Estimated 

Per capita contact rate   β 0.0000000378 Estimated 

Daily infection rate (transfer E→I) ƒ 0.294118 Estimated 

Recovery rate of symptomatic cases        r 0.107527 Estimated 

Daily rate of waning of immunity ω 0.002739726 Estimated 

Per capita birth rate   b 0.000025205 [28] 

Per capita death rate unrelated to COVID-19 m 0.000036006 Estimated 

Life expectancy in years    L 76.09 [29] 

Duration of latent infection in days  ƒ-1 3.5 [30] 

Duration of infectious period in days (clinical cases) TR 9.3 [30] 

Duration of immunity in days  Imm 365.00 Assumed 

Incubation period in days    Inc 5.8 [35] 

Time period (day) dt 1.00 - 

Average treatment duration in hospital  days 15,9  [36] 

Average time spent in intensive care days 27  [36] 

Recovery rate of hospitalized cases    � 0.062893 Estimated 

Average times taken from onset of symptoms to death days 17 [37] 

Infectious period for asymptomatic cases days 7.25 [30, 38] 

Recovery rate of asymptomatic cases    � 0.137931 Estimated 

Expected percentage of asymptomatic cases - 30% [39] 

Infectiousness of asymptomatic cases in relation to 

symptomatic cases 

η 75% [39] 
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Table 4. Description of different simulated non-pharmaceutical intervention scenarios  694 

Mark  Scenario Scenario description  

SC1 Base-case 

scenario 

The population relies on development of herd immunity. No anti-epidemic 

measures are implemented.   

SC2 Lock down of 

the entire 

country 

Pre-schools, schools, and colleges are fully closed – reduction in contacts at 

educational institutions by 75%; reduction in contacts in workplaces by 50%; 

reduction in contacts of the elderly (older than 65) by 50% at R0 = 2.46 or by 

65% at R0 = 3.10; physical distancing of the unemployed population and in 

public places – reduction in contacts by 45% at R0 = 2.46) or by 55% at R0 = 

3.10.  

SC3 Partial 

lockdown of 

the country - I 

Elementary and pre-school educational institutions are open. High schools 

and colleges are closed. Reduction in contacts by 75% at colleges and high-

schools; reduction in contacts in workplaces by 50%; reduction in contacts of 

the elderly (older than 65) by 60% at R0 = 2.46 or by 65% at R0 = 3.10; social 

distancing of the unemployed population and in public places – reduction in 

contacts by 40% at R0 = 2.46 or by 55% at R0 = 3.10. 

SC4 Partial 

lockdown of 

the country - II  

Colleges are closed – reduction in contacts by 75%; reduction in contacts in 

the workplace by 50%; reduction in contacts of the elderly (older than 65) by 

60% at R0 = 2.46 or by 65% at R0 = 3.10; social distancing of the unemployed 

population and in public places – reduction in contacts by 40% at R0 = 2.46 or 

by 55% at R0 = 3.10. 

SC5 Partial 

lockdown of 

the country - III 

Reduction in contacts in the workplace by 50%; reduction in contacts of the 

elderly (older than 65) by 60% at R0 = 2.46 or by 65% at R0 = 3.10; social 

distancing of the unemployed population and in public places – reduction in 

contacts by 40% at R0 = 2.46 or by 55% at R0 = 3.10. 

 695 

 696 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 4, 2021. ; https://doi.org/10.1101/2020.10.21.20216986doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.21.20216986
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 5. Results of different simulated scenarios (Ro = 2.46 and Ro = 3.1). The data refers to the period of 365 days from epidemic onset. 697 

Scenario mark SC1 SC2 SC3 SC4 SC5 
Basic 
reproductive 
number 

Ro=2.64 Ro=3.1 Ro=2.64 Ro=3.1 Ro=2.64 Ro=3.1 Ro=2.64 Ro=3.1 Ro=2.64 Ro=3.1 

Cumulative 
incidence (CI) 6,229,144 7,133,221 308,581 2,219,251 1,286,227 2,419,079 1,375,416 2,489,197 1,408,262 2,514,936 
Apparent CI 4,360,401 4,993,254 216,007 1,553,476 900,359 1,693,355 962,791 1,742,438 985,783 1,760,456 
Overall 
hospitalized  278,781 320,567 13,970 98,337 56,631 105,930 60,319 108,554 61,685 109,538 
Overall in 
intensive care 85,633 98,333 4,260 29,753 17,085 32,058 18,202 32,855 18,612 33,147 
Overall deaths 20,894 23,951 1,031 7,194 4,113 7,754 4,383 7,948 4,483 8,018 
 698 

Table 6. Results of the model sensitivity analysis  of individual parameters used in the model 699 

Model 
parameter 

mark 

Change 
relative to the 
basic scenario 

CI Deaths (Dth) 
Change in CI 
relative to the 
basic scenario  

Change in Dth 
relative to the 
basic scenario  

 R0 5% 6,398,486 21,470 2.72% 2.75% 

R0 10% 6,553,978 21,998 5.21% 5.28% 

R0 25% 6,982,604 23,782 12.10% 13.82% 
ƒ-1 5% 6,224,056 19,885 0.08% 4.83% 
ƒ-1 10% 6,219,502 18,968 0.15% 9.22% 
ƒ-1 25% 6,208,481 16,666 0.33% 20.24% 

r 5% 6,068,299 20,351 2.58% 2.60% 

r 10% 5,908,223 19,811 5.15% 5.18% 

r 25% 5,425,721 18,182 12.90% 12.98% 
 700 
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Table 7. Results of the model sensitivity analysis of group of parameters using a perturbation up to 25% 702 

Model parameter mark 
Change relative 

to the basic 
scenario 

CI Deaths 
(Dth) 

Change in CI 
relative to the 
basic scenario  

Change in Dth 
relative to the 
basic scenario  

R0, ƒ--1 , r 5% 6,242,433 19,948 -0.21% 4.53% 

R0, ƒ-1 , r 10% 6,257,685 19,093 -0.46% 8.62% 

R0, ƒ-1 , r 25% 6,321,339 16,984 -1.48% 18.71% 

R0, β, ƒ-1
, r, b, m, γ, ε, η, ω, 

τ�d  
25% 6,147,725 13,203 1.31% 36.81% 

 703 

Table 8. Measures of the prediction quality  704 

MAE %Error MSE RMSE Normalized MAE Normalized MSE Max Deviation 

Deceased 73 2.04% 7,212.20 84.92 2.05% 0.06% 4.82% 

 705 

Table 9. Regression statistics 706 

Multiple R R Square Adjusted R Square Standard Error Observations 

0.981678289 0.963692263 0.963124954 86.24143528 66 

 707 
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Figures 721 

a) Distribution of the total number of the susceptible, latently 
infected, asymptomatic infectious individuals, infected and 
recovered on a daily basis since the epidemic onset (Ro=2.46) 

b) Distribution of the total number of the susceptible, latently 
infected, asymptomatic infectious individuals, infected and 
recovered on a daily basis since the epidemic onset (Ro=3.1) 

 
c) Daily fluctuations of the susceptible, recovered and net 
disease transmission rates (Ro=2.46) 

d) Daily fluctuations of the susceptible, recovered and net 
disease transmission rates (Ro=3.1) 

e) Daily fluctuations of apparent incidence, true incidence and 
net disease transmission rates (Ro=2.46) 

f) Daily fluctuations of apparent incidence, true incidence and 
net disease transmission rates (Ro=2.46) 

Fig.1 Model prediction of latently infected, asymptomatic infectious individuals, infected, recovered and722 

daily fluctuations of Rn. 723 
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a) Necessary hospital capacities (Ro=2.46) b) Necessary hospital capacities (Ro=3.1) 

 
c) Age structure of hospitalized patients (Ro=2.46) d) Age structure of hospitalized patients (Ro=3.1) 

  
e) Expected age structure of the dead (Ro=2.46) f) Expected age structure of the dead (Ro=3.1) 
 724 

Fig.2 Model prediction of required hospital capacities under the assumption of different intervention725 

measures. 726 

 727 
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a) Comparative overview of cumulative incidences (CI). Results 
obtained from simulated scenarios 1-5 (Ro=2.46) 

b) Comparative overview of cumulative incidences (CI). Results
obtained from simulated scenarios 1-5 (Ro=3.1) 

 
c) Comparative overview of hospitalized patients on a daily 
basis. Results obtained from simulated scenarios 1-5 (Ro=2.46)     

d) Comparative overview of hospitalized patients on a daily 
basis. Results obtained from simulated scenarios 1-5 (Ro=3.1) 

 
e) Comparative overview of expected number of patients in 
intensive care on a daily basis. Results obtained from simulated 
scenarios 1-5 with Ro=2.46 

f) Comparative overview of expected number of patients in
intensive care on a daily basis. Results obtained from simulated
scenarios 1-5 with Ro=3.1 

 728 

Fig.3 Model prediction of expected number of hospitalized patient and patient in intensive care. 729 

 
lts 

 

 
in 

ed 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 4, 2021. ; https://doi.org/10.1101/2020.10.21.20216986doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.21.20216986
http://creativecommons.org/licenses/by-nc-nd/4.0/


a) Comparative overview of hospital bed occupancy (Ro=2.46) b Comparative overview of hospital bed occupancy (Ro=3.1) 

  
  

c) Comparative overview of ICU bed occupancy (Ro=2.46) d) Comparative overview of ICU bed occupancy (Ro=3.1) 
 730 

Fig. 4 Model prediction of required hospital capacities needed to treat patients with COVID-19.  731 

 732 
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 733 

a) Comparative overview of daily incidences (Ro=2.46). b) Comparative overview of daily incidences (Ro=3.1). 

 
c) Comparative overview of hospitalized patients (Ro=2.46). d) c) Comparative overview of hospitalized patients (Ro=3.1). 

e) Comparative overview of deaths (Ro=2.46) f) Comparative overview of deaths (Ro=3.1) 
NV-without vaccination and any non-pharmaceutical intervention 734 

 735 

Fig. 5 Results of simulated COVID-19 control based solely on vaccination, scenarios 6-9 (Ro=2.46 and736 

Ro=3.1). 737 

nd 
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 738 

Fig. 6. The observed number of deceased individuals (blue), number of deaths modeled with SEAIHRD 739 

model (yellow)  and predicted number of deaths (green). 740 

* Figures 1 to 6 should be printed in color.  741 
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a) Prediction of the total number of the susceptible, latently 
infected, asymptomatic infectious individuals, infected and 
recovered on a daily basis since the epidemic onset. No 
intervention measures applied (Ro=2.46) 

b) Prediction of the total number of the susceptible, latently 
infected, asymptomatic infectious individuals, infected and 
recovered on a daily basis since the epidemic onset. No 
intervention measures applied (Ro=3.1) 

  
c) The results obtained during the simulation of the application 
of various contact reduction measures (scenarios 1-5, Ro=2.46) 

d) The results obtained during the simulation of the application 
of various contact reduction measures (scenarios 1-5, Ro=3.1) 

  
e) Results of simulated COVID19 control based solely on 
vaccination, scenarios 6-9 (Ro=2.46). 

f) Results of simulated COVID19 control based solely on 
vaccination, scenarios 6-9 (Ro=3.1). 
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