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Abstract 19 

Serological tests are important tools helping to determine previous infection with severe acute 20 

respiratory disease coronavirus 2 (SARS-CoV-2) and to monitor immune responses. The current 21 

tests are based on spike (S), the receptor binding domain (RBD), or the nucleoprotein (NP) as 22 

substrate. Here, we used samples from a high seroprevalence cohort of health care workers (HCWs) 23 

to perform a longitudinal analysis of the antibody responses using three distinct serological assays. 24 

501 serum samples were tested using: a) a research-grade RBD and spike based tandem enzyme-25 

linked immunosorbent assay (MS–RBD ELISA, MS-spike ELISA), b) a commercial RBD and spike 26 

based tandem ELISA (Kantaro-RBD, -spike), and c) a commercial NP-based chemiluminescent 27 

microparticle immunoassay (CMIA, Abbott Architect). Seroprevalence ranged around 28% during 28 

the early stage of the pandemic (a: 28.4% positives; b: 28.1%; c: 27.3%). Good correlation was 29 

observed between the MS and Kantaro RBD ELISAs and between the MS and Kantaro spike ELISAs. 30 

By contrast, modest correlations were observed between the Abbott Architect and both RBD and 31 

spike-based assays. A proportion of HCWs (n=178) were sampled again 3-5 months after the first 32 

time point. Although antibody levels declined in most of the positive individuals, the overall 33 

seroprevalence measured by RBD-spike based assays remained unchanged. However the 34 

seroprevalence of NP-reactive antibodies significantly declined.  Lastly, we tested six samples of 35 

individuals who received two doses of SARS-CoV-2 mRNA vaccine and found that seroconversion 36 

was detected by the RBD-spike assays but – of course as expected - not the NP based assay. In 37 

summary, our results consolidate the strength of different serological assays to assess the 38 

magnitude and duration of antibodies to SARS-CoV-2. 39 

 40 

 41 
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Introduction 43 

In the advent of the current pandemic caused by the severe acute respiratory syndrome coronavirus 44 

2 (SARS-CoV-2), pandemic, methods to detect the prevalence of recent and past infections are key 45 

to determine public health and social countermeasures. Nucleic acid amplification tests (NAAT) 46 

provide an accurate estimation of acute infections (1, 2), but they fail to inform about past infections. 47 

Serological tests that detect antibodies directed against structural targets of the virus, not only are 48 

useful to estimate the overall viral seroprevalence and rates of infection in the population (3-5), but 49 

also help to assess responses to vaccination (6), to determine correlates of protection (7, 8), and to 50 

test and standardize therapeutic approaches such as monoclonal antibody and plasma transfer 51 

therapies (9). Moreover, estimation of viral seroprevalence and quantification of antibody levels 52 

adds to our understanding of the immune response and protection at the individual and population 53 

levels (10). 54 

 55 

Currently, serological assays to detect antibodies against SARS-CoV-2 are based on recombinant 56 

versions of the spike (S), the receptor binding domain (RBD) of S, or the nucleoprotein (NP) as 57 

substrate (11). A variety of research grade and commercial S-based and NP-based assays are now 58 

available, but antibodies to these two targets have different characteristics. Antibodies directed 59 

against the viral spike are retained for several months after infection (12-17) and correlate with 60 

virus neutralization and protection against re-infection (6, 13, 18-21). Moreover, vaccination relies 61 

uniquely on the viral spike, evidencing the importance of detecting antibodies against this target 62 

with high levels of sensitivity and specificity (6). 63 

 64 

Several  studies evaluate the sensitivity and specificity of individual assays, either S- or NP- based, 65 

however longitudinal side-by-side comparisons of different serological platforms are scarce. Here, 66 

we employed samples from a high-risk cohort of health care workers (HCWs) using three different 67 

serological assays. In addition, SARS-CoV-2 post-vaccination samples were included in the analysis. 68 

We compared a research grade RBD and spike based tandem enzyme-linked immunosorbent assay 69 

(ELISA) developed at Mount Sinai (MS ELISA, research grad version), the Seroklir commercial RBD-70 

spike based ELISA from Kantaro Biosciences, and the commercial NP-based chemiluminescent 71 

microparticle immunoassay (CMIA) Abbott Architect.  72 

 73 
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Methods 74 

Research grade ELISAs   75 

Detection of receptor binding domain (RBD) and full-length spike (S) antibodies in plasma was 76 

performed with a research-grade two-step ELISA developed at Mount Sinai closely resembling an 77 

assay used in Mount Sinai’s CLIA-certified Clinical Pathology Laboratory, which received FDA 78 

Emergency Use Authorization in April 2020 (22, 23). The research grade assay has 95% sensitivity 79 

and 100% specificity (3). Before performing the ELISA, samples were heat-inactivated for 1h at 80 

56°C.  Briefly, for RBD screening, 96-well plates (Thermo Fisher) were coated with 50ul/well of 81 

phosphate-buffered saline (PBS; Gibco) containing 2μg/ml of recombinant RBD protein and 82 

incubated overnight at 4 °C. Plates were washed three times with PBS containing 0.1% Tween-20 83 

(PBS-T; Fisher Scientific) using an automated plate washer (BioTek). For blocking, 200μl/well of 84 

PBS-T containing 3% (w/v) of milk powder (American Bio) were added and plates were incubated 85 

for 1 h at room temperature. Plasma samples were diluted (1:50) in PBS-T containing 1% milk 86 

powder. Blocking solution was removed and dilutions of samples were added. After a 2-hour 87 

incubation, plates were washed three times with PBS-T and 50μl/well of anti-human IgG (Fab-88 

specific) horseradish peroxidase antibody (Sigma, A0293) diluted 1:3,000 in PBS-T 1% milk powder 89 

were added. Plates were incubated for 1 h at room temperature, followed by three times washing 90 

with PBS-T and addition of developing solution (100μl/well) sigmafast o-phenylenediamine 91 

dihydrochloride (Sigma). The reaction was led to proceed for 10 min, and stopped using 50μl/well 92 

of 3-molar hydrochloric acid (Thermo Fisher). Optical density was measured at 490 nm using an 93 

automated plate reader (BioTek). Samples with an OD490nm above 0.15 (cut-off value) were 94 

considered as presumptive positives and were further tested in the confirmatory ELISA using the 95 

full-length recombinant spike protein. 96 

 97 

Briefly, to perform the confirmatory ELISAs, plates were coated and blocked as described above, 98 

but using full-length spike protein for coating. Presumptive positive plasma samples were serially 99 

diluted (1:3) in 1%-milk prepared in PBS-T, starting at an initial dilution of 1:80. Serial dilutions 100 

(100μl/well) were added to the plates, followed by 2-hour incubation at room temperature. The 101 

remaining steps were performed as described above. Data was analyzed using GraphPad Prism 7. 102 

Samples with an OD490nm above 0.15 (cut-off value) at a 1:80 plasma dilution were considered 103 
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positive. Samples with an OD490nm above 0.15 at the last dilution were further diluted (1:2160 104 

initially) and re-tested. Only samples positive in both steps of the assay were considered positive. 105 

 106 

Kantaro ELISAs   107 

ELISAs to detect antibodies in plasma against the receptor binding domain (RBD) and the full-length 108 

spike (S) based on the commercial Kantaro Quantitative SARS-CoV-2 IgG Antibody Kit (COVID-109 

SeroKlir, Kantaro Biosciences) were used. The assay was performed according to manufacturer’s 110 

instructions except for additional serum dilution steps in highly reactive individuals. All reagents 111 

and microplates were included with the commercial kit. Briefly, for qualitative RBD ELISAs, samples 112 

were diluted in sample buffer (1:100) using 96-well microtitre plates, and 100μl/well of pre-diluted 113 

samples were transferred to the RBD pre-coated microplates. Positive and negative controls were 114 

added to every plate. Samples were incubated for 2 hours at room temperature, followed by 115 

removal of plasma dilutions and washing three times with wash buffer. RBD conjugate was diluted 116 

in conjugate buffer and 100μl/well were added to the plates. After 1h incubation, conjugate was 117 

removed and plates were washed three times with wash buffer. Substrate solution was added 118 

(100μl/well) and after 20min incubation, 100μl/well of stop solution were added. Samples were 119 

read at OD450nm and at OD570nm for wavelength correction. The cutoff index (CI) was calculated by 120 

dividing the corrected OD of the clinical sample/corrected OD of RBD positive control. Samples with 121 

a CI above 0.7 were considered as presumptive positives and were further tested in the 122 

confirmatory quantitative ELISA based on the full-length recombinant spike protein. 123 

 124 

For quantitative spike ELISAs, presumptive positive plasma samples were diluted (1:200) in sample 125 

buffer. Dilutions were added in duplicate to the pre-coated microplates. Low, medium and high 126 

controls, as well as spike calibrators used to generate a standard curve, were added to every 127 

microplates. After 2h incubation at room temperature, the remaining steps were performed as 128 

described above. Data was analyzed using GraphPad Prism 7. Concentration of spike-reactive 129 

antibodies was calculated using a four parameter logistic (4-PL) curve fit. Samples exceeding the 130 

range of the standard curve were further diluted (1:5400) and re-tested. Only samples positive in 131 

both steps of the assay were considered positive. 132 

 133 

Abbott Architect CMIA 134 
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The Architect test (Abbott Laboratories) consists of an automated, two-step, qualitative CMIA for 135 

qualitatively detecting IgG against the nucleoprotein (N) antigen from SARS-CoV-2. This test has a 136 

reported sensitivity of 100% (CI 95.8–100%) and specificity of 99.6 (CI 99–99.9%) 14 days after 137 

symptom onset. The assay was performed according to manufacturer’s instructions. All reagents 138 

were included with the kit. Briefly, sample, SARS-CoV-2 antigen coated paramagnetic 139 

microparticles, and assay diluent were combined and incubated. The IgG antibodies to SARS-CoV-2 140 

present in the sample bind to the SARS-CoV-2 antigen coated microparticles. The mixture is washed. 141 

Anti-human IgG acridinium-labeled conjugate is added to create a reaction mixture and incubated. 142 

Following a wash cycle, Pre-Trigger and Trigger Solutions are added. The resulting 143 

chemiluminescent reaction is measured as a relative light unit (RLU). There is a direct relationship 144 

between the amount of IgG antibodies to SARS-CoV-2 in the sample and the RLU detected by the 145 

system optics. This relationship is reflected in the calculated Index (S/C). The presence or absence 146 

of IgG antibodies to SARS-CoV-2 in the sample is determined by comparing the chemiluminescent 147 

RLU in the reaction to the calibrator RLU. 148 

 149 

Study participants and human samples 150 

The samples used for the longitudinal study, were part of a cross sectional cohort of healthcare 151 

workers (HCWs) of the New York City Public Hospital in the South Bronx. This study was approved 152 

by the Institutional Review Board (IRB#20-009). Samples were collected in two phases: Phase 1 153 

samples were obtained in May 2020 and Phase 2 samples were collected from August to October 154 

2020. Informed consent was obtained prior to Phase 1 sample collection. 155 

Samples from study participants receiving the Pfizer mRNA vaccine were obtained from IRB 156 

approved longitudinal observation studies (IRB-16-00791; IRB-20-03374) conducted by the 157 

Personalized Virology Initiative (PVI) at the Icahn School of Medicine at Mount Sinai. All participants 158 

signed informed consents prior to data and sample collection. All serum samples were coded upon 159 

collection and analyzed in a blinded manner in the Krammer laboratory. 160 

 161 

Statistical analysis 162 

Correlations of antibody levels in the different assays were calculated using a standard Pearson’s 163 

correlation. Coefficients of correlation (r) are presented. Paired t-test for comparison of phase 1 and 164 

phase 2 antibody levels was used. All adjusted P values of <0.05 were considered statistically 165 
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significant with a confidence interval of 95%. Statistical analyses were performed using Prism 7 166 

(GraphPad, USA). 167 

 168 

Results 169 

Longitudinal comparison of SARS-CoV-2 seroprevalence using RBD/spike and NP based 170 

assays 171 

 Seroprevalence of SARS-CoV-2 across different regions of the world has been described using 172 

multiple serological assays based either on the spike protein (S), its receptor-binding domain (RBD), 173 

or the nucleoprotein (NP). Here we compared side-by-side a research grade MS ELISA based on RBD 174 

and spike, an RBD/spike based SeroKlir assay from Kantaro Biosciences and the NP based Abbott 175 

Architect test. We used a set of 501 samples from frontline healthcare workers (HCW) collected 176 

after the first pandemic wave in the New York City area (May 2020). Seroprevalence in this set of 177 

samples using a research grade ELISA from Mount Sinai was 28.4%, (142/501), 28.1%, using the 178 

SeroKlir test from Kantaro Biosciences (141/501) and 27.3% using the Abbott Architect test 179 

(137/501) (Fig. 1A). A subset of the initial participants (n=178) attended provided a second serum 180 

sample at a follow up visit in August-October 2020 allowing assessment of  seroprevalence at two 181 

different time points. Of note, the seroprevalence in the smaller subset of participants was higher 182 

compared to the initial cohort (N=501). This is likely due to higher compliance of participants that 183 

knew their sero-status in the first phase, since they were informed about their antibody levels. 184 

Overall, the seroprevalence measured by the Mount Sinai and the Kantaro ELISAs did not vary 185 

significantly between the two time points (Fig. 1B-1C), but the seroprevalence of NP reactive 186 

antibodies measured by the Abbott Architect test declined (Fig. 1D).  187 

 188 

We further compared the antibody levels in samples obtained during the first phase (May 2020) 189 

and the second phase (Aug-Oct, 2020) in the subset of 178 subjects (the distribution of antibody 190 

levels is shown in Sup. Fig. 1 and concordance analyses among the different assays are shown in 191 

Sup. Fig. 2). As expected, antibody levels in the second phase declined in the majority of participants 192 

in a manner that was consistent in the three different assays (Figs. 2A-2C). A sharper decline of NP 193 

reactive antibody levels as measured by the Abbott Architect test (Fig. 2C). Moreover, the 194 

percentage of subjects that were seropositive initially and whose antibodies became undetectable 195 

in the second phase did not vary significantly in the Mount Sinai and Kantaro ELISAs (Figs. 2A-2B) 196 
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but 30% of the samples that were positive initially in the Abbott Architect test became negative in 197 

the second phase (Fig. 2B).  198 

 199 

Correlation of antibody levels among the different assays 200 

The antibody response against different antigenic targets of a particular virus exhibits a high degree 201 

of complexity. The magnitude and kinetics of the antibody response against RBD/spike and the 202 

nucleoprotein are not fully understood. To analyze the consistency between the two RBD/spike 203 

based assays and to study the relationship of RBD/spike reactive antibodies versus NP reactive 204 

antibodies, we performed correlation analyses among the three different assays. Using the positive 205 

samples from the first (Figs. 3A-C) and second (Figs. 3D-2F) phases, we detected a good correlation 206 

of RBD reactive antibodies (optical density (OD) measured at one dilution) measured by the Mount 207 

Sinai ELISA versus the Kantaro ELISA either in phase 1 (r= 0.9169; P two-tailed= <0.0001, Fig. 3A) 208 

or phase 2 (r= 0.9075; P two-tailed= <0.0001, Fig. 3D). However, the correlation of RBD reactive 209 

antibodies measured in the Mount Sinai or Kantaro assays versus the NP reactive antibodies 210 

measured in the Abbott Architect test, either in phase 1 (Figs. 3B-3C) or phase 2 (Figs. 3E-3F) 211 

samples, was modest to low.  212 

We performed next the same type of analyses but with quantitative spike reactive antibody levels 213 

instead of RBD reactive antibody OD values. Again, we found a good correlation between the Mount 214 

Sinai ELISA vs the Kantaro ELISA either in phase 1 (r= 0.6860; P two-tailed= <0.0001, Fig. 4A) or 215 

phase 2 (r= 0.9135; P two-tailed= <0.0001, Fig. 4D) and a weak correlation between spike reactive 216 

antibodies measured in the Mount Sinai or Kantaro assays versus the NP reactive antibodies 217 

measured in the Abbott Architect test (Figs. 4B-4C: phase 1; Figs. 4E-4F: phase 2). For both RBD 218 

and spike, some of the subjects exhibited very high levels of RBD reactive antibodies and low levels 219 

of NP reactive antibodies and vice versa. Overall, these findings indicate that the magnitude of 220 

RBD/spike and NP antibody responses differs considerably highlighting the need for further studies 221 

using samples from well-described longitudinal cohort studies. 222 

 223 

 224 

 225 

Detection of vaccine induced antibodies in both assays 226 
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To date only limited data is available about how commercial antibody assays respond to antibodies 227 

developed in response to vaccination. In order to determine how the three assays perform against 228 

vaccine-induced antibodies, we measured reactivity in serum of individuals who had received two 229 

doses of SARS-CoV-2 mRNA vaccines. The expectation was, that the RBD/spike based assays would 230 

detect a signal while the NP based assay would not. Indeed, we measured high titers using the Spike 231 

based assay platforms (the Mount Sinai and Kantaro assays) but the samples produced no signal in 232 

the NP-based assay (Fig. 5A-5C). Of note, the spike titers measured in the Mount Sinai and Kantaro 233 

assay correlated very well (Fig. 5D). 234 

 235 

Discussion 236 

While antibody responses to acute SARS-CoV-2 infection are relatively well understood, less data is 237 

available regarding antibody kinetics over longer time frames against different viral antigens. We 238 

determined seroprevalence and antibody titers in SARS-CoV-2 infected individuals at two time 239 

points (1-2 months and 3-4 months post infection) using three different assays. One assay, the 240 

Mount Sinai ELISA, is a laboratory-developed assay that uses an initial ELISA at a single serum 241 

dilution against the RBD followed by a confirmation and titration against the full-length spike 242 

protein. The second assay tested, the Kantaro SeroKlir assay, is based on the same principle, but 243 

commercially available. The third assay, the Abbott Architect, targets the NP and is a CMIA.  244 

There was high concordance among the three assays with respect to seroprevalence during phase 245 

1. However, the titers only correlated well for the two spike-based assays. During phase 2, the two 246 

spike-based assays identified all (Mount Sinai Research grade) or the vast majority (Kantaro) of 247 

previously seropositive individuals as seropositive, while the NP based assay (Abbott) failed to 248 

detect a signal above the cut-off in approximately 30% of previously positive individuals. These 249 

findings mirror similar results recently published by Grandjean and colleagues, suggesting that the 250 

NP antibody response is short-lived (24). However, it could also be a reflection of a high cut-off 251 

required to ensure high specificity for SARS-CoV-2 in the NP-based assay. Importantly, and as 252 

expected since no NP is included in the FDA EUA approved vaccines used in the US, only the spike-253 

based assays were able to detect antibodies induced by SARS-CoV-2 mRNA vaccines (6). Our data 254 

highlight the need to understand assay performance before a specific assay is used to study specific 255 

aspects of SARS-CoV-2 immunity. All three assays are very valuable to assess seroconversion 256 

shortly after infection, but only the two spike-based assays were reliable months after recovery. 257 
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Similarly, only spike-based assays are fit for measuring vaccine-induced antibodies, e.g. to 258 

determine if vaccination triggered immune responses.  259 
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 399 

 400 

Figure legends 401 

Figure 1. Seroprevalence against SARS-CoV-2 in healthcare workers using different serology 402 

platforms. Serum samples from frontline healthcare workers were assessed for antibodies against 403 

RBD-Spike using a research grade ELISA from Mount Sinai, against RBD-Spike using a commercial 404 

ELISA from Kantaro Biosciences, or against NP using Abbott-Architect CMIA. Initially, samples 405 

analyzed in the three assays consisted of specimens obtained early during the pandemic on May 406 

2020 (n=501) (A). Seroprevalence in a subset of subjects (n=178) who attended a follow up visit on 407 

August-October 2020 was determined using the three different serological assays and a comparison 408 

of the two time points is shown (B-C). 409 

 410 

Figure 2. Longitudinal analysis of antibody levels against RBD-Spike or NP in seropositive 411 

subjects. Serum samples from frontline healthcare workers were obtained on May 2020 or August-412 

October 2020. Antibodies against RBD-Spike were measured using a research grade ELISA from 413 
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Mount Sinai (A); against RBD-Spike using a commercial ELISA from Kantaro Biosciences (B); or 414 

against NP using the Abbott-Architect CMIA (C).  Antibody levels in specimens obtained early during 415 

the pandemic on May 2020 or in a follow up visit on August-October 2020 are shown. Samples with 416 

a value above or below the cutoff of the corresponding assay (doted line) are shown. **** P<0.0001. 417 

The percentage of seropositive samples that turned negative (red) or that remained positive (blue) 418 

as measured in each of the corresponding assays is shown in D-F.  419 

 420 

Figure 3. Correlation analysis of antibody levels (RBD-reactive) among the different serology 421 

assays. Serum samples were assessed for antibodies against RBD-Spike using a research grade 422 

ELISA from Mount Sinai, against RBD-Spike using a commercial ELISA from Kantaro Biosciences or 423 

against NP using the Abbott-Architect CMIA. Correlation of antibody levels (RBD reactive) among 424 

the different assays using serum samples obtained on May 2020 (first time point) is shown (A-C).  425 

Correlation of antibody levels (RBD reactive) among the different assays using serum samples 426 

obtained on August-October 2020 (second time point) is shown (D-F). Correlation analysis between 427 

Mount Sinai RBD and Kantaro RBD ELISAs (A, D); between Mount Sinai RBD and Abbott Architect 428 

NP ELISAs (B, E); and between Kantaro RBD ELISAs and Abbott Architect NP CMIAs (C, F) are 429 

shown. Pearson correlation was used. Significance and coefficient of determination are shown. 430 

 431 

Figure 4. Correlation analysis of antibody levels (spike-reactive) among the different 432 

serology assays. Serum samples were assessed for antibodies against RBD-Spike using a research 433 

grade ELISA from Mount Sinai, against RBD-Spike using a commercial ELISA from Kantaro 434 

Biosciences or against NP using the Abbott-Architect CMIA. Correlation of antibody levels (spike 435 

reactive) among the different assays using serum samples obtained on May 2020 (first time point) 436 

is shown (A-C).  Correlation of antibody levels (spike reactive) among the different assays using 437 

serum samples obtained on August-October 2020 (second time point) is shown (D-F). Correlation 438 

analysis between Mount Sinai RBD and Kantaro RBD ELISAs (A, D); between Mount Sinai RBD and 439 

Abbott Architect NP CMIAs (B, E); and between Kantaro RBD ELISAs and Abbott Architect NP CMIAs 440 

(C, F) are shown. Pearson correlation was used. Significance and coefficient of determination are 441 

shown. 442 

 443 
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Figure 5. Post SARS-CoV-2 mRNA vaccination serum titers as measured in three different 444 

assays. Serum samples of individuals who had received two doses of SARS-CoV-2 mRNA vaccines 445 

were assessed for antibodies against RBD-spike using a research grade ELISA from Mount Sinai (A), 446 

against RBD-spike using a commercial ELISA from Kantaro Biosciences (B) or against NP using the 447 

Abbott-Architect CMIA (C). Correlation of antibody levels (spike reactive) between the Mount Sinai 448 

ELISA and the commercial ELISA from Kantaro Biosciences assays using the same serum samples 449 

(D).   450 

 451 

Supplementary Figure 1. Distribution of antibody levels (spike-reactive) in the different 452 

serology platforms. Serum samples were assessed for antibodies against RBD-Spike using a 453 

research grade ELISA from Mount Sinai (A, D), against RBD-Spike using a commercial ELISA from 454 

Kantaro Biosciences (B, E), or against NP using the Abbott-Architect ELISA (C, F). Distribution of 455 

antibody levels (spike-reactive) early during the pandemic on May 2020 (A-C) or in August-October 456 

2020 (D-E) are shown.  457 

 458 

Supplementary Figure 2. Concordance analysis of positive samples among the different 459 

serology assays. Venn diagrams depicting the number of seropositive samples measured by a RBD-460 

Spike research grade ELISA from Mount Sinai (blue); a RBD-Spike commercial ELISA from Kantaro 461 

Biosciences (red), or an Abbott-Architect NP ELISA (green). Concordance of positivity among the 462 

three different assays using samples obtained early during the pandemic on May 2020 is shown (A). 463 

Seroprevalence in a subset of subjects (n=178) who attended a follow up visit on August-October 464 

2020 was determined using the three different serological assays. Concordance of positivity in that 465 

subset of subjects on May 2020 (B) or August-October 2020 (C) is shown.  466 

 467 
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