Bidirectional Mendelian randomization supports bidirectional causality between telomere length and clonal hematopoiesis of intermediate potential

Tetsushi Nakao^{1,2,3,4}, Alexander G. Bick^{1,5}, Margaret A. Taub⁶, Seyedeh M. Zekavat⁷, Md M. Uddin^{1,2}, Abhishek Niroula^{1,3}, Cara L. Carty⁸, John Lane⁹, Michael C. Honigberg^{1,2,10}, Joshua S. Weinstock¹¹, Akhil Pampana^{1,2}, Christopher J. Gibson¹⁰, Gabriel K. Griffin^{1,12,13}, Shoa L. Clarke¹⁴, Romit Bhattacharya^{2,15}, Themistocles L. Assimes^{14,16}, Leslie S. Emery¹⁷, Adrienne M. Stilp¹⁷, Quenna Wong¹⁷, Jai Broome¹⁷, Cecelia A. Laurie¹⁷, Alyna T. Khan¹⁷, Albert V. Smith¹¹, Thomas W. Blackwell¹¹, Zachary T. Yoneda¹⁸, Juan M. Peralta¹⁹, Donald W. Bowden²⁰, Marguerite R. Irvin²¹, Meher Boorgula²², Wei Zhao²³, Lisa R. Yanek²⁴, Kerri L. Wiggins²⁵, James E. Hixson²⁶, C. Charles Gu²⁷, Gina M. Peloso²⁸, Dan M. Roden²⁹, Muagututi`a S. Reupena³⁰, Chii-Min Hwu^{31,32}, Dawn L. DeMeo³³, Kari E. North³⁴, Shannon Kelly^{35,36}, Solomon K. Musani³⁷, Joshua C. Bis³⁸, Donald M. Lloyd-Jones^{39,40}, Jill M. Johnsen⁴¹, Michael Preuss⁴², Russell P. Tracy^{43,61}, Patricia A. Peyser²³, Dandi Qiao³³, Pinkal Desai⁴⁴, Joanne E. Curran¹⁹, Barry I. Freedman⁴⁵, Hemant K. Tiwari⁴⁶, Sameer Chavan²², Jennifer A. Smith^{23,47}, Nicholas L. Smith^{48,49,50}, Tanika N. Kelly^{51,52}, Bertha Hildalgo⁴⁶, L. Adrienne Cupples^{28,53}, Daniel E. Weeks⁵⁴, Nicola L. Hawley⁵⁵, Ryan L. Minster⁵⁶, The Samoan Obesity, Lifestyle and Genetic Adaptations Study (OLaGA) Group, Ranjan Deka⁵⁷, Take T. Naseri⁵⁸, Lisa de las Fuentes^{27,59}, Laura M. Raffield⁶⁰, Alanna C. Morrison²⁶, Paul S. Vries²⁶, Christie M. Ballantyne⁶², Eimear E. Kenny^{63,64,65}, Stephen S. Rich⁶⁶, Eric A. Whitsel^{34,67}, Michael H. Cho⁶⁸, M. Benjamin Shoemaker¹⁸, Betty S. Pace⁶⁹, John Blangero¹⁹, Nicholette D. Palmer²⁰, Braxton D. Mitchell^{70,71}, Alan R. Shuldiner⁷², Kathleen C. Barnes²², Susan Redline^{10,73,74}, Sharon L.R. Kardia²³, Gonçalo R. Abecasis^{11,75}, Lewis C. Becker²⁴, Susan R. Heckbert^{48,49}, Jiang He^{51,52}, Wendy Post⁷⁶, Donna K. Arnett⁷⁷, Ramachandran S.

Vasan^{28,53,78}, Dawood Darbar⁷⁹, Scott T. Weiss^{10,33}, Stephen T. McGarvey⁸⁰, Mariza de Andrade⁸¹, Yii-Der Ida Chen⁸², Robert C. Kaplan^{83,84}, Deborah A. Meyers⁸⁵, Brian S. Custer³⁵, Adolfo Correa⁸⁶, Bruce M. Psaty^{38,48,87}, Myriam Fornage^{26,88}, JoAnn E. Manson^{10,89,90}, Eric Boerwinkle¹¹, Barbara A. Konkle^{25,91}, Ruth J.F. Loos⁴², Jerome I. Rotter⁸², Edwin K. Silverman³³, Charles Kooperberg⁹², Siddhartha Jaiswal⁹³, Peter Libby^{4,10}, Patrick T. Ellinor^{1,94}, Nathan Pankratz⁹, Benjamin L. Ebert^{1,3,95}, Alexander P. Reiner⁹², Rasika A. Mathias²⁴, Ron Do^{42,65,96}, NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium & Pradeep Natarajan^{*1,2,10}

¹Broad Institute of MIT and Harvard, Cambridge, MA, USA. ²Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA. ³Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA. ⁴Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA. ⁵Division of Genetic Medicine, Department of Medicine, Vanderbilt University, Nashville, TN, USA. ⁶Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA. ⁷Yale University School of Medicine, New Haven, CT, USA. ⁸Initiative for Research and Education to Advance Community Health, Washington State University, Seattle, WA, USA. ⁹Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, USA. ¹⁰Department of Medicine, Harvard Medical School, Boston, MA, USA. ¹¹Center for Statistical Genetics, Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA.¹²Department of Pathology, Harvard Medical School, Boston, MA, USA. ¹³Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA. ¹⁴Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA. ¹⁵Division of Cardiology, Massachusetts General

Hospital, Boston, MA, USA. ¹⁶VA Palo Alto Health Care System, Palo Alto, CA, USA. ¹⁷Department of Biostatistics, University of Washington, Seattle, WA, USA. ¹⁸Division of Cardiology, Vanderbilt University Medical Center, Nashville, TN, USA. ¹⁹Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA.²⁰Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA.²¹Department of Biostatistics, School of Public Health, University of Alabama, Birmingham, AL, USA. ²²Division of Biomedical Informatics & Personalized Medicine & the Colorado Center for Personalized Medicine, School of Medicine, University of Colorado, Aurora, CO, USA. ²³Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA.²⁴GeneSTAR Research Program, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA. ²⁵Department of Medicine, University of Washington, Seattle, WA, USA, ²⁶Human Genetics Center, Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA. ²⁷Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA. ²⁸Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA. ²⁹Departments of Medicine, Pharmacology, and Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA. ³⁰Ministry of Health, Government of Samoa, Apia, Samoa. ³¹Section of Endocrinology and Metabolism, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.³²School of Medicine, National Yang-Ming University, Taipei, Taiwan. ³³Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA. ³⁴Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA. ³⁵Vitalant Research Institute, San

Francisco, CA, USA. ³⁶UCSF, Benioff Children's Hospital Oakland, Oakland, CA, USA. ³⁷Jackson Heart Study, Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA. ³⁸Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA. ³⁹Division of Cardiology Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. ⁴⁰Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. ⁴¹Bloodworks Northwest Research Institute, Seattle, WA, USA. ⁴²The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA. ⁴³Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA. ⁴⁴Division of Hematology and Oncology, Weill Cornell Medical College, New York, NY, USA. ⁴⁵Internal Medicine–Nephrology, Wake Forest School of Medicine, NC, USA. ⁴⁶Department of Epidemiology, School of Public Health, University of Alabama, Birmingham, AL, USA. ⁴⁷Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA.⁴⁸Department of Epidemiology, University of Washington, Seattle, WA, USA. ⁴⁹Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA. ⁵⁰Seattle Epidemiologic Research and Information Center, Department of Veterans Affairs Office of Research and Development, Seattle, WA, USA. ⁵¹Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA, USA. ⁵²Tulane University Translational Science Institute, New Orleans, LA, USA. ⁵³National Heart Lung and Blood Institute's, Boston University's Framingham Heart Study, Framingham, MA, USA. ⁵⁴Department of Human Genetics and Biostatistics, University of Pittsburgh, PA, USA. 55 Department of Chronic Disease Epidemiology, Yale University, CT, USA. ⁵⁶Department of Human Genetics, University of Pittsburgh, PA, USA. ⁵⁷Department of

Environmental Health, University of Cincinnati, OH, USA. ⁵⁸Department of Health, American Samoa Government, Pago Pago, American Samoa, USA. 59 Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA. ⁶⁰Department of Genetics, University of North Carolina, Chapel Hill, NC, USA. ⁶¹Department of Pathology and Biochemistry, University of Vermont College of Medicine, Burlington, VT, USA. ⁶²Department of Medicine, Baylor College of Medicine, Houston, TX, USA. ⁶³Institute for Genomic Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA. ⁶⁴Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA. ⁶⁵Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA. ⁶⁶Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA. ⁶⁷Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA. ⁶⁸Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA. 69 Division of Hematology/Oncology, Department of Pediatrics, Augusta University, Augusta, GA, USA. ⁷⁰Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA. ⁷¹Geriatrics Research and Education Clinical Center, Baltimore Veterans Administration Medical Center, Baltimore, MD, USA. ⁷²Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA. ⁷³Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA. ⁷⁴Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA. ⁷⁵Regeneron Pharmaceuticals, Tarrytown, NY, USA. ⁷⁶Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA. ⁷⁷Dean's Office, College of Public Health, University of Kentucky, Lexington, KY, USA. ⁷⁸Departments of Cardiology and

Preventive Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA.⁷⁹Division of Cardiology, University of Illinois at Chicago, Chicago, IL, USA. ⁸⁰Department of Epidemiology and International Health Institute, Brown University School of Public Health, Providence, RI, USA.⁸¹Mayo Clinic, Department of Health Sciences Research, Rochester, MN, USA.⁸²The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA.⁸³Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA.⁸⁴Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, WA, USA.⁸⁵Division of Genetics, Genomics and Precision Medicine, University of Arizona, Tucson, AZ, USA.⁸⁶Departments of Medicine and Population Health Science, University of Mississippi Medical Center, Jackson, MS, USA. ⁸⁷Department of Health Services, University of Washington, Seattle, WA, USA, ⁸⁸Brown Foundation Institute of Molecular Medicine, McGovern medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.⁸⁹Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA. ⁹⁰Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA. ⁹¹Bloodworks Northwest, Seattle, WA, USA. ⁹²Fred Hutchinson Cancer Research Center, Seattle, WA, USA. 93 Department of Pathology, Stanford University, Stanford, CA, USA. ⁹⁴Cardiac Arrhythmia Service and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA. 95 Howard Hughes Medical Institute, Boston, MA, USA. ⁹⁶Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

*Please address correspondence to:

Pradeep Natarajan, MD MMSc

185 Cambridge Street, CPZN 3.184

Boston, MA 02114

Office: 617-726-1843

Email: pnatarajan@mgh.harvard.edu

Twitter: @pnatarajanmd

1 Abstract

2	Human genetic studies support an inverse causal relationship between leukocyte telomere length
3	(LTL) and coronary artery disease (CAD), but directionally mixed effects for LTL and diverse
4	malignancies. Clonal hematopoiesis of indeterminate potential (CHIP), characterized by
5	expansion of hematopoietic cells bearing leukemogenic mutations, predisposes both hematologic
6	malignancy and CAD. TERT (which encodes telomerase reverse transcriptase) is the most
7	significantly associated germline locus for CHIP in genome-wide association studies. Here, we
8	investigated the relationship between CHIP, LTL, and CAD in Trans-Omics for Precision
9	Medicine (TOPMed) program (N=63,302) and UK Biobank (N=48,658). Bidirectional
10	Mendelian randomization studies were consistent with LTL lengthening increasing propensity to
11	develop CHIP, but CHIP then in turn hastening LTL shortening. We also demonstrated evidence
12	of modest mediation between CHIP and CAD by LTL. Our data promote an understanding of
13	potential causal relationships across CHIP and LTL toward prevention of CAD.

1 Introduction

2	Telomeres consist of repetitive DNA sequences with associated protective proteins, ¹ that
3	stabilize chromosomes by several mechanisms. ² Shortening of telomeres during successive
4	mitoses aims to protect the remaining chromosomal DNA. Reverse transcription by the
5	telomerase complex mitigates telomere attrition in cells requiring frequent division such as
6	hematopoietic stem cells. ³⁻⁵ However, with aging, telomeres continue to shorten and protective
7	mechanisms are less efficient leading to accumulating senescent cells with shortened telomeres
8	providing a fertile substrate for genomic instability. ⁶ Senescent cells also acquire a
9	proinflammatory senescence-associated secretory phenotype (SASP), which promotes aging-
10	related cardiovascular disease. ⁷
11	While Mendelian randomization (MR) studies consistently support an inverse causal
12	relationship between leukocyte telomere length (LTL) and coronary artery disease (CAD), the
13	relationship between LTL and cancer is more complex. ⁸⁻¹⁰ In vitro studies indicate that short
14	telomeres promote genomic instability, thereby leading to malignancies, ^{2,11} and most tumor cells
15	have shortened telomeres. ¹²⁻¹⁵ Mendelian disorders characterized by severe telomere shortenings,
16	such as aplastic anemia and dyskeratosis congenita, are characterized by premature aging, organ
17	damage, and high rates of malignant blood disorders. ^{16,17} However, MR studies indicate that
18	longer LTL may be causally associated with an increased incidence of various malignancies,
19	such as lung adenocarcinoma, glioma, melanoma, or leukemia. ^{8-10,18-21}
20	Age-related clonal hematopoiesis of indeterminate potential (CHIP), characterized by
21	clonally expanded hematopoietic cells bearing leukemogenic mutations (most commonly in
22	DNMT3A, TET2, ASXL1, and JAK2) without clinical hematologic disorders, represents a pre-
23	malignant condition. CHIP strongly predicts future risk for myeloid malignancy and human and
20 21 22	Age-related clonal hematopoiesis of indeterminate potential (CHIP), characterized b clonally expanded hematopoietic cells bearing leukemogenic mutations (most commonly in DNMT3A, TET2, ASXL1, and JAK2) without clinical hematologic disorders, represents a pr

1	murine data indicate that CHIP is a causal risk factor for CAD as well. ²²⁻²⁷ In cross-sectional		
2	analyses, the presence of CHIP correlates with shorter LTL adjusting for age. ²⁸ However similar		
3	to aforementioned cancer studies, in genome-wide association analyses of CHIP, the most		
4	significant risk allele resides in the TERT locus ²⁹ (encoding telomerase reverse transcriptase) and		
5	is associated with lengthened LTL. ³⁰ Whether and how CHIP and LTL are causally related is		
6	unknown, and whether this relationship influences CHIP-associated risk for CAD is unknown.		
7	Here, we investigated the relationships between LTL, CHIP, and CAD to address these		
8	questions using LTL estimated from whole exome sequencing (WES) data in the UK Biobank (N		
9	= 48,658) and from whole genome sequencing (WGS) data in the NHLBI TOPMed program (N		
10	$= 63,302).^{30,31}$		
11	After estimating the associations across LTL, CHIP, and CAD, we assessed these		
12	associations for evidence supporting bidirectional causality using MR. Finally, we estimated the		
13	mediation effect of LTL for the CHIP-associated CAD risk.		
14			
15	Results		
16	Baseline characteristics		
17	CHIP was detected, and LTL was estimated with blood DNA-derived WGS from the		
18	U.S. National Heart, Lung, and Blood Institute (NHLBI) Trans-Omics for Precision Medicine		
19	(TOPMed) program ³² and WES from the UK Biobank. ³³ In TOPMed, CHIP calls and LTL		
20	estimates were obtained from whole genome sequence analyses previously published. ^{29,30}		
21	In TOPMed, after excluding kinship through second-degree relatives, 63,302 individuals had both		
22	indices measured of whom 36,507 (57.7 %) were female. The mean age was 54.3 years old		
23	(standard deviation (SD) 18.0) at the time of blood draw, and 29,171 (64.6%) were of European		

1	ancestry (Fig. 1, Supplementary Fig. 1, Supplementary Table 1). CHIP calls from the first WES
2	samples released from UK Biobank were obtained ^{27,33} with some modifications (see Methods),
3	yielding 48,658 individuals after excluding related individuals (second-degree) and discordance
4	between genetic sex and self-reported sex. Among the UK Biobank participants included, 26,515
5	(54.5 %) were female. The mean age was 56.5 years old (SD 8.0), and 43,227 (93.9%) were of
6	European ancestry. In total, 3,284 (TOPMed: 5.1 %) and 2,273 (UK Biobank: 4.6 %) individuals
7	had evidence of at least one CHIP-related mutation. Of these, 2,862 (TOPMed: 4.5 %) and 1,044
8	(UK Biobank: 2.1 %) individuals had variant allele frequency greater than 0.10, a threshold
9	previously associated with increased CAD incidence ^{24,25,27} (Supplementary Table 1).
10	
11	Telomere length estimation using WES in UK biobank
12	The TelSeq algorithm was applied to the 49,739 CRAM files of WES in the UK Biobank
13	to estimate LTL. The same algorithm was used to estimate LTL from WGS data in TOPMed. ³⁰
14	Consistent with restricted sequencing inherent to WES, the estimated absolute LTL (mean \pm SD
15	(kb): 0.07 ± 0.08) from WES in UK Biobank was much shorter than that estimated from WGS in
16	TOPMed (mean \pm SD (kb): 3.27 \pm 1.01) or from conventional LTL measured by Southern blot
17	(mean \pm SD (kb): 6.87 \pm 0.62) measured in a subset of the Women's Health Initiative (WHI) (N
18	= 686) (Supplementary Fig. 2a,b). LTL estimation was batch-corrected with the first nine
19	principal components (PCs) generated by NGS-PCA (https://github.com/PankratzLab/NGS-
20	PCA) which uses calculated from read coverage information that is standardized to assess the
21	relative value (Supplementary Fig. 2c). Despite much shorter absolute estimates, the batch-
22	corrected LTL normalized distribution much more closely approximated the expectation and so
23	we focus on LTL SD unit hereafter. Variants previously associated with LTL were associated

with LTL in UK Biobank similarly to prior qPCR-based telomere estimation (T/S ratio).¹⁰ but 1 2 with relative effect deflation ($R^2 = 0.69$, $P = 3.02 \times 10^{-6}$) (Supplementary Fig. 3). Age was correlated with LTL in both TOPMed WGS ($\beta = -0.023$, $P < 2x10^{-16}$) and UK Biobank WES (β 3 4 = -0.0098, $P < 2x10^{-16}$) after adjustment with sex, ever smoking, first 11 genetic PCs 5 (Supplementary Fig. 2d). 6 7 Shorter LTL is associated with increased CHIP prevalence and increased CAD incidence 8 We performed association studies between LTL, CHIP, and CAD separately in TOPMed 9 and UK Biobank, followed by meta-analyses. Consistent with prior reports,⁴ CHIP with variant 10 allele frequency (VAF) > 0.10 was associated with shorter LTL in meta-analysis results after 11 adjustment for age, sex, ever smoking, body mass index (BMI), study, sequencing center, and 12 first 11 genetic PCs (β = -0.13; 95% CI -0.16:-0.096; P(heterogeneity)=0.02) (Fig. 2a, 13 Supplementary Fig. 4a). Here, VAF was defined as the largest clone if multiple CHIP clones 14 were detected in the same individual. CHIP with VAF < 0.10 was associated with shorter LTL 15 in TOPMed (WGS) but not in UK Biobank (WES), likely due to reduced sensitivity of smaller 16 CHIP clones and improved LTL estimation with WGS relative to WES (Supplementary Fig. 4b). 17 Prior cell-based studies have shown that DNMT3A loss of function increases telomere length,³⁴ TET2 loss of function decreases telomere length;^{35,36} and *p53* (TP53) protects telomeres 18 from DNA damage.³⁷ Thus, we estimated the effect size of each mutated gene on LTL (Fig. 2a, 19 20 Supplementary Fig. 5, Supplementary Table 2). DNMT3A did not show a significant association 21 with LTL, whereas TET2, ASXL1, PPM1D, JAK2, and TP53 were significantly associated with 22 shorter LTL. Multiple CHIP mutations in the same individuals had an additive effect on shorter 23 LTL (Fig. 2b, Supplementary Fig. 6a). Each additional CHIP-related mutation yielded an effect

1 size of -0.11 when meta-analyzed across both cohorts (95% CI -0.14:-0.086; $P = 6.83 \times 10^{-14}$)

2 (Supplementary Fig. 6b).

3	Among those with CHIP, increasing VAF correlated strongly with shorter LTL after			
4	adjustment in both cohorts (β = -1.12 / 1% of VAF; 95% CI -1.40:-0.84; P(heterogeneity)=0.14)			
5	(Fig. 2c, Supplementary Fig. 7).			
6	We next assessed the association of LTL with CAD using subsets of the cohorts with			
7	information on incident CAD in TOPMed ($N = 27,937$) and in UK Biobank ($N = 48,658$).			
8	Individuals who experienced CAD prior to the blood draw used to determine CHIP status were			
9	excluded from TOPMed (N = 416) and UK Biobank (N = 1,357) analyses and follow up			
10	duration was calculated starting the time at the blood draw. Incident CAD was defined both in			
11	TOPMed and UK Biobank by ischemic heart disease, including myocardial infarction, and			
12	coronary revascularization (Supplementary Table 3).			
13	We used Cox proportional hazard models to evaluate the association between LTL and			
14	CAD including multivariable adjustment with covariates age, sex, ever smoking, BMI,			
15	hypercholesterolemia, the first 11 genetic PCs, study within TOPMed, and sequencing center			
16	(study and sequencing center were only applicable to TOPMed). Missing covariates excluded			
17	8,324 TOPMed (8,200 COPDGene participants without blood lipids, and 124 other individuals			
18	across TOPMed missing covariates) and 1,224 UK Biobank individuals from the analysis			
19	(Supplementary Fig. 1). Of the remaining 19,176 TOPMed and 46,077 UK Biobank individuals,			
20	3,283 TOPMed (17.1%) and 1,379 UK Biobank (3.0%) participants developed CAD during the			
21	follow-up duration (mean (SD) duration 12.0 (5.8) years in TOPMed and 10.0 (1.5) years in UK			
22	Biobank) (The number of individuals included in the final analysis in each TOPMed cohort was			
23	shown in Supplementary Table 4). Shorter LTL was associated with increased CAD risk (Hazard			

Ratio = 1.07; 95% CI 1.04:1.10; P (heterogeneity) = 0.71) (Supplementary Fig. 8) as previously
 reported.³⁸⁻⁴⁰

3

4 Mendelian randomization studies indicate that CHIP causes shortened telomeres

5 We performed one-sample MR for CHIP on LTL with the TOPMed cohort. Instrumental 6 variables (IVs) were utilized from a previously reported GWAS of CHIP.²⁹ To avoid the possible bias from reverse causality, we filtered discovered IVs using the Steiger test that identified the 7 8 *TERT* locus as having a significantly higher correlation with LTL than CHIP (P = 0.0105); 9 hence, SNPs at KPNA4/TRIM59 and TET2 loci were valid IVs (Supplementary Table 5). The 10 significance of each variant supported the robust association with exposure, the first assumption 11 of Mendelian randomization (Supplementary Table 5). The MR analysis with 2 IVs was 12 consistent with an inverse causal effect of CHIP on LTL (Estimate = -0.81; 95% CI -1.40:-0.23; 13 P = 0.0063) (Fig. 3). No statistical evidence of endogeneity for IVs used was shown by the 14 Sargan test (P = 0.306). Single IV analysis demonstrated consistent effect sizes across 2 IVs 15 (Supplementary Fig. 9).

16 We next performed a two-sample MR study. The subset of European ancestry 17 participants from TOPMed was used as the CHIP exposure cohort and publicly available 18 summary statistics for LTL from the ENGAGE (European Network for Genetic and Genomic Epidemiology, N = 37,684)⁴¹ consortium were used for the outcome. The low heritability for 19 20 CHIP, limitation to European ancestry samples, and removal of the one significant ($P < 5 \times 10^{-8}$) locus (*TERT* locus) in a European-only CHIP GWAS²⁹ due to Steiger filtering (P = 0.011), to 21 22 minimize bias from potential reverse causality, limited the power for conventional two-sample MR analyses. Therefore, we used MR-RAPS⁴² to accommodate many weak IVs with a higher P-23

1	value threshold. Sixty IVs were used with $P < 10^{-4}$ significance threshold and SNPs were
2	clumped if $R^2 > 0.001$ or located within 10 Mb from each other. The <i>TERT</i> locus was excluded
3	from both Steiger filtering and Cochran's Q test, and one non-inferable palindromic SNP was
4	excluded (Supplementary Table 6). The remaining fifty-eight SNPs were used as IVs and
5	supported an inverse causal association of CHIP on LTL (β = -0.017, <i>P</i> = 0.04). Leave-one-out
6	analysis showed the overlapping locus with one-sample MR analysis (KPNA4/TRIM59,
7	rs4679885) is not a significant factor accounting for the causal inference (Supplementary Fig.
8	10).
9	
10	Mendelian randomization studies indicate that longer LTL cause CHIP acquisition
11	We performed one-sample MR using TOPMed individual-level data from LTL toward
12	CHIP. IVs were discovered from GWAS of LTL conducted in an independent cohort ¹⁰ and
13	pruned as 10 Mb apart and in linkage disequilibrium. Two-stage least square regression showed
14	the causal association of LTL on all CHIP (Estimate = 0.92, 95% CI 0.61:1.23; $P = 6.7 \times 10^{-9}$)
15	(Fig. 3). Though Sargan test indicated endogeneity of used IVs ($P < 2.2 \times 10^{-16}$), we do not have
16	an appropriate strategy to find pleiotropy in one-sample MR. Hence, the analysis was re-
17	examined after exclusion of outliers detected by MR-PRESSO in the following replication
18	analysis. Outlier exclusion still demonstrated significant causal association (Estimate = 0.48;
19	95% CI 0.13:0.83; $P = 0.0062$) without statistically significant evidence of pleiotropy (Sargan
20	test; $P = 0.83$).
21	A replication analysis was performed by two-sample MR studies. Previous LTL summary
22	statistics ¹⁰ were used as the exposure and the white British subset of the UK Biobank was used
23	as the CHIP outcome cohort (N = $42,201$), which are both independent from TOPMed used in

1	one-sample MR. The positive potential causal effect of LTL on CHIP was shown in the
2	conventional two-sample MR approach (Inverse Variance Weighted (IVW) method; Estimate =
3	1.06; 95% CI 0.39:1.74; $P = 1.89 \times 10^{-3}$) (Supplementary Fig. 11). The global test by MR-
4	PRESSO ⁴³ suggested significant horizontal pleiotropy before outlier exclusion ($P < 1.0 \times 10^{-4}$)
5	and detected the TERT and ATM loci as outliers (Supplementary Table 7). While the leave-one-
6	out analysis showed the TERT locus variant had the most significant effect among IVs, the
7	analysis remained robust (Supplementary Fig. 12). Outlier exclusion supported a significant
8	causal association of LTL on CHIP by MR-PRESSO in two-sample MR (Estimate = 0.79 ; 95%
9	CI 0.24:1.34; $P = 0.014$) (Supplementary Fig. 11) without significant statistical evidence of
10	horizontal pleiotropy (Global Test: $P = 0.15$). Re-evaluation of all the models after outlier
11	exclusion showed stable estimates across methods indicating robust causal inference
12	(Supplementary Fig. 13).

We next evaluated the relationship of LTLs with the occurrence of acquired genome-13 14 wide singleton single nucleotide substitution. Using WGS from a subset of the TOPMed study 15 population (N = 28,392), we tabulated per-individual genome-wide somatic mutations. Outlier-16 excluded 14 IVs discovered in the previous section were used for MR study. MR analyses 17 supported a causal relationship between longer LTL and increased somatic mutations in one-18 sample MR study (Supplementary Fig. 14). Next, we assessed the effect of LTL for COSMIC 19 signature version 2 (https://cancer.sanger. ac.uk/cosmic/signatures v2). Failure of DNA double-20 strand break repair by homologous recombination (Signature 3) and other signatures with 21 unknown etiologies (Signatures 17, 28, and 30) associate with longer LTL in MR study 22 (Supplementary Fig. 15). These observations suggested that longer LTL promotes CHIP 23 acquisition by accelerating mutagenesis. The TERT locus variant associated prominently with

mutational occurrence in line with the pleiotropic effect detected in MR studies (Supplementary
 Fig. 16).

3

4 Causal Mediation analysis of LTL for CHIP associated CAD risks

5	We assessed the mediation effect of LTL on CHIP-associated CAD risk in UK Biobank.
6	The proportion of mediation effect of LTL in the total effect of CHIP to CAD was estimated as
7	1.47 % (95% CI 0.18:5.3 %; $P = 0.02$) using "mediation" package ⁴⁴ in R (R Foundation for
8	Statistical Computing, Vienna, Austria) (Table 1). Both mediator and outcome models were
9	adjusted for age, sex, ever smoking, previous type 2 diabetes mellitus, previous
10	hypercholesterolemia, previous hypertension, and the first 11 genetic PCs. We performed a
11	replication analysis using the Women's Health Initiative (WHI) cohort subset of the TOPMed
12	cohort (N = $3,734$), since sufficient covariates information to adjust models precisely were
13	available. CAD was defined as the composite of myocardial infarction and coronary
14	revascularization. The proportion of causal mediation effect of LTL in the total effect of CHIP to
15	CAD was estimated as 5.2 % (95% CI 0. 10:33 %; $P = 0.02$) in WHI.
16	

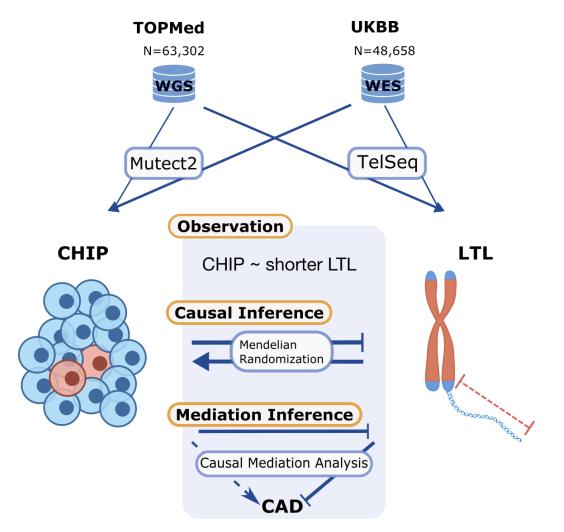
17 **Discussion**

We used observational and Mendelian randomization studies to examine how processes
regulating LTL and CHIP acquisition interrelate, and how they influence CAD risk. Consistent
with prior observational epidemiologic analyses, CHIP and LTL were inversely correlated.
Bidirectional Mendelian randomization supported the hypotheses that longer LTL promotes
CHIP acquisition whereas CHIP in turn shortens LTL potentially in affected cells. While both
CHIP and shorter LTL have been independently associated with CAD, causal mediation analysis

indicated that a modest fraction of CHIP-associated CAD risk may be mediated by resultant LTL
 shortening.

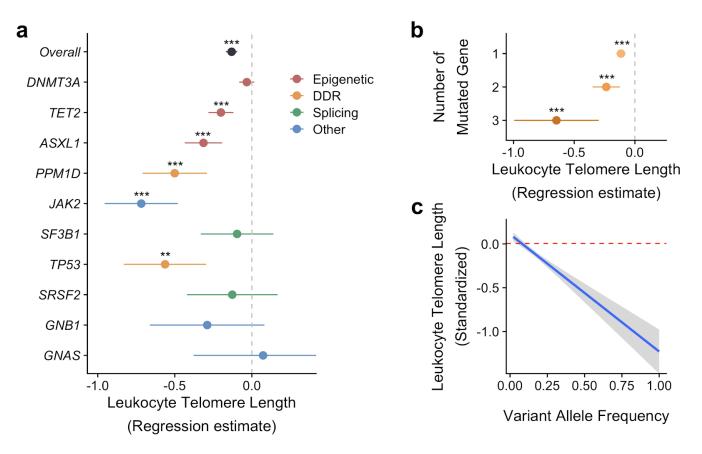
3 Our findings have several implications for the understanding of CHIP, LTL, and CAD. 4 First, we observe a bidirectional causal relationship between LTL and CHIP, advancing our 5 understanding of the malignancy-telomere length association. As described earlier, prior studies 6 have shown complex relationships between LTL and cancer risk.²¹ Several models were proposed, including a heterogeneous multi-hit theory⁴⁵ and the biphasic effect of *TERT* promoter 7 mutation throughout tumor development.¹⁴ CHIP provides an opportunity to focus on an 8 9 incipient step of malignant cell development. Our results suggest that longer LTL may promote 10 CHIP acquisition through increasing mutagenesis. One potential model could be that longer 11 telomeres support the longevity of the cells, thus augmenting opportunities to acquire somatic 12 mutations over time, while telomeres begin accelerated shortening once the cell cycle accelerates 13 due to driver mutation acquisition (Fig. 4). Consistent with this model, we observed that 14 increased clone size, a readout of increased cellular cycles, is correlated with shorter LTL.⁴⁶ In 15 the setting of shortened telomere Mendelian syndromes, shortened telomeres promote genomic instability and subsequent acquisition and retention of neoplastic driver mutations.⁴⁷ This may be 16 17 consistent with the observation that CHIP-associated LTL shortening may hasten subsequent 18 malignancy (Supplementary Fig. 17). Further assessment of longitudinal LTL followup among 19 CHIP positive population would be desired.

Second, CHIP-associated CAD risk may be partly attributed to subsequent LTL
shortening. Prior cell-based, murine, and human genetic analyses have prioritized the NLRP3
inflammasome pathway in CHIP-associated CAD risk.^{24-27,29,48,49} In the present work, we
orthogonally implicate LTL in both the genesis of CHIP, a new CAD risk factor, and its clinical


1	consequences. Our study is underpowered for gene-specific analyses but notably did not observe
2	an association between DNMT3A CHIP and LTL alteration. Consistent with this observation,
3	prior work suggests that hematopoietic stem cell loss of Tet2 leads to shortened telomeres,
4	whereas loss of <i>Dnmt3a</i> leads to telomere preservation. ^{35,50} Such differences may also partly
5	explain gene-specific differences in CAD risk. ²⁵⁻²⁷ While interrupting CHIP-mediated LTL
6	shortening may be a viable strategy to mitigate CHIP-associated CAD risk, this general strategy
7	may be limited to the overall modest estimated mediating effect. However, given heterogeneity
8	observed, this strategy may be more efficiently applied to non-DNMT3A CHIP.
9	Key limitations must be considered in the interpretation of our study findings. First,
10	limited CHIP GWAS availability prevented conventional two-sample MR approaches for CHIP
11	on LTL. The ongoing effort of accumulating CHIP cases would address this issue. Second, the
12	cross-sectional observational nature of our analyses limits inference regarding causal temporal
13	relationships. We employ several sensitivity analyses for Mendelian randomization for
14	robustness. Longitudinal analyses of LTL, CHIP, and incident diseases as well as experimental
15	models are needed to confirm our hypotheses. Third, the causal mediation effect estimate of LTL
16	for CHIP-associated CAD may be limited by conflicting bidirectional causal effect.
17	In conclusion, we showed a bidirectional relationship between LTL and CHIP, shedding
18	light on the mechanisms by which telomere length contributes to age-related disorders. The
19	causal mediation effect of LTL on CHIP-related CAD incidence suggests the plausibility of
20	developing harmonized therapies for both blood cancer and cardiovascular diseases.
21 22 23	Reference

Sfeir, A. & de Lange, T. Removal of Shelterin Reveals the Telomere End-Protection
 Problem. *Science* 336, 593–597 (2012).

1 2 2	2.	Blackburn, E. H., Epel, E. S. & Lin, J. Human telomere biology: A contributory and interactive factor in aging, disease risks, and protection. <i>Science</i> 350 , 1193–1198
3 4 5	3.	(2015). Allsopp, R. C. <i>et al.</i> Telomere length predicts replicative capacity of human fibroblasts. <i>Proc. Natl. Acad. Sci. U.S.A.</i> 89, 10114–10118 (1992).
6 7	4.	Brouilette, S., Singh, R. K., Thompson, J. R., Goodall, A. H. & Samani, N. J. White Cell Telomere Length and Risk of Premature Myocardial Infarction. <i>Arterioscler</i> .
8	-	<i>Thromb. Vasc. Biol.</i> 23 , 842–846 (2003).
9	5.	Vasa-Nicotera, M. <i>et al.</i> Mapping of a Major Locus that Determines Telomere
10	r.	Length in Humans. <i>The American Journal of Human Genetics</i> 76 , 147–151 (2005).
11 12	6.	Zhan, Y. & Hägg, S. Telomere length and cardiovascular disease risk. <i>Curr. Opin. Cardiol.</i> 34, 270–274 (2019).
13	7.	Childs, B. G., Li, H. & van Deursen, J. M. Senescent cells: a therapeutic target for
14		cardiovascular disease. J. Clin. Invest. 128, 1217–1228 (2018).
15	8.	Ojha, J. et al. Genetic Variation Associated with Longer Telomere Length Increases
16		Risk of Chronic Lymphocytic Leukemia. Cancer Epidemiol. Biomarkers. Prev. 25,
17		1043–1049 (2016).
18	9.	Haycock, P. C. et al. Association Between Telomere Length and Risk of Cancer and
19		Non-Neoplastic Diseases: A Mendelian Randomization Study. JAMA Oncol. 3, 636-
20		651 (2017).
21	10.	Li, C. et al. Genome-wide Association Analysis in Humans Links Nucleotide
22		Metabolism to Leukocyte Telomere Length. The American Journal of Human
23		Genetics 106, 389–404 (2020).
24	11.	Murnane, J. P. Telomeres and chromosome instability. DNA Repair 5, 1082–1092
25		(2006).
26	12.	Sommerfeld, H. J. et al. Telomerase activity: a prevalent marker of malignant
27		human prostate tissue. Cancer Research 56, 218–222 (1996).
28	13.	Meeker, A. K. et al. Telomere shortening is an early somatic DNA alteration in
29		human prostate tumorigenesis. Cancer Research 62, 6405–6409 (2002).
30	14.	Chiba, K. et al. Mutations in the promoter of the telomerase gene TERT contribute
31		to tumorigenesis by a two-step mechanism. Science 357, 1416–1420 (2017).
32	15.	Barthel, F. P. et al. Systematic analysis of telomere length and somatic alterations in
33		31 cancer types. Nat. Genet. 49, 349–357 (2017).
34	16.	Mary Armanios, E. H. B. The telomere syndromes. Nat. Rev. Genet. 13, 693-704
35		(2012).
36	17.	Mangaonkar, A. A. & Patnaik, M. M. Short Telomere Syndromes in Clinical
37		Practice: Bridging Bench and Bedside. Mayo Clinic Proceedings 93, 904–916
38		(2018).
39	18.	Nan, H. et al. Shorter Telomeres Associate with a Reduced Risk of Melanoma
40		Development. Cancer Research 71, 6758–6763 (2011).
41	19.	Lynch, S. M. et al. A prospective analysis of telomere length and pancreatic cancer
42		in the alpha-tocopherol beta-carotene cancer (ATBC) prevention study. Int. J.
43		<i>Cancer</i> 133 , 2672–2680 (2013).
44	20.	Julin, B. et al. Circulating leukocyte telomere length and risk of overall and
45		aggressive prostate cancer. Br. J. Cancer 112, 769-776 (2015).


1	21.	McNally, E. J., Luncsford, P. J. & Armanios, M. Long telomeres and cancer risk:
2		the price of cellular immortality. J. Clin. Invest. 129, 3474–3481 (2019).
3	22.	Xie, M. et al. Age-related mutations associated with clonal hematopoietic expansion
4		and malignancies. Nat. Med. 20, 1472–1478 (2014).
5	23.	Genovese, G. et al. Clonal hematopoiesis and blood-cancer risk inferred from blood
6		DNA sequence. N. Engl. J. Med. 371, 2477–2487 (2014).
7	24.	Jaiswal, S. et al. Age-Related Clonal Hematopoiesis Associated with Adverse
8		Outcomes. N. Engl. J. Med. 371, 2488–2498 (2014).
9	25.	Jaiswal, S. et al. Clonal Hematopoiesis and Risk of Atherosclerotic Cardiovascular
10		Disease. N. Engl. J. Med. 377, 111–121 (2017).
11	26.	Fuster, J. J. et al. Clonal hematopoiesis associated with TET2 deficiency accelerates
12		atherosclerosis development in mice. Science 355, 842–847 (2017).
13	27.	Bick, A. G. et al. Genetic Interleukin 6 Signaling Deficiency Attenuates
14		Cardiovascular Risk in Clonal Hematopoiesis. Circulation 141, 124–131 (2020).
15	28.	Zink, F. et al. Clonal hematopoiesis, with and without candidate driver mutations, is
16		common in the elderly. <i>Blood</i> 130 , 742–752 (2017).
17	29.	Bick, A. G. et al. Inherited causes of clonal haematopoiesis in 97,691 whole
18		genomes. <i>Nature</i> 586 , 1–24 (2020).
19	30.	Taub, M. A. et al. Novel genetic determinants of telomere length from a multi-
20		ethnic analysis of 75,000 whole genome sequences in TOPMed. Preprint at <i>bioRxiv</i>
21		https://doi.org/10.1101/749010 (2019).
22	31.	Ding, Z. <i>et al.</i> Estimating telomere length from whole genome sequence data.
23		Nucleic Acids Research 42, e75–e75 (2014).
24	32.	Taliun, D. <i>et al.</i> Sequencing of 53,831 diverse genomes from the NHLBI TOPMed
25		Program. <i>Nature</i> 590 , 290–299 (2021).
26	33.	Van Hout, C. V. <i>et al.</i> Exome sequencing and characterization of 49,960 individuals
27		in the UK Biobank. <i>Nature</i> 586 , 749–756 (2020).
28	34.	Gonzalo, S. <i>et al.</i> DNA methyltransferases control telomere length and telomere
29		recombination in mammalian cells. <i>Nature Cell Biology</i> 8 , 416–424 (2006).
30	35.	Yang, J. <i>et al.</i> Tet Enzymes Regulate Telomere Maintenance and Chromosomal
31		Stability of Mouse ESCs. <i>Cell Rep.</i> 15, 1809–1821 (2016).
32	36.	Bernard, L. <i>et al.</i> Telomere length is severely and similarly reduced in JAK2V617F-
33	200	positive and -negative myeloproliferative neoplasms. <i>Leukemia</i> 23 , 287–291 (2009).
34	37.	Tutton, S. & Lieberman, P. M. A role for p53 in telomere protection. <i>Molecular</i> &
35	57.	Cellular Oncology 4, e1143078 (2017).
36	38.	Haycock, P. C. <i>et al.</i> Leukocyte telomere length and risk of cardiovascular disease:
37	50.	systematic review and meta-analysis. <i>BMJ</i> 349 , g4227–g4227 (2014).
38	39.	D'Mello, M. J. J. <i>et al.</i> Association Between Shortened Leukocyte Telomere Length
39	57.	and Cardiometabolic Outcomes. <i>Circ. Cardiovasc. Genet.</i> 8 , 82–90 (2015).
40	40.	Hunt, S. C., Kark, J. D. & Aviv, A. Association Between Shortened Leukocyte
40	ru.	Telomere Length and Cardio-Metabolic Outcomes. <i>Circ. Cardiovasc. Genet.</i> 8 , 4–7
42		(2015). $Circle Caralovase. Gener. 8, 4-7$
43	41.	Codd, V. <i>et al.</i> Identification of seven loci affecting mean telomere length and their
43 44	71.	association with disease. <i>Nat. Genet.</i> 45 , 422–7– 427e1–2 (2013).
		association with disease. With Ocher. 73, 422-7-42701-2 (2013).

1 2	42.	Zhao, Q. <i>et al.</i> Statistical inference in two-sample summary-data mendelian randomization using robust adjusted profile score. <i>Ann. Statist.</i> 48 , 1742-1769
3		(2020).
4	43.	Verbanck, M., Chen, C. Y., Neale, B. & Do, R. Detection of widespread horizontal
5		pleiotropy in causal relationships inferred from Mendelian randomization between
6		complex traits and diseases. Nat. Genet. 50, 693–698 (2018).
7	44.	Tingley, D., Yamamoto, T., Hirose, K., Keele, L. & Imai, K. mediation: R Package
8		for Causal Mediation Analysis. Journal of Statistical Software 59, 1–38 (2014).
9	45.	Aviv, A., Anderson, J. J. & Shay, J. W. Mutations, Cancer and the Telomere Length
10		Paradox. Trends in Cancer 3, 253–258 (2017).
11	46.	Watson, C. J. et al. The evolutionary dynamics and fitness landscape of clonal
12		hematopoiesis. Science 367, 1449-1454 (2020).
13	47.	Blasco, M. A. et al. Telomere Shortening and Tumor Formation by Mouse Cells
14		Lacking Telomerase RNA. Cell 91, 25–34 (1997).
15	48.	Sano, S. et al. CRISPR-Mediated Gene Editing to Assess the Roles of Tet2 and
16		Dnmt3a in Clonal Hematopoiesis and Cardiovascular Disease. Circ. Res. 123, 335-
17		341 (2018).
18	49.	Abplanalp, W. T. et al. Association of Clonal Hematopoiesis of Indeterminate
19		Potential With Inflammatory Gene Expression in Patients With Severe Degenerative
20		Aortic Valve Stenosis or Chronic Postischemic Heart Failure. JAMA Cardiol.
21		(2020).
22	50.	Jeong, M. et al. Loss of Dnmt3a Immortalizes Hematopoietic Stem Cells In Vivo.
23		<i>Cell Rep.</i> 23 , 1–10 (2018).
24		

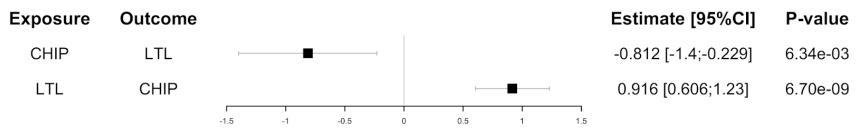

TOPMed (N=63,302) and UK Biobank (N=48,658) are used as the study cohorts. CHIP associated mutations are detected by Mutect2. Telomere length was estimated by TelSeq. Observational study and causal inference by bidirectional Mendelian randomization were performed between LTL and CHIP. CHIP was associated with shorter LTL. Germline genetic factors that increase CHIP development were associated with shorter LTL, whereas germline genetic factors that increase LTL were associated with developing CHIP. Mediation effect of LTL on CHIP related CAD risk increment was detected by causal mediation analysis. CHIP: clonal hematopoiesis of indeterminate potential, LTL: leukocyte telomere length, TOPMed: Trans-Omics for Precision Medicine, UKBB: UK Biobank.

Fig. 2: CHIP prevalence and VAF are associated with shorter LTL.

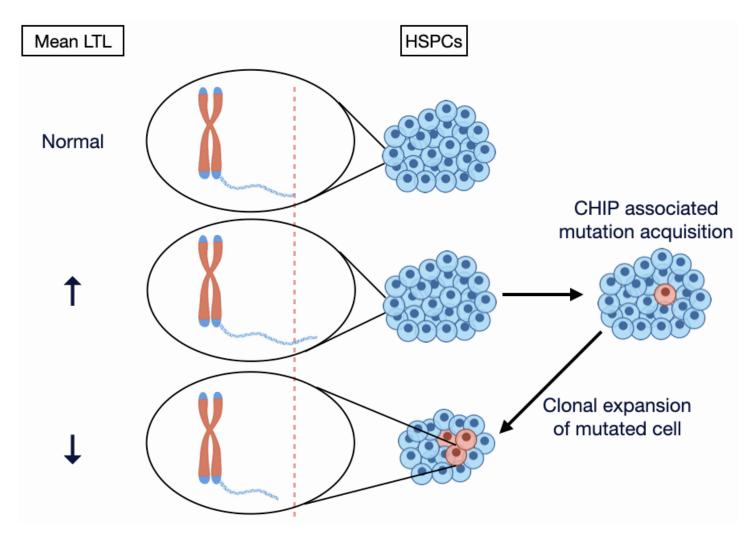

The associations of CHIP with LTL were assessed by linear regression model both in TOPMed and UK Biobank, then meta-analyzed by fixed effect model. Both models were adjusted with age, sex, ever smoking, body mass index, first 11 genetic principal components, study within TOPMed and sequencing center (study and sequencing center are only applicable to TOPMed). The prevalence of CHIP with greater than 10% VAF associations were evaluated for overall and each mutated gene (a) and for each number of mutated genes in the same individuals (b). c The correlation between LTL and VAF among the population with CHIP from both TOPMed and UK Biobank pooled analysis is displayed. A subset in TOPMed with age 40 to 70 was included in the analysis to align with the age distribution in UK Biobank. Red dotted line represents the average LTL in the population without CHIP. ** P < 0.01, *** P < 0.001, after Bonferroni's correction if applicable. CHIP: clonal hematopoiesis of indeterminate potential, DDR: DNA damage repair, LTL: leukocyte telomere length, TOPMed: Trans-Omics for Precision Medicine, VAF: variant allele frequency.

Fig. 3: Bidirectional Mendelian randomization studies showed the negative causal effect of CHIP on LTL and the positive causal effect of LTL on CHIP.

Bidirectional one-sample MR was performed to assess the causal effect of both CHIP on LTL and LTL on CHIP. TOPMed was used for IV discovery for CHIP on LTL, Li et al *AJHG* 2020 for LTL on CHIP. IVs were clumped if < 10 Mb apart and in linkage disequilibrium ($R^2 > 0.001$ calculated in European ancestry from 1000 Genome project). IVs were further assessed by Steiger test to mitigate the effect of reverse causation resulting in 2 and 16 IVs, respectively. TOPMed was used as the test cohort for both CHIP on LTL and LTL on CHIP. Used IVs and cohorts for each analysis are summarized in Supplementary Tables 5 and 7. CHIP: Clonal hematopoiesis of intermediate potential, CI: confidence interval, IV: Instrumental variable, LTL: Leukocyte telomere length, MR: Mendelian randomization, TOPMed: Trans-Omics for Precision Medicine, UKBB: UK Biobank.

Fig. 4: Proposed model of "Telomere Paradox" in CHIP.

People with longer mean leukocyte telomere length (LTL) have higher incidence of mutagenesis so that have higher chance to acquire CHIP associated mutations (middle). The cells that acquired CHIP have paradoxically shorter telomeres so that mean LTL decreases as the clone expands (bottom). CHIP: clonal hematopoiesis of intermediate potential, LTL: leukocyte telomere length, HSPC: hematopoietic stem cell.

	Proportion of Mediation Effect of LTL For CHIP Associated CAD Risk (95% CI)	<i>P</i> -value
UK Biobank (N = 44,921)	0.014 (0.0018-0.053)	0.02
WHI (N = 3,734)	0.052 (0.010-0.33)	0.02

Table 1: Causal mediation analysis showed mediation effect of LTL for CHIP associated CAD risk.

The mediation effect of LTL for CHIP associated CAD risk were estimated by "mediation" package in R. Mediation effect of 0 indicates that LTL does not mediate the CHIP associated CAD risks, and mediation effect of 1 indicate that LTL mediates all of the CHIP related CAD risks. The *P*-value reflects whether the proportion of the mediation effect on the CHIP related CAD risks is 0 vs. not 0. Both mediator and outcome models are adjusted by age, sex, ever smoking, prevalent type 2 diabetes, prevalent hypercholesterolemia, prevalent hypertension, and the first 11 genetic principal components in UK Biobank, and age at blood draw, ever smoking, race, dyslipidemia, hypertension, body mass index, WHI inverse probability weight (to account for the non-random selection of women for whole genome sequencing in WHI), history of hormone therapy, history of hysterectomy, and first 11 genetic principal components in WHI. CAD: coronary artery disease, CHIP: clonal hematopoiesis of intermediate potential, LTL: leukocyte telomere length, WHI: Women's Health Initiative.