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Purpose: MR spectroscopy of dynamic systems is limited by
lowsignal to noise. Denoising along a series of acquired spec-
tra exploits their temporal correlation to improve the quality
of individual spectra, and reduce errors in fittingmetabolite
peaks. In this study we compare the performance of several
denoisingmethods.
Methods: Six different denoising methods were con-

sidered: SIFT (Spectral Improvement by Fourier Threshold-
ing), HSVD (Hankel Singular Value Decomposition), spline,
wavelet, slidingwindowand slidingGaussian. Pseudo-synthetic
data was constructed tomimic 31Phosphorus spectra from
exercisingmuscle. For eachmethod the optimal tuning pa-
rameters were determined for SNRs of 2, 5, 10 and 20 using
aMonte Carlo approach. Denoised data from eachmethod
was then fitted using the AMARES algorithm and the results
compared to the pseudo-synthetic ground truth.

Results: All sixmethods produced improvements in both
fitting accuracy and agreement with the ground truth, com-
pared to unprocessed noisy data. The least effectivemeth-
ods, SIFT andHSVD, achieved around 10-20% reduction in
RMS error, while themost effective, Spline, reduced RMS er-
ror by 70%. The improvement from denoising was typically
greater for lower SNR data.

Conclusions: Indirect time domain denoising of dynamic

1

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
has granted medRxiv a license to display the preprint in perpetuity. 

 is the author/funder, who(which was not certified by peer review)The copyright holder for this preprint 
this version posted February 25, 2021. ; https://doi.org/10.1101/2021.02.23.21252282doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.23.21252282
http://creativecommons.org/licenses/by-nc-nd/4.0/
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MRspectroscopydata can substantially improve subsequent
metabolite fitting. Spline-based denoising was found to be
themost flexible and effective technique.
K E YWORD S

magnetic resonance spectroscopy, denoising, exercisingmuscle,
SNR

1 | INTRODUCTION

Magnetic Resonance Spectroscopy (MRS) is often used to study time varying metabolic processes in vivo, as it can
observe body chemistry non-invasively over a period of time, without perturbing the system it is measuring. Examples
of this dynamicMRS include: phosphocreatine (PCr) depletion and recovery in exercisingmuscle tissue[1], uptake of
13C enriched acetate in SAGA (Swift Acetate Glial Assay)[2] and functionalMRS[3, 4].

The principal challenge inMRS is to obtain sufficient signal-to-noise ratio (SNR), due to the very low concentration
of many of themetabolites of interest. The conventional way to address this issue is to acquire multiple repetitions of
the same sequence and average them: as the signal adds coherently and noise incoherently, the SNR increases as the
square root of the number of repetitions[5].

In dynamic MRS, however, we are interested in measuring the variation in the system over these consecutive
spectra. Combiningmultiple repetitions into each data point has the effect of degrading the temporal resolution, thus
we are forced to choose between characterising spectral features or temporal ones. For example, in a recent publication
onmuscle spectroscopy at 7 T, Goluch et al. used five repetitions and a repetition time (TR) of 6s to obtain a temporal
resolution of one data point every 30s[6], whereas for 13CMRS at 1.5 T, Sailasuta et al. required 128 repetitions at a TR
of 3 s, giving a temporal resolution of 6.4minutes[2].

The SIFT method (Spectral Improvement by Fourier Thresholding) proposed by Doyle et al. allows improving
spectral SNRwithout affecting the temporal resolution[7]. SIFT works by exploiting the temporal correlation between
consecutive acquisitions. For every frequency in the spectrum, the sequence of spectra forms a time series. By reducing
the noise along the time series, which we term the “indirect” time domain, the noise within each spectrum is also
reduced, leading to an improvement in the quality of fitting. SIFT performs the denoising in the indirect time domain
by transforming each time series into the Fourier domain, where the signal is concentrated into a small number of
coefficients. Discarding coefficients below a threshold removes themajority of the noise while keeping the large signal
coefficients. This process is illustrated in figure 1.

[Figure 1 about here.]

The performance of SIFT has been previously demonstrated in dynamic MRS. Rowland et al. found that when
applied to 31P data from exercisingmuscle, SIFTwas able to reduce the standard deviation in the PCr fit by an average
of 73%. The improved accuracy of the PCr concentrations, in turn, led to an improved fit of the recovery kinetics,
with a reduction in standard deviation for the recovery constant of 38%[1]. However, there aremany other denoising
techniques that could be applied to achieve this indirect time domain denoising. In this study, we assess for the first time
six different denoising methods to see which performs most effectively: SIFT, Hankel singular value decomposition
(HSVD)[8], spline fitting, sliding window, Gaussian window, andwavelets. One feature that all denoising algorithms have
in common is some form of tuning parameter which determines the aggressiveness with which the noise is removed.
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If this parameter is set too low, most of the noise is not removed, while if it is too high then some of the signal will be
removed along with the noise, distorting the result and possibly leading to misinterpretation of the data. We use a
Monte Carlo approach to identify the appropriate tuning parameter for each denoisingmethod for a range of SNRs.

SIFT

As described above, SIFTworks by applying the Fourier transform to the temporal data and then thresholding it. This
works as a sparsifying transform, concentrating the signal into a few large Fourier coefficients. The exact choice of
threshold (usually measured in noise standard deviations) will affect the performance, with larger values suppressing
more noise, but potentially removing signal components. Rowland et al. found that using a 2σ threshold suppressed
around 80% of noise without undue bias to the signal.

HSVD

TheHSVDmethod is most commonly applied in retrospective water suppression, but is equally applicable in this case. A
Hankel matrix is constructed from the temporal data and singular value decomposition (SVD) is used to identify the
singular values and associated vectors. These are then truncated to keep only themost significant components, which
are used to reconstruct a substantially less noisy signal. The number of residual components, referred to as the rank of
thematrix, acts as the tuning parameter for themethod.

Spline

The spline method is technically a smoothing technique - a basis set of cardinal B-splines is fitted to the noisy data. Here
there are two tuning parameters available, the order of the splines determines the smoothness of the fitted curve, while
the number of splines in the basis set governs how sharply the fit can vary tomatch rapid changes in the data.

SlidingWindow

Sliding window is the simplest denoising technique, in which each point becomes the average of its neighbors. This
is equivalent to convolutionwith a top hat function. The tuning parameter is the width of the sliding window, i.e. the
number of neighbouring points which are averaged to produce each data point.

GaussianWindow

TheGaussian window is a form of sliding window technique, except that rather than using a top hat window function
where each neighbor contributes equally, the points are weighted with a Gaussian function so that those closest to the
point being calculated have a greater influence on the final result.

Wavelets

Wavelet denoising is similar to SIFT in that it begins by converting the signal into a domain with amore sparse represen-
tation and then uses a threshold to separate the small noise coefficients from the (mostly) larger signal coefficients.
However in this case the wavelet transform is used instead of the Fourier transform. The strength of the wavelet trans-
form is its ability to represent signals which are localised in both time and frequency, however it also adds significant
complexity. In this study we used the “Daubechies 8”[9] as themother wavelet, and a soft thresholding approach.
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2 | METHODS

In order to compare the performance of different denoisingmethods it is essential to start with a known, noise-free,
“ground truth” to which noise is added to form the test data. After applying a given denoising method the result is
compared to the original ground truth to see howmuch noise has been left behind. In this case, our ground truth consists
of time courses describing the concentration of eachmetabolite over a period of repeated acquisitions. From these time
courses we can construct idealized artificial FIDs for each acquisition in the series, to which we add Gaussian noise (to
both the real and imaginary channels) to create a simulated dataset.

The simulated dataset is then processed using the indirect time domain denoising technique: for each frequency
in the spectrum, a time series is constructed from all the repeat acquisitions. Each time series is then denoised with
the denoisingmethod of choice and the data points are resorted back into their original spectra. These spectra (which
now have reduced noise) are then quantified to obtain metabolite concentration estimates. Finally, the estimated
concentrations from the processed noisy data are compared against the ground truth concentrations over the time
course, to assess how effective the denoisingmethod has been at recovering the original time course.

2.1 | Pseudo-synthetic data

When selecting the ground truth concentration time courses, it is important to consider the possibility of introducing
bias. For example using a co-sinusoidal model is a simple way to describe a decrease and recovery of a peak, but it
innately favours the SIFTmethod (which decomposes the signal into sinusoids). Similar problems arise with all time
courses derived from simple functional forms. In order to test the performance of themethod under somewhatmore
general circumstances, we propose an alternative method, which derives a noise-free time course from experimentally
acquired data, which we term pseudo-synthetic data.

To create this pseudo-synthetic data, we begin with an experimentally determinedmetabolite time course, which
contains noise, and then remove the noise with the previously described denoising algorithms. Of course, using any
individual method to do this would produce exactly the kind of bias that wewish to avoid, as eachmethodwill naturally
distort the ground truth towards its preferred representation (sinusoids, splines etc.). To mitigate this, we use four
separate methods: SIFT, spline, Gaussian window, and SVD (wavelet was not used because it does not produce a
noise-free result, only a reduced noise one, while sliding windowwas not used as its behaviour is similar to Gaussian
window), and used a weighted linear combination of the results to form a single time course with elements of each
representation.

For a given ground truth, it is easy to see howmuch it favours the different denoising methods by applying them to
it without any added noise: the rootmean square error (RMSE) between the original ground truth and the denoised
ground truth shows howwell the denoising algorithm can represent the original data. To combine our 4 denoised signals
into a single ground truth an optimization algorithmwas used to determine the optimal combination weights such that
applying all denoisingmethod to the combined ground truth would give a similar RMSE between that ground truth and
each denoised version. This ensures that there is minimal bias in favour of any of themethods due to the shape of the
ground truth, so we are only determining their efficacy in removing noise from signals of this shape.

2.2 | Exercise Data

Although there are several forms of dynamicMRSwhichmay benefit from temporal denoising, in this study we focus on
the widely studied 31P spectra acquired from exercisingmuscle. The experimental paradigmwe follow is as described
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in [1] for plantar flexion exercises. In brief, the protocol acquired 300 spectra over a 10 minute scan consisting of 3
minutes acquiring a baseline at rest, 2 minutes of exercise and 5 minutes of recovery. The acquisition was a simple
pulse acquire sequencewith a TR of 2s and 4096 points acquired over a 6KHz spectral width. We created 4 different
pseudo-synthetic time courses for phosphocreatine (PCr) and inorganic phosphate (PI) peaks using data acquired from
a Siemens Skyra 3TMR system (SiemensMedical Solutions, Erlangen, Germany) and a single channel 10cm 31P tuned
transmit/receive surface coil (Mirtech, Boston, USA). The subjects included a young, physically active healthymale, a
young healthy female, a middle-aged healthy male and an elderly male suffering from peripheral arterial disease, so that
we cover a wide range of different exercise response curves. In each casewe normalised the time course so that the
baseline period had amean concentration of 1AU.

Simulated FIDs were constructed from exponential decays using the pseudo-synthetic concentration time courses
and the other parameters given in table 1. Gaussian noise was added to both the real and imaginary channels to deliver
a desired SNR, defined as the ratio of the FIDmaximum height to the noise standard deviation. To validate the realism
of simulated datasets produced in this manner, we used an experimentally acquired dataset where the subject did not
exercise. This case is important as it is the only one where we can know the experimental ground truth, themetabolites
are constant in time. Comparing the fittedmetabolite concentrations from this experimental dataset against a noise-
matched simulated dataset with constant metabolite time courses, we found that their standard deviations agreed to
within 2%, indicating that the variability observed over the experimental time course is adequately described by the
sources of noise in the synthetic method.

[Table 1 about here.]

2.3 | Optimizing the denoisingmethods

Every denoisingmethod has to strike a balance between removing as much noise as possible and avoiding distortion of
the true signal. Eachmethod has at least one tuning parameter, described in table 2 whichmust be chosen to optimize
the performance of the method for the specific problem. Before comparing the different methods it is essential to
ensure that they are all being applied optimally. We also wanted to test the performance of themethods at different
SNRs to see how sensitive the optimal tuning parameters are to the level of noise. In our experimentally acquired data
themean SNR for an individual spectrumwas determined to be 5, therefore we chose to consider SNRs of 2, 5, 10 and
20.

[Table 2 about here.]

To determine the optimal values of the tuning parameters at each SNRwe adopted aMonte Carlo approach. For
each method, and for every value of the tuning parameter we were testing, we used our 4 psuedo-synthetic base
datasets to generated 100 datasets (25 independent noise signals added to each base simulated signal) whichwere then
processed as described above. All data analysis was performed in Python using the Suspect library[10]. In particular
quantification of the metabolite peaks was done using the Suspect implementation of the AMARES singlet fitting
algorithm[11]. The RMSE between the estimated metabolite concentrations and the original time course used to
generate the pseudo-synthetic data was calculated for both PCr and PI to give the average performance of themethod
with that tuning parameter. This was then divided by the "no-denoising" RMSE case to get a relative RMSE. Because
RMSE naturally decreases with higher SNR, the relative RMSE allows a better comparison of the performance of
methods at different levels of SNR. For each technique, we tested out a range of tuning parameter values at each SNR to
identify the value giving the optimal performance.
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3 | RESULTS

The complete results of the Monte Carlo analysis are shown in figure 2. As expected, all of the denoising methods
are able to offer some reduction in RMSE relative to the raw data, showing that performing denoising can improve
quantification accuracy in this time varying data. However, the improvements achieved vary significantly between
techniques.

[Figure 2 about here.]

The SIFTmethodwhich has been previously applied to in vivo dynamic data actually gives the least reduction in
uncertainty. The optimal threshold was found to be 1.6 standard deviations for all levels of noise with a reduction in
fitting error of around 20% in the noisier data, but only 5% at SNR 20.

The HSVD method offers slightly improved performance relative to SIFT. A rank of 10 produced the optimal
improvement, but above this level themethod is very insensitive to changes in the rank.

Thewavelet method displayed the greatest variation in performance at different SNRs. For an SNR of 2, using a
coefficient threshold above 0.5 standard deviations achieved a reduction in RMSE of more than 50%, but for an SNR of
5 the optimal threshold is only 0.25 standard deviations, while for higher SNRs no improvement at all was possible.

The slidingwindowandGaussianwindow techniques are closely related, so it is unsurprising that their performance
is similar. The Gaussian window method is somewhat more insensitive to the effect of the window width on the
performance of themethod, but the optimal performance is almost exactly the same in both cases, ranging from a 60%
drop in RMSE at SNR 2 to a 10% drop at SNR 20.

Finally, the spline technique offers the best performance across the board. The optimal number of splines varies
significantly with SNR, from 12 at SNR 2 up to 32 at SNR 20, however the spline method is the only one where the
relative improvement in quantification is similar at all levels of noise, with a reduction in RMSE of around 70% at each
SNR. An example of one of the pseudo-synthetic datasets before and after spline denoising is shown in figure 3.

[Figure 3 about here.]

A plot of the relative performance of each method is shown in figure 4. For many of the methods shown, the
optimal value of the tuning parameter varies between SNRs. However, for in vivo datasets it is not always practical to
determine the SNR in advance and determine the correct parameter to use. We therefore consider also the globally
optimal tuning parameter, which is the value whichminimises themean relative RMSE across all tested noise levels, and
evaluate how this single parameter performs against the per-SNR parameters. In every case, we see that the globally
optimal parameter very closelymatches the performance of the per SNR parameters for SNR5 and SNR10, but generally
performs less well for SNR2 and SNR20, although the differences tend to be small even there.

[Figure 4 about here.]

The wavelet method is one of themost popular approaches to denoising in many areas of signal processing, but in
this case performedunexpectedly poorly, particularly at higher SNRswhere no improvement at all is seen. To understand
this behaviour, it is instructive to look at not only the relative RMSE, but also the absolute RMSE across the different
SNRs, as shown in figure 5. Thewavelet transform attempts to convert the signal into an alternative representation
containing a small number of high amplitude signal components and a large number of low amplitude noise components,
then uses a thresholding approach to remove the smaller (assumed to be noise) components.
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At very low thresholds, themethod reproduces the raw signal almost perfectly, giving no change in RMSE, but as
the threshold is increased, we see in figure 5 each SNR converges towards the same value for absolute RMSE. This
is because the primary components are the same for all SNRs, so that the same denoised signal is produced in each
case. Although this signal appears to be an improvement in relative RMSE at SNR2, at SNR20we see that the denoised
signal is further away from the ground truth than the noisy one: denoising causes an unacceptable deformation of the
underlying data, caused by removing too many signal components relative to the noise components. As the results
produced at different noise levels are very similar, we can conclude that the same deformation is happening even at
SNR2, and for this reasonwewould recommend against using wavelets even at lower SNRs.

[Figure 5 about here.]

4 | DISCUSSION

In this work we have explored the application of indirect time domain denoising to dynamicMRS data as an alternative
to averaging repetitions to increase spectral SNR and improve quantification. We have compared the performance of
six different denoisingmethods across a range of different SNRs. It is clear that this approach can obtainmetabolite
concentration estimates which are closer to the underlying true values than those extracted directly from the raw data.
However, it is important to bear inmind that removingmore noise does not necessarily equate tomore accurate results -
more aggressive denoising will distort the shape of the data. This is easy to see in the U-shaped curves in figure 2, where
the RMSEmetric increases with either toomuch residual noise, or denoising induced distortion. However, the RMSE
metric may only be usedwhen the ground truth is known, by using synthetic data. For in vivo data, where the primary
metric is fitting uncertainties or Cramer-Rao lower bounds, it is very difficult to knowwhen toomuch denoising is being
applied.

The optimal choice of tuning parameterwill vary somewhatwith the data being analysed. In our case, themetabolite
time courses vary slowly and fairly smoothly, with no sharp transitions. For data which differ substantially from this
form, the performance of different techniques, and the optimal values of tuning parameters, may change. It is also
important to understand how performance will vary if the selected tuning parameter is not exactly optimal, whichmay
well be the case for experimental data. For our spline data, for example, there is a relatively sharp transition point in the
number of splines, belowwhich performance drops off very rapidly, but abovewhich performance remains relatively
stable. It makes sense therefore to select a value somewhat above this minimum, so that for unknown data there is no
danger of hitting this “hard shoulder” of performance.

Indirect time domain denoising is particularly well suited tomuscle and exercise studies where a large number of
spectra are acquired over a single activity protocol. Similarly acquisitions of infused labelledmolecules with 13C or 17O
would benefit from applying this kind of denoising in order to get either improved temporal resolution or improved
SNR[12]. Other functional paradigms, for example in visual stimulation, cognitive testing and pain, tend tomake use of
repeated task blocks or events, with fewer spectra acquired per event. In this case averaging over the repeated blocks
should be preferred, with denoising applied only within a single repeat unit of the experiment.

The other novel feature described here is the use of pseudo-synthetic data to act as a ground truth in optimization
studies. The need for a noise-free ground truth which underlies the noisy signal being processed rules out the use
of experimentally acquired data, but artificially constructed signals are often not particularly representative of the
real world cases they seek to emulate, containing only the features believed to be of interest in the particular case.
Pseudo-synthetic data, derived by removing noise from experimental data, is more likely to retain some of the subtle
characteristics that would not be introduced by using purely synthetic data. However, it is important to remember that
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the denoisingmethod chosenwill also introduce some bias into the resulting data, for which reasonwe advocate using
multiple denoisingmethods and compiling an average.

5 | CONCLUSION

This study compares for the first time six different methods of indirect time domain denoising for improving SNR and
fit reliability in time varying spectroscopy, without affecting the temporal resolution. All themethods tested offered
improvement over the unprocessed data, with the exception of thewavelet method. Spline fitting gave the strongest
performancewith a reduction in noise of more than 70% across a range of SNRs between 2 and 20. Optimum results
are achieved by tuning the denoising methods to the SNR of the data being considered, but the use of a globally optimal
parameter causes generally only aminor reduction in performance.
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L I S T OF F I GURES

1 Example of denoising in the indirect time domain with SIFT (Spectral Improvement by Fourier Threshold-
ing). Panel a) shows three simulated spectra of ametabolite peak acquired over a period of time during
which it decays and then recovers. The dotted lines indicate three frequencies whose complete evolution
over the acquisition period is shown in panel b). Similarly the dotted lines in panel b) show the time points
of the spectra in panel a). Panel c) has the Fourier transforms of the time courses in panel b), showing that
the signal is concentrated in just a few coefficients. In panel f) a threshold has been applied to keep only
the large coefficients, removingmost of the noise. Inverse Fourier transform back to the indirect time
domain gives the time courses in panel e). Doing this for every frequency we obtain spectra as shown in
panel d), which are far less noisy than the original spectra, allowing them to be fittedmore accurately
during subsequent processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Effect of indirect time domain denoising on quantification of dynamic spectra. Each panel shows the
average RMSE between the ground truth and the quantified metabolite timecourse of the denoised
pseudo-synthetic data, relative to un-denoised data, as the denoising tuning parameter is varied, for four
different levels of SNR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Pseudo-synthetic dataset with SNR 5 before (a) and after (b) applying spline denoising in the indirect
tie domain. Also shown are the quantified metabolite concentrations for the metabolites of interest.
PCr=Phosphocreatine; PI=Inorganic phosphate; ATP=Adenosinetriphosphate. . . . . . . . . . . . . . . . 13

4 Relative performance of the different denoising methods with optimal tuning parameters. The solid lines
show performancewith per-SNR tuning parameters, while the dashed line shows performancewith a
common, globally optimal tuning parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Performance of thewavelet denoising technique shown both relative to raw (un-denoised) data (left) and
in absolute performance (right). From the absolute RMSE representation it is clear that as the threshold
increases, the wavelet denoising converges to the same representation of the signal irrespective of the
SNR.While this is closer to correct than the low SNR raw data, we can see that the spectra are distorted
relative to the high SNR raw data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
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F IGURE 1 Example of denoising in the indirect time domain with SIFT (Spectral Improvement by Fourier
Thresholding). Panel a) shows three simulated spectra of a metabolite peak acquired over a period of time during which
it decays and then recovers. The dotted lines indicate three frequencies whose complete evolution over the acquisition
period is shown in panel b). Similarly the dotted lines in panel b) show the time points of the spectra in panel a). Panel c)
has the Fourier transforms of the time courses in panel b), showing that the signal is concentrated in just a few
coefficients. In panel f) a threshold has been applied to keep only the large coefficients, removingmost of the noise.
Inverse Fourier transform back to the indirect time domain gives the time courses in panel e). Doing this for every
frequency we obtain spectra as shown in panel d), which are far less noisy than the original spectra, allowing them to be
fittedmore accurately during subsequent processing.
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F IGURE 2 Effect of indirect time domain denoising on quantification of dynamic spectra. Each panel shows the
average RMSE between the ground truth and the quantifiedmetabolite timecourse of the denoised pseudo-synthetic
data, relative to un-denoised data, as the denoising tuning parameter is varied, for four different levels of SNR.
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F IGURE 3 Pseudo-synthetic dataset with SNR 5 before (a) and after (b) applying spline denoising in the indirect tie
domain. Also shown are the quantifiedmetabolite concentrations for themetabolites of interest.
PCr=Phosphocreatine; PI=Inorganic phosphate; ATP=Adenosinetriphosphate.
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F IGURE 4 Relative performance of the different denoising methods with optimal tuning parameters. The solid lines
show performance with per-SNR tuning parameters, while the dashed line shows performance with a common, globally
optimal tuning parameter.
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F IGURE 5 Performance of the wavelet denoising technique shown both relative to raw (un-denoised) data (left)
and in absolute performance (right). From the absolute RMSE representation it is clear that as the threshold increases,
the wavelet denoising converges to the same representation of the signal irrespective of the SNR.While this is closer to
correct than the low SNR raw data, we can see that the spectra are distorted relative to the high SNR raw data.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
has granted medRxiv a license to display the preprint in perpetuity. 

 is the author/funder, who(which was not certified by peer review)The copyright holder for this preprint 
this version posted February 25, 2021. ; https://doi.org/10.1101/2021.02.23.21252282doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.23.21252282
http://creativecommons.org/licenses/by-nc-nd/4.0/


16 BENJAMIN C. ROWLAND ET AL.

L I S T OF TABLES

1 Parameters used in generating pseudo-synthetic data. ATP, Adenosinetriphosphate . . . . . . . . . . . . 17
2 Tuning parameters for the different denoisingmethods under consideration. . . . . . . . . . . . . . . . . 18

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
has granted medRxiv a license to display the preprint in perpetuity. 

 is the author/funder, who(which was not certified by peer review)The copyright holder for this preprint 
this version posted February 25, 2021. ; https://doi.org/10.1101/2021.02.23.21252282doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.23.21252282
http://creativecommons.org/licenses/by-nc-nd/4.0/


BENJAMIN C. ROWLAND ET AL. 17

Metabolite Relative Baseline Conc. Frequency / Hz Linewidth / Hz

Phosphocreatine 1 0 35
Inorganic Phosphates 0.4 -220 50
α-ATP 0.3 400 60
β -ATP 0.3 800 60
γ-ATP 0.3 110 35
Phosphomonoesters 0.05 -300 50
Phosphodiesters 0.05 -140 20
TABLE 1 Parameters used in generating pseudo-synthetic data. ATP, Adenosinetriphosphate
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Method Tuning Parameter

SIFT Threshold in Fourier domain (in noise standard deviations
HSVD Rank of truncated Hankel matrix
Spline Order of spline basis determines smoothness

Number of splines governsminimum size of features
SlidingWindow Number of neighbouring points to be combined
GaussianWindow Number of neighbouring points to be combined
Wavelets Threshold in wavelet domain (in noise standard deviations
TABLE 2 Tuning parameters for the different denoisingmethods under consideration.
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