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ABSTRACT
Determining how best to allocate resources to be used during a pandemic is a strategic decision that
directly affects the success of pandemic response operations. However, government agencies have
finite resources, so they can’t monitor everything all of the time: they have to decide how best to
allocate their scarce resources (i.e., budget for antivirals and preventive vaccinations, Intensive Care
Unit (ICU), ventilators, non-intensive Care Unit (non-ICU), doctors) across a broad range of risk ex-
posures (i.e., geographic spread, routes of transmission, overall poverty, medical preconditions). This
paper establishes a comprehensive risk-based emergency management framework that could be used
by decision-makers to determine how best to manage medical resources, as well as suggest patient
allocation among hospitals and alternative healthcare facilities. A set of risk indexes are proposed
by modeling the randomness and uncertainty of allocating resources in a pandemic. The city under-
study is modeled as a Euclidean complex network, where depending on the neighborhood influence
of allocating a resource in a demand point (i.e., informing citizens, limit social contact, allocate a new
hospital) different network configurations are proposed. Finally, a multi-objective risk-based resource
allocation (MoRRA) framework is proposed to optimize the allocation of resources in pandemics. The
applicability of the framework is shown by the identification of high-risk areas where to prioritize the
resource allocation during the current COVID-19 pandemic in Bogotá, Colombia.

1. Introduction
Pandemics are large-scale outbreaks of infectious dis-

eases that cause significant social, political, and economi-
cal disruption (PAHO, 2009; Koyuncu and Erol, 2010; Mad-
hav et al., 2017). Policy attention has focused on the need
to identify emerging outbreaks that might lead Pandemics,
and to expand investment to build preparedness and health
capacity (Lederberg et al., 2003). In the preparedness pan-
demic, effective allocation of limited health resources (i.e.,
budget for antivirals and preventive vaccinations, Intensive
Care Unit (ICU), ventilators, non-intensive Care Unit (non-
ICU), doctors) plays a critical role in order to reduce the
number of cases, hospitalization, and deaths. Despite the
great advances in prevention and treatment of infectious dis-
eases, the world is unaware to respond to Pandemic or any
similarly global public-health emergency (Who, 2011; Mad-
hav et al., 2017).

Inmost countries, health care systems operate at or above
maximally designed capacity. Many hospitals just do not
have sufficient pre-existing resources to respond to surge ca-
pacity in an outbreak (Biddison et al., 2019). Unlike with
natural disasters, where the greatest need for resources of-
ten occurs early in the time course, pandemic resource re-
quirements will build over months. Outbreaks that become
pandemics generally do not take hold in multiple locations
at exactly the same time, they are geographically and tem-
porally patchy (Koyuncu and Erol, 2010).

Many government agencies and health planners are re-
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sponsible for overseeing and monitoring future outbreaks.
However, they can’t monitor everything all of the time, they
have to decide how best to allocate their scarce resources
across a broad range of risk exposures. This is called “risk-
based resource allocation.” (Farrell et al., 2013). Different
types of government agencies face risk-based resource allo-
cation decisions: agricultural land andwater resources (Romero,
2000; Wolgin, 1975; Li et al., 2016), system design in a Dis-
tributed Environment (Yeddanapudi et al., 2008; Qiu et al.,
2008), terrorism (Willis, 2007; Quadrifoglio, 2008; Ray et al.,
2009), andNatural Hazards (i.e., tornados, hurricanes, earth-
quakes) (Vaziri et al., 2010; Zolfaghari and Peyghaleh, 2015;
Murphy and Gardoni, 2007; Vaziri, 2008). In the Risk-based
resource allocation for the pandemic response, a demand
point has one (ormore) associated risk (i.e., geographic spread,
routes of transmission, risk factors for infection, overall poverty,
medical preconditions) and the objective is to choose the
amount to be invested in several interventions which min-
imize the overall risk exposed by the demand points accord-
ing to budget constraints and health benefits . Due to the
randomness and uncertainty of conditions, not only one but a
set of risksmay adversely affect the allocation of resources in
the geographical space. Then, the objectives (one objective
for each risk that a demand point may be exposed) must be
optimized simultaneously (Yan andHaimes, 2011; Sun et al.,
2014), but there exists a trade-off among objectives, i.e., an
improvement gained for one objective is only achieved by
making concessions to another objective.

This paper aims to describe and illustrate aMulti-objective
Risk-based Resource Allocation framework (MoRRA) that
could be used by decision-makers to determine how best to
manage medical resources, as well as suggest patient allo-
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cation among hospitals and alternative healthcare facilities.
In MoRRA, different definitions of risk-based resource al-
location are given depending on the geographical space and
its neighborhood configuration. This study was carried out
during the COVID-19 in Bogotá, Colombia to identify ge-
ographic areas with high-risk factors in where to prioritize
surveillance to control the outbreak and to generate recom-
mendations for future outbreaks.

The remainder of this paper is organized as follows. In
the next section, the background knowledge, the risk-based
resource allocation (RRA) problem, and the formulation of
the multi-objective RRA (MoRRA) are given. In Section
3, the experimental setup for MoRRA is described. After-
ward, numerical results of a case study (the current COVID-
19 Pandemic in Bogotá, Colombia) are presented in section
4where it is demonstrated howMoRRA could help decision-
makers to determine the resource allocation and potential re-
source shortages in the healthcare system. Finally, conclu-
sions and potential future developments are discussed in the
last section.

2. Risk-based Resource Allocation in a
Multiobjective Framework
Following the risk-based resource allocation methodol-

ogy proposed in (Farrell et al., 2013), the proposed frame-
work involves three main stages. The first stage is the iden-
tification and definition of the risk. The second stage is the
estimation of the level of risk posed in a demand point. Once
the risk has been defined and measured, an optimal strategy
is proposed to minimize the risk exposure.
2.1. Risk definition

Although there are different definitions of risk, we use
the one given by (Kelman, 2018). Risk is composed by two
components, hazard, and vulnerability.
Definition 1. Hazard is the probability that a disaster (i.e.,
COVID-19) occurs.
Definition 2. Vulnerability is the possibility that damages
(i.e., fatalities, injuries, property damage, or other conse-
quences) occur at a demand point because a resource is not
allocated.

Risk is then defined as the expected damages due to a
particular hazard for a given area and reference period. Based
on mathematical calculations, the risk of the demand point i
can be determined as a product of hazard (H) and vulnera-
bility (V ) (DHA, 1992).

R(i) = H(i) × V (i) (1)
2.2. Risk measuring
2.2.1. Hazard assessment

The hazard assessment describes the identification ofwhat
hazards can be expected and how they might change in the

short and medium-term as a result of environmental phe-
nomena or processes (Kelman, 2018). First of all, all of the
potential hazards are identified. Then the areas that could
be affected by the hazard are marked, this is called Hazard
Mapping. The magnitude, intensity, and frequency of the
hazards are determined and the causes of the hazards are
investigated. Hazards could include earthquakes, volcanic
eruptions, floods, drought, cyclones, and epidemics.
2.2.2. Vulnerability assessment

Vulnerability Assessment describes the degree to which
socioeconomic systems and physical assets in geographic ar-
eas are either susceptible or resilient to the impact of a dis-
aster (i.e., pandemic). Several models have been proposed
to establish vulnerable urban areas over the infectious dis-
ease domain, i.e., vector-borne diseases (Hagenlocher et al.,
2014), Dengue (de Mattos Almeida et al., 2007), malaria
(Kienberger and Hagenlocher, 2014; Hagenlocher and Cas-
tro, 2015), Ebola (Moore et al., 2017), andCOVID-19 (Mishra
et al., 2020; Prieto et al., 2021).
2.3. Risk strategy
2.3.1. Resource Allocation Problem

The resource allocation problem seeks to find an opti-
mal allocation of a fixed amount of resources to activities to
minimize the cost incurred by the allocation. Given a finite
set of resources  = {(r1, r2,… , ra)|ri ∈ ℝ+} whose total
amount is equal to T , it is required to allocate it to a activities
so that the objective value f () is minimized, see equation
2. The objective value may be interpreted as the cost or loss,
or the profit or reward, incurred by the resulting allocation
(Katoh and Ibaraki, 1998).

min f () =
a
∑

i=1
fi(ri)

subject to
a
∑

i=1
ri = T

subject to to to to tori ≥ 0, i = 1, 2,… , a

(2)

where ri represents the amount of resource allocated to activ-
ity i and fi(ri) is the cost incurred by allocate the resource riat the i-th activity. If the resource is divisible, ri is a continu-ous variable that can take any non-negative value. If it repre-
sents persons, processors, or trucks, on the other hand, vari-
able ri becomes a discrete variable that takes non-negative
integer values (discrete resource allocation problem).
2.3.2. Urban space

Let  the geographical space under study (i.e. state,
country, or city) defined in terms of a finite set of P smaller
spatial units (i.e. countries, census tracts, or zip codes); that
is  = {1, 2,… , P }; is an Euclidean complex network G =
( , E) (Van Der Hofstad, 2017), where the spatial units (or
vertex)  are located in some position of the 2D Euclidean
space and edges E are connection between two nodes given
the spatial relation meet.
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fΛ,i(ri) = �i(1 − ri)

(a) RRA-I

fΛ,i(ri) = �i(1 − ri)+
∑

k∈N(i)
�k(1 − �ri)

(b) RRA-II

fΛ,i(ri) = �i(1 − ri) +
∑

k∈N(i)
�k(1 − �i,kri)

(c) RRA-III
Fig. 1: Different configurations of the Risk-based Resource Allocation problem (RRA). Here, the cost incurred fΛ,i(ri) by allocate
the resource ri at the i-th activity depends on the neighborhood influence. Without neighbor influence (RRA-I) (left), with
neighbor influence at same scale (RRA-II) (middle), and with neighbor influence at different scale (RRA-III) (right).

Definition 3. The spatial relation meet(i, j) occurs when i
has at least one point in common with j in the boundary, but
their interiors do not intersect (Egenhofer, 1990).
Definition 4. An adjacent vertex u of a vertex v in a graph
G is a vertex that is connected to v by an edge (i.e.,meet(u, v)).
Definition 5. The neighborhood of a vertex v (N(v)) in a
graphG is the subgraph ofG induced by all vertices adjacent
to v.
Definition 6. Regardless the metric space under considera-
tion (points, spatial units, binary strings, DNA strands) (Pri-
eto et al., 2019), we will call  the neighborhood class of
all neighborhoods in a graph G, i.e., = {N(v)|v ∈ }.
2.3.3. Risk-based Resource Allocation Problem (RRA)

Let Λ be a risk values associated for each spatial unit in
; that is Λ = {(�1, �2,⋯ , �P )|�i ∈ ℝ+}, the Risk-based
Resource Allocation Problem, looks for the optimal way to
allocate the resources R to each demand point (spatial unit)
i such that the overall risk over  is minimized. Here, the
cost incurred fΛ,i(ri) by allocate the resource ri at the i-thactivity depends on the neighborhood influence of allocate
a resource in i (i.e., informing citizens, limit social contact,
allocate a new hospital), see equation 3.

fΛ,i(ri) = �i(1 − ri) +
∑

k∈N(i)
�k(1 − �i,kri) (3)

where ri is the impact factor to allocate a resource to i de-
mand point (0 ≤ ri ≤ 1), N(i) is the neighborhood of i-th
demand point, and �i,k is the influence factor in k when a
resource is allocated in i (0 ≤ �i,k ≤ 1).Then, the objective function fΛ is is calculated among
the spatial units  .

min fΛ(G,R) =
||
∑

i=1
fΛ,i(ri) (4)

subject to
P
∑

i=1
ri = T

0 ≤ ri ≤ 1
(5)

Here, depending on the network configuration, three con-
figurations in RRA are proposed (Fig. 1).
Definition 7. TheRRA-I configuration happens when there
are not neighborhood influence (∀i ∈  , N(i) = ∅). So, the
cost incurred fΛ,i(ri) is defined as.

fΛ,i(ri) = �i(1 − ri) (6)
Definition 8. TheRRA-II configuration happenswhen there
are neighborhood influence at same scale (�i,k = �). So, thecost incurred fΛ,i(ri) is defined as.

fΛ,i(ri) = �i(1 − ri) +
∑

k∈N(i)
�k(1 − �ri) (7)

Definition 9. TheRRA-III configuration happenswhen there
is neighborhood influence at a different scale. So, the cost
incurred fΛ,i(ri) is defined as.

fΛ,i(ri) = �i(1 − ri) +
∑

k∈N(i)
�k(1 − �i,kri) (8)

Using the adjacency matrix A of G, where the �i,k are
the the weight of the edgew(i, k), the objective function can
be evaluated in terms of A, see Appendix A.

min fΛ(A,R) = ‖

‖

(� (A + I) − diag(R)(A + I)) ΛT ‖
‖1 (9)

subject to ‖R‖1 = T
0 ≤ ri ≤ 1

(10)

where � is the Indicator function that determines when a
value of A is different to 0, I is the identity matrix, diag is
the function that diagonalizes the vector of resources R, and
Λ are the risks associated with the demand points.
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2.3.4. Multi-objective RRA (MoRRA)
The multi-objective optimization problem (MoP) can

be mathematically defined as follows.

min f (x) = (f1(x), f2(x),… , fm(x))T
subject to x ∈ Ω (11)

where x = (x1, x2,… , xn)T is the n-dimensional decision
variable vector from the decision space Ω; f ∶ Ω → Θ ⊆
ℝm consists a set of the m objective functions that map x
from n-dimensional decision space Ω to m-dimensional ob-
jective space Θ.
Definition 10. Given two decision vectors x, y ∈ Ω, x is
said to Pareto dominate y, denoted by x ≺ y, iff fi(x) ≤
fi(y), for every i ∈ {1, 2,… , m}, and fj(x) < fj(y), for atleast one index j ∈ {1, 2,… , m}.
Definition 11. A decision vector x∗ ∈ Ω is Pareto optimal
iff there is no x ∈ Ω such that x ≺ x∗.
Definition 12. The Pareto set (PS) is defined as

PS = {x ∈ Ω|x is Pareto Optimal} (12)
Definition 13. The Pareto Front (PF) is defined as

PF = {f (x) ∈ ℝm
|x ∈ PS } (13)

Since objectives in (11) conflicted with each other, no
point in Ω simultaneously minimizes all the objectives. The
best trade-offs among the objectives can be defined in terms
of PF.

Due to the randomness and uncertainty of conditions (en-
vironmental, operational), RRA also brings many risks that
may adversely affect the allocation of resources in the ge-
ographical space. Therefore, it is necessary to introduce a
comprehensive set of risk indexes by modeling the random-
ness and uncertainty of the RRA problems. Then, Multi-
objective Risk-based Resource Allocation aims to optimal
way to allocate R to each demand point (spatial unit) i, in a
set ofM risk indexes; that is Λ̂ = {Λ1,… ,ΛM}.

min fΛ̂(R) = (fΛ1 (R),… , fΛM (R))
T

subject to R ∈ Ω (14)

3. Resource allocation for COVID-19 in
Bogotá, Colombia

3.1. Study area and data sources
The applicability of the problem is shown for the cur-

rent COVID-19 Pandemic in Bogotá city, the largest and
crowded city in Colombia. Bogotá is a metropolitan city
with 7.412.566 inhabitants living in an area of 1775km (995km
urban and 718km rural), at an altitude of 2640m, with an
annual temperature ranging from 6 to 20°C, and annual pre-
cipitation of over 840mm. Bogotá is composed of 621 Ur-
ban Sectors (Urban Sector is a cartographic the division cre-
ated by the National Administrative Department of Statistics

74°2'W 74°1'W 74°0'W

4°5'N

4°6'N

4°7'N

4°8'N

5km

N

Fig. 2: Spatial distribution of Bogotá, Colombia using Urban
sectors.

(DANE) (DANE, 2018a).) Fig. 2 shows the distribution of
the Urban sectors over Bogotá.

Information was obtained from the National Department
of Statistics (DANE), District Planning Secretary of Bogotá
(SDP), and theDistrictMobility Secretary of Bogotá (SDM).
Data comprised public information about demographic, trans-
portation, socio-economic, and health conditions reported
from 2011 to 2020. A summary of the datasets is presented
as follows:

• MON_2017 (SDP , 2011, 2017): Dataset provided
by SDP containing a set monograph which provides
a physical, demographic and socioeconomic descrip-
tion of Bogotá and its districts.

• SDM_2017 (SDM, 2018): Dataset provided by SDM
presenting detailed official information ofmobility char-
acterization in Bogotá.

• CNPV_2018 (DANE, 2018a): Dataset provided by
DANE containing the national census made in 2018
which provides socio-demographic statistics of Colom-
bia.

• DANE_2018 (DANE, 2018b): Dataset provided by
DANE containing the results of the Multidimensional
Poverty Indexwhich encompasses educational and health
quality, work and housing conditions, and access to
public services.

• DANE_2020 (DANE, 2020): Dataset provided byDANE
presenting a vulnerability index based on demographic
and health conditions relevant for COVID-19 pandemic.

The complex network for the different RRA configura-
tions is built (Fig. 3). For RRA-II, the � value is fixed in 0.5,
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(a) RRA-I (b) RRA-II (c) RRA-III
Fig. 3: Complex network representation of the three RRA configurations. RRA-I(left), RRA-II (middle), and RRA-III (right).

which means that influence in the neighborhood is half when
a resource is allocated. For RRA-III, the �ik values are fixeddepending on the distance between the spatial units; that is
less distance more influence. The �ik are normalized over
the range 0 (less influence) and 0.5 (more influence).
3.2. Risk definition in COVID-19
3.2.1. Pandemic hazard

Natural disasters (i.e., the COVID-19 pandemic) rarely
exist, because disasters are social, arising from a combina-
tion of hazard and vulnerability, with vulnerability as the
causative factor. The disaster occurs at multiple levels si-
multaneously, with responses to a hazard exposing as many
vulnerability problems as the original hazard. The failure to
heed to the pandemic plans alongside the lack of health-care
accessible to everyone meant that the hazard could not be
addressed effectively and vulnerability fundamentals were
revealed (Kelman, 2020).

Then, based on mathematical calculations, we assume
that the hazard (the new coronavirus) is constant for all spa-
tial units; that is ∀i ∈  ,H(i) = 1.
3.2.2. Pandemic vulnerability

Three domains are proposed on (Prieto et al., 2021) to de-
scribe the vulnerability for the COVID-19 in Bogotá, Colom-
bia. Those domains are: (i) Where and how he/she lives
(life), (ii) Where and how he/she works (work), and (iii)
Where and how he/she moves around (movement). Table 1
shows the domains proposed, the vulnerability factors asso-
ciated with them, and the dataset used to calculate the values
for each factor.

• Where and how he/she lives (life): Several demo-
graphic factors influence the degree of risk of the ge-
ographic areas in a pandemic. The literature empha-
sizes factors such as urban density, age, urban living

(i.e., socio-spatial segregation), literacy and health-
care quality (i.e., poverty index). Further, most data
on the COVID-19 pandemic suggest that people with
underlying comorbid conditions are more vulnerable
than people without them.

• Where and how he/she works (work): Urban sec-
tors with high-density facilities (i.e, educational build-
ings, cultural buildings, sport buildings, food markets,
all formal labor, informal labor) are more vulnerable
to the spread of contagious diseases due to space lim-
itations within and between households, growth and
mobility, and limited water, sanitation, and hygiene
(WASH) infrastructure.

• Where and how he/she moves around (movement):
Understanding the public transportation dependency,
transmission routes, and infection vulnerability fac-
tors (i.e., geographic impact) provides the baseline for
epidemiological modeling that can inform the plan-
ning of response and containment efforts to reduce the
likelihood of the disease spreading.

Then, based onmathematical calculations, a spatial unit i
has associated three vulnerable factors: life, work, andmove-
ment; that is∀i ∈  , V (i) = {Vlife(i), Vwork(i), Vmovement(i)}.
3.3. Risk assessment in COVID-19

Taking the hazard as constantH(i) = 1, we have only to
worry about the Vulnerability Assessment. Previous works
(Prieto et al., 2021) proposed a framework for Urban Vulner-
ability Assessment (UVA) that condense a set of vulnerabil-
ity factors (Table 1) into a vulnerability index that allowed
us to establish and rank potentially vulnerable urban areas
in Bogotá. To build the vulnerability index for the three vul-
nerable domains (life, work, and movement), the following
steps are applied:
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Table 1
Vulnerability domains for the COVID-19 case in Bogotá, Colombia (Prieto et al., 2021).

Vulnerability domains Vulnerability factor(s) Definition Dataset
Where and how
he/she lives (life)

Urban density Number of people inhabiting a
given urban area

CNPV_2018

Age Number of people aged 15–34
years (SARS-CoV-2 incidence in-
creased (Goldstein and Lipsitch,
2020))

CNPV_2018

Comorbidities Groups areas according to their de-
mographics and comorbidities

DANE_2020

Poverty index Multiple deficiencies in health, ed-
ucation and standard of living

DANE_2018

Socio-spatial segregation Absence of interaction between in-
dividuals of different social groups

(Alfonso R, 2016) ∗

Where and how
he/she works (work)

Educational Number of educational buildings
(i.e., preschool, primary and high-
school, research centers, technical
training centers, Universities)

MON_2017

Cultural Number of cultural buildings (i.e.,
theaters, concert halls, libraries,
museums, civic centers, commu-
nity halls)

MON_2017

Sports Number of sports buildings (i.e.,
stadiums, coliseums, sports clubs,
country, racetracks, swimming
pools)

MON_2017

Food markets Number of food market build-
ings (i.e., Central market, market
square)

MON_2017

Formal Labor Number of commercial buildings
with license

MON_2017

Informal Labor Percentage of informal employed
according to its workplace

(SDP, 2018) ∗

Where and how
he/she moves around
(movement)

Public Transportation De-
pendency

Number of Trips generated
throughout the day (trips longer
than 15 min)

SDM_2017

Transmission routes Asympthomatic number people at
the peak of the pandemic

(Gomez et al., 2021) ∗

Geographic impact Number of dead people after 100
simulation days

(Gomez et al., 2021) ∗

∗: Values calculated in the cited paper.

1. The raw data for each factor is normalized across all
spatial units over the range 0 (best) to 1 (worst). The
normalization is already calculated in (Prieto et al.,
2021).

2. Synthesize the normalized information of all spatial
units into k partitions which groups spatial units with
similar vulnerability profiles. We use k = 10 to gener-
ate 10 ranges of vulnerabilities (from 0.5 to 0.95, with
step of 0.1).

3. The clusters’ centroids of each group are used to sort
the vulnerability factors in descending order. This sort

is interpreted as vulnerability ranking which is used
for the analysis.

4. Then, to aggregate the L ranks (one for each vulnera-
ble factor, then for life L = 5, work L = 6, movement
L = 3) in a unique vulnerability ranking the Borda’s
method is used.

5. The unique vulnerability ranking is then transformed
into a vulnerability index, where a higher rank indi-
cates higher vulnerability.

The output of this process is the three vulnerability index
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(a) Life risk
Risk
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(b) Work risk
Risk
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0.45
0.55
0.65
0.75
0.85
0.95
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Fig. 4: Risk indexes generated for the current COVID-19 pandemic in Bogota, Colombia.

(one for each domain). Finally, to quantify the risk we follow
the risk definition presented in 1.

Life(i) = H(i) × Vlife(i) (15)

W ork(i) = H(i) × Vwork(i) (16)

Movement(i) = H(i) × Vmovement(i) (17)
where Life(i),W ork(i) andMovement(i) are the life risk,
work risk and movement risk, respectively; for the spatial
unit i. Fig. 4 shows the final three risk indexes.
3.4. Risk strategy in COVID-19
3.4.1. Experimental Setup

To solve the formulated multi-objective risk-based re-
source allocation problem, a comparisonwith differentmulti-
objective algorithms (MOEA/D (Zhang and Li, 2007), NSGA-
III (Deb and Jain, 2013), RVEA (Cheng et al., 2016), and
ARMOEA (Tian et al., 2017)) was made on different con-
figurations of MoRRA (i.e., RRA-I, RRA-II, RRA-III) and
different allocation percentages (i.e., T = 10%, T = 25%,
T = 50%). Here, the allocation percentages (amount of re-
source) T is the total of spatial units where a resource should
be allocated (i.e., T = 10% means that only 10% of the to-
tal space units will receive the resource). Also, the impact
factor ri is assumed to 0.5, which means that allocates a re-
source in the spatial unit i would reduce the risk in half.
Compared Algorithms

The following four state-of-the-art algorithms for multi-
objective functions are considered as peer algorithms.

• MOEA/D (Zhang and Li, 2007): It is representative
of the decomposition-based method, the basic idea of
MOEA/D is to decompose a MOP into several single-
objective optimization subproblems through aggrega-
tion functions and simultaneously optimizes them.

• NSGA-III (Deb and Jain, 2013): It is based on decom-
position with Pareto-adaptive weight vectors. This ap-
proach automatically adjusts the weight vectors by the
geometrical characteristics of the Pareto front.

• RVEA (Cheng et al., 2016): It is a scalarization ap-
proach, and termed angle penalized distance approach
that dynamically adjusts the distribution of the refer-
ence vectors to balance convergence and diversity of
the solutions in the PFs.

• ARMOEA (Tian et al., 2017): It uses an enhanced
inverted generational distance indicator, in which an
adaptationmethod adjusts a set of reference points based
on the indicator contributions of candidate solutions.

Performance Metrics
To evaluate the performance of different MOEAs for the

RRA problems, each algorithm was run for the same num-
ber of generations, and the resulting solutions (known as
Pareto front approximations), are compared using functions
that measure two qualities: (i) solution accuracy, i.e., to de-
termine how similar the solution is to the true Pareto front
and (ii) solution diversity, i.e., to evaluate howwell distributed
are the points in the solution. We selected two of the most
used metrics called Δp (Schutze et al., 2012) and Coverage
over Pareto Front (CPF ) (Tian et al., 2019) to compare the
accuracy and the diversity of the solutions found by the dif-
ferent algorithms.
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Table 2
Statistics Δp and CPF metric values of the Pareto-optimal solutions founded by the four
compared algorithms for the different RRA configurations and amount allocations. The
numbers in parentheses are the standard deviations.

Metric Problem Amount MOEA/D NSGAIII RVEA ARMOEA

Δp

RRA-I
10% 4.887e+2 (8.97e-1) 4.902e+2 (6.71e-1) − 4.883e+2 (6.70e-1) ≈ 4.890e+2 (6.77e-1) ≈
25% 4.437e+2 (1.25e+0) 4.467e+2 (1.24e+0) − 4.440e+2 (1.19e+0) ≈ 4.443e+2 (1.26e+0) ≈
50% 3.751e+2 (1.73e+0) 3.788e+2 (1.42e+0) − 3.759e+2 (1.84e+0) ≈ 3.768e+2 (1.39e+0) −

RRA-II
10% 3.564e+3 (3.32e+0) 3.572e+3 (2.19e+0) − 3.562e+3 (4.88e+0) + 3.568e+3 (3.37e+0) −
25% 3.384e+3 (4.36e+0) 3.399e+3 (4.99e+0) − 3.388e+3 (8.34e+0) ≈ 3.393e+3 (6.69e+0) −
50% 3.113e+3 (4.39e+0) 3.129e+3 (5.26e+0) − 3.116e+3 (8.36e+0) ≈ 3.121e+3 (6.79e+0) −

RRA-III
10% 3.588e+3 (2.92e+0) 3.594e+3 (2.40e+0) − 3.588e+3 (3.13e+0) ≈ 3.592e+3 (2.61e+0) −
25% 3.441e+3 (4.08e+0) 3.452e+3 (3.18e+0) − 3.442e+3 (5.50e+0) ≈ 3.446e+3 (4.12e+0) −
50% 3.211e+3 (4.73e+0) 3.226e+3 (4.81e+0) − 3.215e+3 (6.46e+0) − 3.219e+3 (6.00e+0) −

CPF

RRA-I
10% 7.920e-2 (3.67e-2) 1.193e-1 (2.99e-2) + 2.160e-1 (5.06e-2) + 1.028e-1 (3.08e-2) ≈
25% 6.570e-2 (3.96e-2) 1.264e-1 (2.79e-2) + 2.044e-1 (7.11e-2) + 1.009e-1 (4.06e-2) +
50% 6.940e-2 (3.18e-2) 1.267e-1 (2.49e-2) + 1.938e-1 (5.20e-2) + 1.112e-1 (3.77e-2) +

RRA-II
10% 3.287e-2 (3.09e-2) 1.188e-1 (5.11e-2) + 1.803e-1 (4.85e-2) + 1.316e-1 (5.39e-2) ≈
25% 2.397e-2 (2.01e-2) 1.244e-1 (6.34e-2) + 2.210e-1 (8.94e-2) + 1.213e-1 (4.84e-2) +
50% 3.584e-2 (2.11e-2) 1.248e-1 (4.90e-2) + 2.432e-1 (8.10e-2) + 1.413e-1 (9.87e-2) +

RRA-III
10% 3.908e-2 (2.94e-2) 1.217e-1 (3.99e-2) + 2.273e-1 (6.45e-2) + 1.244e-1 (5.90e-2) +
25% 4.659e-2 (3.33e-2) 1.053e-1 (3.28e-2) + 2.001e-1 (5.78e-2) + 1.088e-1 (3.70e-2) +
50% 2.554e-2 (1.99e-2) 1.272e-1 (2.89e-2) + 2.205e-1 (6.75e-2) + 1.080e-1 (3.68e-2) +

+: MOEA/D shows significantly worse performance in the comparison.
−: MOEA/D shows significantly better performance in the comparison.
≈: There is no significant difference between the compared results.

Parameter Settings
In this subsection, we first present the general parameter

settings for the experiments, and afterward, the specific pa-
rameter settings for each algorithm in comparison are given.

1. MoRRA parameters: We made the experiment with
different configurations of RRA (RRA-I, RRA-II, RRA-
III) and allocation percentages (T = 10%, T = 25%,
T = 50%). The decision variables are equal to the
number of urban sectors in Bogotá (D = 631) and the
objective functions are fixed to 3 (M = 3) represent-
ing the different risks.

2. Settings for the operators: We select the simulated
binary crossover (SBX) (Deb et al., 1995) and the poly-
nomial mutation (PM) (Deb and Goyal, 1996) as ge-
netic operators for our experiments. For the SBX, the
distribution index is set to �c = 30 and the crossover
probability pc = 1.0 is used in all algorithms; for PM
the distribution index and the mutation probability are
set to �m = 20 and pm = 1∕n, respectively.

3. Population size: For all algorithms, the population
size is determined by the simplex-lattice design factor
H together with the objective number M (Das and
Dennis, 1998). Then the population size using this
approach is set to 105 individuals.

4. TerminationCondition: Every algorithm stopswhen
the number of function evaluations reaches the max-
imum number. For all configurations and allocation
percentages the maximal number of generations is set
to 10000.

5. Specific Parameter Settings inEachAlgorithm: For
MOEA/D, the weights vectors are calculate using the

penalty-based boundary intersection (PBI), the neigh-
borhood size T is set to 20, and the penalty parameter
� in PBI is set to 5, as recommended in (Zhang and
Li, 2007). For RVEA, the parameter controlling the
rate of change of penalty (�) and the frequency of em-
ploying reference vector adaptation (fr) are fixed in 2
and 0.1, respectively, as recommend in (Cheng et al.,
2016).

3.4.2. Pareto front
The statistical results of the Δp and CPF metrics values

obtained by the four algorithms for the different configura-
tions and allocation percentages over 20 independent runs
are summarized in Table 2, where the best results are high-
lighted. The Wilcoxon rank-sum test is adopted to compare
the results obtained by the four compared algorithms at a
significance level of 0.05 (here, the MOEA/D algorithm is
taken as the reference’s algorithm). Symbol ’+’ indicates
thatMOEA/D is significantly outperformed by the compared
algorithm according to a Wilcoxon rank-sum test, while ’−’
means that the compared algorithm is significantly outper-
formed by MOEA/D. Finally, ’≈’ means that there is no sta-
tistically significant difference between the results obtained
by MOEA/D and the compared algorithm. It can be seen
that MOEA/D shows the best overall performance among
the four compared algorithms over the Δp metric in the ex-
periments, while RVEA shows the best overall performance
over the CPF metric in experiments. The results obtained
by RVEA (good performance onΔp and CPF ) in the differ-ent configurations and allocation percentages will be used in
the rest of the paper for the following results.
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Fig. 5: The approximate Pareto optimal solutions obtained by RVEA on problems with different configurations (RRA-I, RRA-II,
RRA-III) and allocation percentages (10%, 25%, 50%).

The range of the non-dominated solutions found with
RVEA are shown in Fig. 5. The Pareto front behavior shows
promising convergence performance as well as a good dis-
tribution on problems with different configurations and allo-
cation percentages.
3.4.3. Decision making

To visualize the solution in the Bogotá network map, a
pseudo-weight vector approach proposed in (Deb, 2011) is
used. This method calculates the normalized distance to the
best solution regarding each objective.

First, we select one solution with equal pseudo-weights
(wlife = 0.33, wwork = 0.33, wmovement = 0.33) for each
different RRA configurations and an allocation percentages
equal to %10 (Fig 6). The results shows an interesting sce-
nario where the spatial correlation between urban sectors is
not remarkable getting an unbiased risk-based resource allo-
cation for COVID-19.

Further, in order to support the decision-maker to find
the most preferred solution with a good balance between ro-
bustness and the nominal quality, different combinations of
pseudo-weights are applied in solutions with RRA-III con-
figuration and 10% of allocation percentage (Fig. 7). In the
first combination, we give more weight to life risk (wlife =
0.8, wwork = 0.1, wmovement = 0.1). In the second combina-
tion, we givemoreweight towork risk (wlife = 0.1, wwork =
0.8, wmovement = 0.1). Finally, in the third combination, we
give more weight to movement risk (wlife = 0.1, wwork =
0.1, wmovement = 0.8). The results indicate that the MoRRA
framework proposed could be used to recommend actions
for before, during, and after a pandemic that is, to planning
and coordination efforts through leadership and coordination
across sectors, to assess if the risk of a pandemic could in-
crease in specific geographic areas.
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Fig. 6: Solution of MoRRA visualized in the Bogotá complex network with 10% of allocation percentage and using equal
pseudo-weights (wlife = 0.33, wwork = 0.33, wmovement = 0.33).

4. Conclusions and Future Work
AMulti-objective Risk-basedResourceAllocation (MoRRA)

framework for Pandemic Preparedness is proposed. MoRRA
could be used to build evidence for planning, modeling, and

epidemiological studies to better inform the public, policy-
makers, and international organizations and funders as to
where and how to improve surveillance, response efforts,
and delivery of resources. The proposedMoRRA is tested in
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Fig. 7: Solution of MoRRA visualized in the Bogotá complex network with different configurations of RRA and 10% of allocation
percentage and using different combinations of pseudo-weights.

the current COVID-19 Pandemic in Bogotá city, the largest
and crowded city in Colombia. MoRRA creates not only
one, but a set of risk indices (i.e., life, work, movement) and
uses them to apply the risk-based resource allocation.

Although the risk factors involved in the framework are
structural, the proposed approach is flexible, does not require
expert support or knowledge, and allows policy-makers, and
international organizations to prioritize resource allocation
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in short and long-term actions for affected populations in a
city. For instance, using the solutions with more weight in
the movement risk a short-actions (i.e, staying home, limit
close contact, avoid crowds, limit non-essential travel) can
be taken to reduce the risk in the city. Further, using the
solutions with more weight in the life risk, it is possible to
advance in long-term territorial reorganization plans (i.e., re-
duce socio-spatial segregation, decent housing, bio-secure
protocols for high-density facilities) as our results indicate
for the COVID-19 in the urban area of Bogotá.

A. Matrix Notation of RRA
To derive (9) for (4), the Euclidean Complex NetworkG

is represented with its adjacency matrix A. Then, we want
to demonstrate.

min fΛ(G,R) = min fΛ(A,R)

when fΛ(A,R) is written as.

fΛ(A,R) =
‖

‖

‖

(� (A + I) − diag(R)(A + I)) ΛT ‖‖
‖1

Here, � is the Indicator function that determines when a
value of A is different to 0, I is the identity matrix, diag
is the function that diagonalizes the vector of resources R,
and Λ are the risks associated with the demand points.

Expanding fΛ(A,R), we have.

fΛ(A,R)

=
‖

‖

‖

‖

‖

‖

‖

⎛

⎜

⎜

⎝

⎡

⎢

⎢

⎣

1 … �̂1,p
⋮ ⋱
�̂p,1 1

⎤

⎥

⎥

⎦

−
⎡

⎢

⎢

⎣

r1 … 0
⋮ ⋱
0 rp

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

1 … �1,p
⋮ ⋱
�p,1 1

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

⎡

⎢

⎢

⎣

�1
⋮
�p

⎤

⎥

⎥

⎦

‖

‖

‖

‖

‖

‖

‖1

Solving.

fΛ(A,R)

=
‖

‖

‖

‖

‖

‖

‖

⎛

⎜

⎜

⎝

⎡

⎢

⎢

⎣

1 … �̂1,p
⋮ ⋱
�̂p,1 1

⎤

⎥

⎥

⎦

−
⎡

⎢

⎢

⎣

r1 … r1�1,p
⋮ ⋱

rp�p,1 rp

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

⎡

⎢

⎢

⎣

�1
⋮
�p

⎤

⎥

⎥

⎦

‖

‖

‖

‖

‖

‖

‖1

=
‖

‖

‖

‖

‖

‖

‖

⎡

⎢

⎢

⎣

1 − r1 … �̂1,p − r1�1,p
⋮ ⋱

�̂p,1 − rp�p,1 1 − rp

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

�1
⋮
�p

⎤

⎥

⎥

⎦

‖

‖

‖

‖

‖

‖

‖1

=
‖

‖

‖

‖

‖

‖

‖

⎡

⎢

⎢

⎣

�1(1 − r1) + �2(�̂1,2 − r1�1,2) +⋯ + �1(�̂1,p − r1�1,p)
⋮

�1(�̂p,1 − rp�p,1) + �2(�̂p,2 − rp�p,2) +⋯ + �p(1 − rp)

⎤

⎥

⎥

⎦

‖

‖

‖

‖

‖

‖

‖1

Grouping similar terms.

fΛ(A,R) =

‖

‖

‖

‖

‖

‖

‖

‖

‖

‖

⎡

⎢

⎢

⎢

⎢

⎣

�1(1 − r1) +
∑

k∈N(1)
�k(1 − �1,kr1)

⋮
�p(1 − rp) +

∑

k∈N(p)
�k(1 − �p,krp)

⎤

⎥

⎥

⎥

⎥

⎦

‖

‖

‖

‖

‖

‖

‖

‖

‖

‖1

Each term in the column vector can be written as (3).

fΛ(A,R) =
‖

‖

‖

‖

‖

‖

‖

⎡

⎢

⎢

⎣

fΛ,i(ri)
⋮

fΛ,p(rp)

⎤

⎥

⎥

⎦

‖

‖

‖

‖

‖

‖

‖1

Applying 1-Norm.

fΛ(A,R) =
||
∑

i=1
fΛ,i(ri)

So, it is sufficient to prove that (4) could be written as (9)
when the graph G is representing by its adjacency matrix A.
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