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ABSTRACT

Shaping an epidemic with an adaptive contact restriction policy

that balances the disease and socioeconomic impact has been the

holy grail during the COVID-19 pandemic. Most of the existing

work on epidemiological models focuses on scenario-based forecast-

ing via simulation but techniques for explicit control of epidemics

via an analytical framework are largely missing. In this paper, we

consider the problem of determining the optimal control policy for

transmission rate assuming SIR dynamics, which is the most widely

used epidemiological paradigm. We first demonstrate that the SIR

model with infectious patients and susceptible contacts (i.e., prod-

uct of transmission rate and susceptible population) interpreted as

predators and prey respectively reduces to a Lotka-Volterra (LV)

predator-prey model. The modified SIR system (LVSIR) has a stable

equilibrium point, an “energy” conservation property, and exhibits

bounded cyclic behaviour similar to an LV system. This mapping

permits a theoretical analysis of the control problem supporting

some of the recent simulation-based studies that point to the bene-

fits of periodic interventions. We use a control-Lyapunov approach

to design adaptive control policies (CoSIR) to nudge the SIR model

to the desired equilibrium that permits ready extensions to richer

compartmental models. We also describe a practical implementa-

tion of this transmission control method by approximating the ideal

control with a finite, but a time-varying set of restriction levels. We

provide experimental results comparing with periodic lockdowns

on few different geographical regions (India, Mexico, Netherlands)

to demonstrate the efficacy of this approach.
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• Applied computing→ Life and medical sciences; • Computing

methodologies→ Control methods.
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1 INTRODUCTION

The COVID-19 situation and its immense toll on human lives has

highlighted the enormous public health challenges associated with

managing a pandemic. In the absence of a vaccine, there are primar-

ily three control levers available for public health officials, namely,

∗
Both authors contributed equally to this research.

(a) contact restrictions, (b) testing, tracing and isolation, and (c)

provisioning for additional medical capacity. Of these, contact re-

strictions via lockdowns and social distancing have emerged as

the most powerful policy instrument especially in low and middle

income countries that cannot afford to scale up testing or medical

capacity. Choosing the optimal level of restrictions, however, has

been highly non-trivial not only because it involves a complex trade-

off between the yet to be understood COVID-19 disease impact and

other socioeconomic disruptions, but also because of the rapidly

evolving situation on the ground.

Public health interventions related to the COVID-19 pandemic

have largely been driven by scenario-based epidemiological fore-

casting studies [22, 27]. Current epidemiological models [11, 15, 54]

incorporate spatiotemporal variations and predictive signals such

as mobility to provide high fidelity forecasts. However, the decision

making on contact restrictions is still fairly sub-optimal as it is based

on the comparison of a few enumerated scenarios for a limited time

horizon. Furthermore, forecasts based on a constant transmission

rate (i.e., avg. number of new infections from an infectious person

per time unit) convey the impression that the epidemic progression

corresponds to a bell curve [54] regardless of empirical evidence to

the contrary (see Figure 1). Flattening the curve till herd immunity

is seen as the only choice. Epidemiological analysis is often centred

around determining the height and timing of the caseload peak

as well as the time to attain herd immunity. Though highly valu-

able, this scenario-based decision-making approach leans towards a

limited reactive role for public health agencies.

In contrast, despite the potentially far-reaching impact, relatively

less attention has been devoted to developing a mathematical con-

trol framework to support proactive decision-making based on the

target disease & economic outcomes, and the state of the epidemic.

Multiple studies [18, 21, 36, 56] point to the benefits of periodic

lockdowns and staggered mobility among population groups, but

these dynamic interventions are based on forecast simulations of a

limited number of scenarios and are not adaptive in nature. Some

recent works [7, 49] explore optimal control policies but the primary

focus is on the modeling of the socioeconomic and disease impact.

In this paper, we explore the problem of optimal adaptive control

of transmission rate for a desired bound on infectious population.

We focus on epidemiological models based on compartmental (SIR

and SEIR) dynamics [35] because of their wide applicability, par-

simonious & interpretable encoding of the disease dynamics, and

amenability for data-driven calibration to yield accurate forecasts.
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Contributions:

• We demonstrate that the SIR dynamics map to the well-

known Lotka-Volterra (LV) system [12] on interpreting in-

fectious patients as predators and susceptible contacts (i.e.,

the product of transmission rate and susceptible population)

as the prey under specific conditions on the transmission

rate. The resulting system (LVSIR) has a well-defined stable

equilibrium point and an “energy” conservation property. It

exhibits a bounded cyclic trend for active infections and a

steady decline of the susceptible population.

• Wederive optimal control policy for transmission rate (CoSIR)

using control-Lyapunov functions [61] based on the energy

of the system, that is guaranteed to converge to the desired

equilibrium, i.e., target infectious levels from any valid initial

state. We also discuss extensions to compartmental model

variants that involve an incubation period (e.g., delayed SIR,

SEIR) as well as control of the infectious period that is influ-

enced by testing and quarantine policy.

• We propose a practical approximate implementation (CoSIR-

approx) of the transmission rate control via discrete, but time-

varying restriction levels. Simulation results demonstrate the

efficacy of this CoSIR-based approach in stabilizing infections

and adaptability to perturbations
1
.

The rest of the paper is organized as follows. Section 2 presents a

formulation of the restriction control problem. Section 3 provides

background on compartmental models, LV systems and relevant

aspects of control theory. Sections 4, 5, 6, 7, 8 present the SIR to LV

system mapping, the transmission rate control mechanism, prac-

tical restriction control policy, simulation results, and extensions

respectively. Section 9 presents the concluding remarks. Figure 2

lists the different models of interest for clarity.

Notation: 𝑥𝑡 and 𝑥 (𝑡) interchangeably denote the value of a vari-

able 𝑥 at time 𝑡 . Time derivative of 𝑥 is denoted by ¤𝑥 = 𝑑𝑥
𝑑𝑡

. [𝑥𝑡 ], [𝑡]𝑡2𝑡1
denotes the series of 𝑥 as 𝑡 varies from 𝑡1 to 𝑡2.

Figure 1: Daily reported infections in various regions of the

world where more than one peak has been observed.

2 PROBLEM FORMULATION

During an epidemic, a key concern for public health officials is to

determine the right level and schedule of contact restrictions that

balances the disease and socioeconomic burdens. Strict lockdown

conditions for a short time period suppress the infection levels, but

infections tend to flare up again on easing restrictions unless the

epidemic is completely wiped out. On the other hand, prolonged re-

strictions with no intermittent easing hinder economic activity and

1
http://cosir.herokuapp.com/, https://github.com/dsindiavscovid/CoSIR.

Figure 2: Proposed SIR model variants and transmission rate feed-

back control.

impose heavy costs on vulnerable population groups. Furthermore,

progressive reduction in the susceptible population offers a chance

for relaxation of restrictions that needs to be exploited.

Modelling the multi-faceted impact of contact restrictions re-

quires accounting for region-specific cultural and economic con-

structs as well as the available medical capacity, a highly complex

task. For tractability, we assume that the public health goal is to

limit active infections to a certain target level determined via an

independent impact analysis [3]. The controls available to the public

health authorities can be viewed as multiple knobs that can be set

to different levels (e.g., public transport at 50% occupancy). How-

ever, the need to communicate the policy to the general public and

ensure compliance entails a simpler strategy centred around a few

discrete restriction levels [1, 6], (e.g. Table 1) and a preset schedule

for a future time horizon, which is often longer than the intervals

at which the epidemic observations are collected. For example, the

infection levels might be monitored at a daily frequency, but the

restriction guidelines (e.g., Level 2 on weekdays and Level 1 on

weekends) might be chosen for a monthly period.

Restriction Policy Optimization. For a given region, let 𝑁 , 𝑆𝑐𝑢𝑟𝑟 ,

𝐼𝑐𝑢𝑟𝑟 be the total, current susceptible, and infectious populations re-

spectively. Let (𝐼𝑡𝑎𝑟𝑔𝑒𝑡𝑎𝑣𝑔 , 𝐼
𝑡𝑎𝑟𝑔𝑒𝑡
𝑚𝑎𝑥 ) be the target average and maximum

infectious levels. Let A be the set of restriction levels for which the

transmission rate is known or can be estimated
2
and 𝑇 , the deci-

sion horizon duration, then the goal is to identify restriction levels

[𝑎𝑡 ], [𝑡]𝑐𝑢𝑟𝑟+𝑇𝑐𝑢𝑟𝑟+1 , 𝑎𝑡 ∈ A such that the infectious level averages at

𝐼
𝑡𝑎𝑟𝑔𝑒𝑡
𝑎𝑣𝑔 but does not exceed 𝐼

𝑡𝑎𝑟𝑔𝑒𝑡
𝑚𝑎𝑥 .

Example. On Oct 1, 2020, a hypothetical city has a population

of 13M of which 0.2M are currently infectious and 0.2M are post-

infectious with the rest still susceptible. Assuming ten restriction

levels with equispaced transmission rates between 0.1 to 0.55, the

objective is to figure out a restriction policy schedule (possibly vary-

ing across days) for the upcomingmonth so that the infectious count

averages 𝐼
𝑡𝑎𝑟𝑔𝑒𝑡
𝑎𝑣𝑔 = 150, 000 with maximum of 𝐼

𝑡𝑎𝑟𝑔𝑒𝑡
𝑚𝑎𝑥 = 200, 000.

Since our primary focus is on an analytical control framework,

wemake simplifying assumptions on the observability, (i.e., accurate

estimation of the infectious population is possible via a mix of sero-

surveys and diagnosis tests) and the infection dynamics (region

isolation, homogeneous interactions, negligible incubation period,

and constant infectious period). Section 8 describes extensions when

some of these assumptions are relaxed.

2
Mapping restriction policies to transmission rates is itself the focus of multiple stud-

ies [24, 38] but not the primary concern in the current work.
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Restriction level Effective COVID-19 Description

R value Transmission rate (𝛽)

Early event 2.52 0.4 No policy interventions.

(Pre-restrictions)

Lockdown 0.84 0.12 Residents are either not allowed to leave their residence or may leave only

for essential functions.

Stay-at-home 0.95 0.14 Stay-at-home order includes closure of schools and private sector, and re-

strictions on mass gatherings.

Safer-at-home 1.26 0.19 Relaxed stay-at-home order which includes closure of schools, but restric-

tions on mass gatherings and private sector may be relaxed.

New normal 1.83 0.29 Stay-at-home lifted or relaxed with some restrictions on mass gatherings

and private sector. Schools may or may not be re-opened. Safeguards such

as face coverings encouraged.

Table 1: Example of restriction levels recommended by public health authorities [1] and the corresponding effective R value

and transmission rate (𝛽) for COVID-19.

3 BACKGROUND AND RELATED WORK

Our work builds on three research areas: (a) compartmental epi-

demiological models, (b) Lotka-Volterra systems, and (c) optimal

control of non-linear dynamical systems.

3.1 Compartmental Models

Infectious diseases are commonly modeled using compartmental

models where the population (𝑁 ) is divided into various compart-

ments corresponding to different disease stages and the inter com-

partment transitions are governed by the model dynamics.

The SIR model [28, 35] is the simplest and most widely used

one. The model comprises three compartments: Susceptible (S), In-

fectious (I) and Removed (R - includes immune & post-infectious

persons) with the dynamics in Figure 3(b). Here 𝛽 is the rate of dis-

ease transmission from infectious to susceptible individuals, which

largely depends on the contact restriction policy. 𝛾 is the inverse

of the average infectious period, which depends on the testing and

quarantine policy but is largely invariant when testing volumes

are low [14]. In this model, the effective reproduction number (avg.

number of direct infections from each infection) is 𝑅𝑒 𝑓 𝑓 =
𝛽𝑆

𝛾𝑁
. Ex-

isting restriction control approaches [60] are often guided by the

principle of ensuring 𝑅𝑒 𝑓 𝑓 ≃ 1.

Certain infectious diseases have a significant incubation period

when the individuals are infected but are not spreading the disease

(non-infectious). The SEIR model [30] includes an additional E (ex-

posed) compartment to model the incubation phase. Though we

focus on SIR model in this paper for brevity of the presentation, we

discuss extensions of our control techniques to SEIR model in 8.

3.2 Lotka-Volterra Systems

Lotka-Volterra (LV) systems [12, 32, 65] model the population dy-

namics of predator-prey interactions in a biological ecosystem.

These models form a special case of Kolmogorov systems [29] that

capture the evolution of a stochastic process over time. In a simple

2-species LV system, the population of prey (𝑝) interacts with that

of predator (𝑞). The growth rate of prey depends on its reproduction

rate (𝑟 ) and the rate of consumption by predator (𝑒). The change in

predator population depends on the nourishment-based birth rate 𝑏

and its death rate 𝑑 . The system has two fixed points: (a) a saddle

point that maps to extinction (𝑝, 𝑞) = (0, 0), and (b) a stable equilib-

rium at (𝑝, 𝑞) = ( 𝑑
𝑏
, 𝑟𝑒 ). Typically, the system exhibits oscillations

resulting in a closed phase plot that corresponds to conservation of

an “energy” function. Figure 3(a) presents the dynamics of an LV

system and the oscillations of the prey and predator populations.

Due to the criticality of ecological population control, there has been

considerable research on multiple variants of LV systems [29, 63]

and their Hamiltonian dynamics [46].

3.3 Optimal Control Strategies

Optimal control of dynamical systems has rich connections to mul-

tiple fields [52] that deal with optimizing sequential decisions to

maximize a desired objective such as reinforcement learning [20],

multi-armed bandits [16], and stochastic control. Given a set of

control variables, the optimal control policy describes the time

derivatives of these variables that minimize the cost function and

can be derived using Pontryagin’s maximum principle [52] or the

Hamilton-Jacobi-Bellman equations [48]. Though there exist com-

prehensive techniques for control of linear dynamical systems, the

control strategies for non-linear dynamical systems rely heavily on

the existence of control-Lyapunov functions, which are typically

identified using conservation laws of the associated physical sys-

tems. Once a suitable Lyapunov function is identified, there exist

multiple control design strategies such as feedback linearization,

backstepping and sliding mode control that are guaranteed to con-

verge using Artstein’s theorem [59]. In the case of the SIR model, a

suitable Lyapunov function is not readily evident. On the other hand,

Lyapunov stability and practical control strategies of LV systems

have been extensively studied [26, 39, 42, 47].

3.4 Epidemiological Modeling

Most of the existing literature on epidemiological modeling fo-

cuses on the following aspects: (a) Design of models to capture

the disease dynamics [11, 28], (b) Accurate forecasting of future

case counts [54], (c) Estimation of model parameters correspond-

ing to non-pharmaceutical interventions (NPIs) [23] (d) Optimiza-

tion of public-health policy (especially NPIs such as quarantine

and lockdown policy) based on economic impact and disease bur-

den [7, 9, 49, 51, 55]. Our current work is aligned with the last area,

often referred to as economic epidemiology, in terms of the objective

being the identification of optimal NPIs. However, most of the re-

search in this space is focused on the variation of disease dynamics

across subgroups using SIR or SEIR-based compartmental models
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Figure 3: (a) Lotka-Volterra system and evolution of predator (fox) and prey (hare) population over time, (b) SIR compartmental dynamics

for epidemiological modeling, (c) Mapping of SIR model to LV system and the behaviour of case counts 𝑆, 𝐽 , 𝐼 , 𝑅 and transmission rate 𝛽 .

and the explicit modeling of the economic and disease impact along

with the trade-offs. The optimization problems are often formu-

lated in terms of the cumulative outcomes across a horizon and

not readily tractable due to the non-linear dependencies among the

factors. Due to the subjective nature of the socioeconomic modeling

assumptions and the computationally expensive solutions [7], this

work is more suited for generating static recommendations rather

than implementing an automated system.

Our work, on the other hand, focuses on dynamic adaptive con-

trol of the transmission rate of an epidemic assuming simple SIR

dynamics with the goal of maintaining a steady acceptable target

level of infections. This target level could be derived from any of

the existing socioeconomic impact models or directly specified by a

public health authority. Our primary contribution is a theoretical

result that can be used to implement an automated decision sup-

port and alert system for a region of interest conditioned on the

availability of a map between policy choices and transmission rate,

and the applicability of SIR dynamics. As in the case of typical auto-

mated control systems (e.g., flight control), the control policy adapts

based on observations to stay close to the equilibrium. Section 8

briefly discusses extensions of proposed theoretical results to other

complex compartmental models and other control variables, which

could be permit a similar adaptive control strategy for optimizing

NPIs based directly on the overall impact.

4 MAPPING SIR TO LOTKA-VOLTERRA

SYSTEM (LVSIR)

Our primary goal is to solve the contact restriction control problem

described in Section 2.We focus on SIR dynamics because it captures

the core disease spread mechanism of most epidemiological models.

Since existing work on stability analysis of SIR models [8] does not

address controllability, we first establish a connection between the

SIR model and LV system, which is more amenable to principled

control. In Section 5, we leverage the properties of the LV system

to propose strategies for restriction control.

The problem of stabilizing infection levels assuming SIR dynam-

ics has a direct analogy with population control in LV predator-prey

systems where it is desirable to maintain the predator and prey

population at certain target levels suitable for the ecosystem. Com-

paring the SIR and LV dynamics in Figure 3, we observe that the

behaviour of the infectious people (𝐼 ) is similar to that of the “preda-

tors” (𝑞). There is an inflow (birth) 𝛽𝑆𝐼/𝑁 that depends on 𝛽 as well

as the current infectious and susceptible population. There is also

an outflow (death) 𝛾𝐼 from the I to the R compartment. However,

the counterpart for the “prey” is not readily apparent.

An intuitive choice for “prey” is the “susceptible contacts” (i.e.,

the product of susceptible people and 𝛽 , the number of "contacts" of

a person per day) since this acts as “nourishment” to the predators

and contributes to the inflow into the I compartment. Denoting the

susceptible contacts by 𝐽 = 𝛽𝑆 , we note that equivalence with the

LV system requires

¤𝐽 = ¤𝛽𝑆 + ¤𝑆𝛽 = (𝑟 − 𝑒𝐼 ) 𝐽 = (𝑟 − 𝑒𝐼 )𝛽𝑆, (1)

where 𝑟 and 𝑒 correspond to the reproduction rate and consumption

rate of an LV system as described in Section 3.2. Since ¤𝑆 = − 𝛽𝐼𝑆

𝑁
,

we require the transmission rate 𝛽 to follow

¤𝛽 = (𝑟 − 𝑒𝐼 )𝛽 + 𝛽2𝐼

𝑁
. (2)

This modified version of SIR model (LVSIR) maps to a Lotka-

Volterra system. Comparing the model parameters, we note that

the inverse of the infectious period (𝛾) corresponds to the predator

death rate (𝑑) and the inverse of population (1/𝑁 ) to the predator

birth rate (𝑏). The parameters (𝑟, 𝑒) which correspond to repro-

ductive rate and prey consumption rate are additional degrees of

freedom that control the system dynamics.

Theorem 1 asserts the existence of a steady state for an epidemic

following LVSIR dynamics. if the system were to be initialized in

this state, the size of infectious population and the susceptible con-

tacts would remain constant throughout the duration while the

susceptible population goes down linearly.

Theorem 1.
3 For the LVSIR model in Figure 3(c), the following

holds true:
(a) There exists a stable equilibrium at (𝐽 ∗, 𝐼∗) = (𝛾𝑁, 𝑟/𝑒).
(b) When the initial state (𝐽0, 𝐼0) = (𝐽 ∗, 𝐼∗), then (𝐽 , 𝐼 ) remain

constant while 𝑆, 𝑅 take a linear form and 𝛽 increases till the

3
Please see Appendix A for the proofs.
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Figure 4: Plots (a-d) and (e-h) present the dynamics of LVSIR andCoSIRmodels respectively. (a) System (𝑆, 𝐽 , 𝐼 , 𝑅, 𝛽) evolutionwhen initialized

at equilibrium, (b-c) Single period of oscillations and normalized phase plot for the configuration in Figure 3(c) annotated with the extreme

points, (d) Dependence of 𝑇𝑝𝑒𝑟𝑖𝑜𝑑 on 𝑟 for different choices of 𝑤0/𝑟 . (e-f) System evolution of the CoSIR model for learning rate 𝜂 = 1. (g-h)

Normalized phase plots of CoSIR model for 𝜂 = 1 and 4. Any other parameter choices can be tried on the webapp.
1

susceptible population reaches 0 at 𝑇𝑒𝑛𝑑 .
(i) 𝑆 (𝑡) = 𝑆0 − 𝛾𝐼∗𝑡 ; 𝑅(𝑡) = 𝑅0 + 𝛾𝐼∗𝑡
(ii) 𝛽 (𝑡) = 𝛾𝑁

𝑆0−𝛾𝐼 ∗𝑡 ; 𝑇𝑒𝑛𝑑 =
𝑆0
𝛾𝐼 ∗

When the LVSIR system is initialized at a non-equilibrium state,

it follows an oscillatory behavior that is characterized in Theorem

2 along with the associated conservation property.

Theorem 2.
3 For the LVSIR model in Figure 3(c), if the initial

state is not at equilibrium, i.e., (𝐽0, 𝐼0) ≠ (𝐽 ∗, 𝐼∗), it exhibits a cyclic
behaviour with the following properties.

(a) The system “energy” 𝑤 (𝐽 , 𝐼 ) = 𝛾 (𝑥 − log(𝑥) − 1) + 𝑟 (𝑦 −
log(𝑦) − 1) (where 𝑥 =

𝐽
𝐽 ∗ , 𝑦 = 𝐼

𝐼 ∗ ) remains constant at 𝑤0 =

𝑤 (𝐽0, 𝐼0) ≥ 𝑤 (𝐽 ∗, 𝐼∗) = 𝑤∗ = 0 till termination.
(b) The 𝐼 , 𝐽 curves exhibit periodic oscillations resulting in a closed

trajectory. The normalized phase plot has four extreme points
{(𝑥𝑚𝑖𝑛, 1), (1, 𝑦𝑚𝑖𝑛), (𝑥𝑚𝑎𝑥 , 1), (1, 𝑦𝑚𝑎𝑥 )}where (𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥 )
are the roots of the equation 𝑥 − log(𝑥) = 1 + 𝑤0/𝛾 and
(𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥 ) are the roots of the equation𝑦−log(𝑦) = 1+𝑤0/𝑟 .

(c) The cyclic period is given by

𝑇𝑝𝑒𝑟𝑖𝑜𝑑 =
∫
log(𝑥𝑚𝑎𝑥 )
log(𝑥𝑚𝑖𝑛) (

1

𝐹−1
1
(𝐺 (𝑧)) −

1

𝐹−1
2
(𝐺 (𝑧)) )𝑑𝑧,

where (𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥 ) are defined as above,𝐺 (𝑧) = 𝛾 (𝑒𝑧−𝑧−1)−
𝑤0, and 𝐹1 (𝑠), 𝐹2 (𝑠) are restrictions of 𝐹 (𝑠) = 𝑠 + 𝑟 log(1− 𝑠

𝑟 )
to positive and negative ranges. In general, 𝑇𝑝𝑒𝑟𝑖𝑜𝑑 has the
form 𝑔(𝑟,𝛾, 𝑤0

𝑟 ) with approximation via linearization yielding
𝑇𝑝𝑒𝑟𝑖𝑜𝑑 ≃ 2𝜋√

(𝑟𝛾 )
.

(d) In each cyclic period, 𝑆 reduces by a fixed amount Δ𝑆 =

𝛾𝐼∗𝑇𝑝𝑒𝑟𝑖𝑜𝑑 . When the susceptible population 𝑆 < Δ𝑆 at the

beginning of a cycle, it reaches 0 during the cycle and the epi-
demic terminates.

Figure 3(c) depicts the oscillatory behaviour of the LVSIR model

for the configuration in Table 3. Similar to an LV system, the “en-

ergy” which corresponds to a weighted Itakura-Saito distance [33]

between (𝐼 , 𝐽 ) and the equilibrium (𝐼∗, 𝐽 ∗) is conserved. The infec-
tious population 𝐼 (and susceptible contacts 𝐽 ) oscillates between

[𝑦𝑚𝑖𝑛𝐼
∗, 𝑦𝑚𝑎𝑥 𝐼

∗] (and [𝑥𝑚𝑖𝑛 𝐽
∗, 𝑥𝑚𝑎𝑥 𝐽

∗] ) during the entire period
with an average value of 𝐼∗ (and 𝐽 ∗) while the susceptible popula-
tion reduces steadily in a staircase-like fashion. The transmission

rate 𝛽 also exhibits periodic oscillations but the average steadily

goes up to compensate for the reduction in the susceptible popu-

lation. Figure 4(c-b) shows the phase plot and the variation of the

key quantities during a single period with the four extreme points

(South, East, North, West) marked explicitly. Figure 4(d) shows how

𝑇𝑝𝑒𝑟𝑖𝑜𝑑 [58] depends on 𝑟 for different choices of 𝑤0/𝑟 . This map-

ping can be used to identify suitable values of 𝑟 for practical policy

making. For the special case where the initial state is at equilibrium,

the system behaviour is steady as in Figure 4(a).

5 TRANSMISSION RATE CONTROL (COSIR)

Let us consider an epidemic system from a control theory perspec-

tive with the infectious population as the output and the external

injections of infections as input as shown in Figure 2. The SIR system

has a natural positive feedback loop because of the infection spread

mechanism (since ¤𝑆 =
𝛽𝑆𝐼

𝑁
) which leads to an exponential-like be-

havior in early stages of the epidemic. The LVSIR model neutralizes

this feedback loop by varying 𝛽 over time following Eqn. 2, but it

does not necessarily convergence to a desired equilibrium. We now

explore the problem of controlling the transmission rate 𝛽 for the
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LVSIR model (Figure 3(c)) to nudge the infectious levels to a desired

equilibrium.

As discussed in Section 3, control of non-linear dynamical sys-

tems is typically achieved via Control-Lyapunov functions (CLFs).

Our approach is to exploit the mapping from the SIR model to

LV system and use CLFs derived from the “Lotka-Volterra energy”

function𝑤 (𝐽 , 𝐼 ).

Definition 5.1. Given a dynamical system ¤z = f (z, u) with state

vector z ∈ 𝐷 ⊂ IR
n
, control u ∈ IR

m
, and equilibrium state z∗ =

0, a control-Lyapunov function (CLF) is a function 𝑉 : 𝐷 ↦→ IR

that is continuously differentiable, positive-definite s.t. ∀z ≠ 0, ∃ u,
¤𝑉 (z, u) = ⟨∇𝑉 (z), ¤z⟩ = ⟨∇𝑉 (z), f (z, u)⟩ < 0.

The CLF 𝑉 (·) can be viewed as a generalized energy function

with ¤𝑉 (·) being a dissipation function. Artstein [10] proved that as

long as there is a CLF, there exists a control u to ensure the reduction

of energy at every non-equilibrium state and eventual convergence

to the zero energy equilibrium.

Theorem 3 (Artstein [59]). For any non-linear dynamical system
with affine control, ¤z = f (z, u) = f0 (z) +

∑𝑚
𝑖=1 fi (z)𝑢𝑖 with state

z ∈ 𝐷 ⊂ IR
n, control u ∈ IR

m, has a CLF if and only if it admits
a regular stabilizing control feedback u, that is a locally Lipschitz
function on IR

n \ {0}.

Once a CLF is identified, it is relatively straightforward to design

an appropriate control function u as described in [10, 62]. For our

scenario, we rely on the conservation law of the LV system as well

as the existing literature on its Lyapunov functions [53].

Let z = ( 𝐽
𝐽 ∗ − 1,

𝐼
𝐼 ∗ − 1) so that the equilibrium z∗ = (0, 0). Let

𝐿(𝑎1, 𝑎2) : IR2+ ↦→ IR be a continuously differentiable divergence such

that | 𝑑𝐿
𝑑𝑎1
| > 0 and 𝐿(𝑎1, 𝑎2) > 0, ∀𝑎1 ≠ 𝑎2 and 𝐿(𝑎1, 𝑎2) = 0 ⇐⇒

𝑎1 = 𝑎2. Then, the function𝑉 (z) = 𝐿(𝑤,𝑤𝑡𝑎𝑟𝑔𝑒𝑡 ) where𝑤 = 𝑤 (𝐽 , 𝐼 )
can be used as a CLF. Examples of 𝐿(·, ·) include 𝐿𝑝 norms and

Bregman divergences.We focus on the case where𝑤𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑤∗ = 0,

and propose a controlled SIR model (CoSIR).

Theorem 4 (CoSIR).
3 For the SIR model, a proportional additive

control on 𝛽 ,

¤𝛽 = (𝑟 − 𝑒𝐼 )𝛽 + 𝛽2𝐼

𝑁
+ 𝑢𝛽 (3)

converges to the equilibrium (𝐽 ∗, 𝐼∗) when

𝑢 = −𝜂 (𝑡) 𝑑𝐿
𝑑𝑤

(
𝐽

𝐽 ∗
− 1

)
with the learning rate 𝜂 (𝑡) > 0, ∀𝑡 .

A special case of the above construction with𝑉 (z) = 𝐿(𝑤,𝑤∗) =
1

2
(𝑤 −𝑤∗)2 and a constant positive learning rate 𝜂 referred to as

the speed-gradient method was proposed by [47] in the context of

population control. The resulting control policy is given by

𝑢 = −𝜂 (𝑤 (𝐽 , 𝐼 ) −𝑤∗)
(
𝐽

𝐽 ∗
− 1

)
. (4)

Figure 4(e-f) show the behavior of the CoSIR model using Eqn. 4

and parameters from Table 3. It can be observed that the oscilla-

tions reduce with time and the 𝐼 , 𝐽 curves slowly converge to the

equilibrium with the convergence rate dependent on 𝜂. The design

of the control also makes it robust to perturbations in the infectious

population as the system re-calibrates 𝛽 as appropriate.

The 𝛽-control policy (Eqn. 3) can be interpreted as follows. The

first term
𝛽2𝐼

𝑁
corresponds to the relaxation possible due to the de-

creasing susceptible populationwhile the second term (𝑟−𝑒𝐼 )𝛽 leads
to oscillatory behavior, and the last term 𝑢𝛽 = −𝜂 (𝑡)𝛽 𝑑𝐿

𝑑𝑤
(𝐽/𝐽 ∗ − 1)

ensures dissipation of energy and convergence to the equilibrium.

6 PRACTICAL TRANSMISSION RATE

CONTROL

We now describe a practical solution to the public health restric-

tion control problem in Section 2. Algorithm 1 outlines a holistic

approach to obtain a restriction policy schedule using the optimal

𝛽-control in Theorem 4. There are four key steps.

Algorithm 1 CoSIR: Transmission Rate Control

Input:

𝑁 – Population,

A – Restriction policy levels,

𝜌 : A ↦→ IR++ – Map of levels to transmission rate,

[𝑆𝑡 , 𝐼𝑡 , 𝑅𝑡 , 𝑎𝑡 ], [𝑡]𝑐𝑢𝑟𝑟
0

– Case counts & restriction level history,

𝐼
𝑡𝑎𝑟𝑔𝑒𝑡
𝑚𝑎𝑥 , 𝐼

𝑡𝑎𝑟𝑔𝑒𝑡
𝑎𝑣𝑔 – max and avg., target infection levels,

𝑇 – Decision horizon,

𝑇𝑝𝑒𝑟𝑖𝑜𝑑 – Cyclic period for restriction schedule

Output:

a∗ = [𝑎𝑡 ], [𝑡]𝑐𝑢𝑟𝑟+𝑇𝑐𝑢𝑟𝑟+1 , 𝑎𝑡 ∈ A – Near optimal restriction levels

for next 𝑇 time units s.t. infection levels conform to 𝐼
𝑡𝑎𝑟𝑔𝑒𝑡
𝑎𝑣𝑔 .

Method:

Data-driven Calibration:

𝛾 ← ComputeGamma( [𝑆𝑡 , 𝐼𝑡 , 𝑅𝑡 ], [𝑡]𝑐𝑢𝑟𝑟
0

, 𝑁 )
𝜌 ← RefineBetaMap( [𝑆𝑡 , 𝐼𝑡 , 𝑅𝑡 , 𝑎𝑡 ], [𝑡]𝑐𝑢𝑟𝑟

0
, 𝑁 )

Choosing CoSIR Parameters:

ˆ𝛽𝑐𝑢𝑟𝑟 ← 𝛾𝑁

𝑆𝑐𝑢𝑟𝑟

(𝐽 ∗, 𝐼∗) ← (𝛾𝑁, 𝐼
𝑡𝑎𝑟𝑔𝑒𝑡
𝑎𝑣𝑔 )

𝛼 ← (𝑦 − log(𝑦) − 1) where 𝑦 =
𝐼
𝑡𝑎𝑟𝑔𝑒𝑡
𝑚𝑎𝑥

𝐼
𝑡𝑎𝑟𝑔𝑒𝑡
𝑎𝑣𝑔

𝑟 ← (2𝜋 )2
𝛾𝑇 2

𝑝𝑒𝑟𝑖𝑜𝑑

for 𝛼 ≃ 0

(or chosen s.t. 𝑔(𝑟, 𝛾, 𝛼) = 𝑇𝑝𝑒𝑟𝑖𝑜𝑑 for 𝛼 >> 0 where

𝑔(·) is as defined in Theorem 2(c). )

𝑒 ← 𝑟
𝐼 ∗

𝜂 ← desired convergence rate

Determine Optimal Restrictions:

[𝛽𝑖𝑑𝑒𝑎𝑙𝑡 ], [𝑡]𝑐𝑢𝑟𝑟+𝑇
𝑐𝑢𝑟𝑟+1 ← CoSIR(𝑁, 𝑆𝑐𝑢𝑟𝑟 , 𝐼𝑐𝑢𝑟𝑟 , 𝑅𝑐𝑢𝑟𝑟 , ˆ𝛽𝑐𝑢𝑟𝑟 , 𝑟 , 𝑒, 𝛾, 𝜂,𝑇 )

𝑎𝑡 = argmin𝑎∈A (𝛽𝑖𝑑𝑒𝑎𝑙𝑡 − 𝜌 (𝑎))2, [𝑡]𝑐𝑢𝑟𝑟+𝑇
𝑐𝑢𝑟𝑟+1

return a∗ = [𝑎𝑡 ], [𝑡]𝑐𝑢𝑟𝑟+𝑇𝑐𝑢𝑟𝑟+1

Input Collection. Infection level targets (𝐼𝑡𝑎𝑟𝑔𝑒𝑡𝑎𝑣𝑔 , 𝐼
𝑡𝑎𝑟𝑔𝑒𝑡
𝑚𝑎𝑥 ), period-

icity of the restriction schedule (𝑇𝑝𝑒𝑟𝑖𝑜𝑑 ), decision horizon (𝑇 ) need

to be determined based on a careful assessment of public health

and socioeconomic considerations. Historical case counts and re-

strictions ([𝑆𝑡 , 𝐼𝑡 , 𝑅𝑡 , 𝑎𝑡 ], [𝑡]𝑐𝑢𝑟𝑟
0

) also need to be collected to enable

accurate optimization.
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Algorithm Description

No-Restrictions Constant 𝛽 = 0.44

PL-high Periodic Lockdown of 60 days with 𝛽 =

0.16 and a relaxation period of 30 days with

𝛽 = 0.44

PL-low Periodic Lockdown of 60 days with 𝛽 = 0.1

and a relaxation period of 30 days with 𝛽 =

0.44

CoSIR Follows Eqn. 3

CoSIR-approx Approximation of CoSIR 𝛽 with 10 levels

starting from 0.1 to 0.55 in steps of 0.05.

Table 2: Transmission control policies used for simulation.

Data-driven Calibration. The next step is to use SIR-calibration

methods [11, 15, 54] along with historical data to estimate a static 𝛾

(ComputeGamma), time-varying 𝛽 , and the state of the epidemic

(𝑆𝑐𝑢𝑟𝑟 , 𝐼𝑐𝑢𝑟𝑟 , 𝑅𝑐𝑢𝑟𝑟 ). The restriction level to transmission map, 𝜌 ,

can be initially chosen from public health guidelines [1] and refined

using the observed 𝛽 for past restrictions in the region of interest

(RefineBetaMap).

Choosing CoSIR Parameters. The free parameters of the CoSIR

model need to be chosen based on the control requirements. Algo-

rithm 1 lists the choices derived from Theorem 2. These include

the equilibrium state, the normalized energy level based on ratio of

the maximum and average target infectious levels, the reproductive

rate 𝑟 and the consumption rate 𝑒 . There is flexibility on the choice

of
ˆ𝛽𝑐𝑢𝑟𝑟 and 𝜂. Choosing the immediate transmission rate to be

ˆ𝛽𝑐𝑢𝑟𝑟 =
𝐽 ∗

𝑆𝑐𝑢𝑟𝑟
=

𝛾𝑁

𝑆𝑐𝑢𝑟𝑟
(equivalent to forcing effective reproduc-

tion number 𝑅𝑒 𝑓 𝑓 = 1) ensures a maximal reduction in the system

“energy” and faster convergence to the desired equilibrium, but

dampens fluctuations. However, fluctuations might be necessary for

economic activity. When nearly steady infection levels are desired,

𝐼
𝑡𝑎𝑟𝑔𝑒𝑡
𝑎𝑣𝑔 ≃ 𝐼

𝑡𝑎𝑟𝑔𝑒𝑡
𝑚𝑎𝑥 , then 𝑟 =

(2𝜋 )2
𝛾𝑇 2

𝑝𝑒𝑟𝑖𝑜𝑑

and high 𝜂 are appropriate.

Computing Near Optimal Restrictions.Determining the restric-

tion policy can be split into two phases. The first involves estimating

the ideal 𝛽 control from Eqn. 4 while the second involves identifying

the “closest” restriction level for the ideal 𝛽 at each time step with

“closeness” based on a suitable divergence such as the squared loss.

Note that in a real-world implementation, there are likely to be

lags in data collection as well as communicating the policy to public.

The map between restriction policy and transmission rate might

also vary with time because of changes in public compliance. Unlike

the CoSIR model (Eqn. 3), the approximation is not guaranteed to

converge. However, the behavior of the approximate algorithm ap-

proaches that of the original control policy as number of (uniformly

distributed) restriction levels increases.

7 SIMULATION RESULTS

We present simulation results on the COVID-19 pandemic spread on

multiple diverse geographical regions to demonstrate the efficacy

and adaptability of the proposed CoSIR-based approaches relative

to other widely cited approaches such as periodic lockdowns [21].

Since modeling of the socioeconomic costs of mobility restrictions is

a challenging problem in itself, we primarily focus on assessing the

efficacy in terms of the medical capacity utilization and the severity

4
Since these estimations vary, we choose an intermediate value.

distribution of mobility restrictions. Note that even though COVID-

19 disease progression involves a significant incubation period (4-5

days) that is ideally modeled via variants of SEIR compartmental

models, forecasting techniques using SIR dynamics have also been

fairly accurate for coarser temporal granularity [54].

7.1 Experimental Setup

The key elements of our experimental setup are described below.

Data. Multiple geographical regions that are diverse in population

size, medical capacity, and reporting dynamics were considered.

We present simulation results for three regions (India, Mexico, and

Netherlands) from April 2020 to April 2021 along with real avail-

able data (till 29th December 2020) of the ongoing COVID-19 pan-

demic [2, 25]. To assess the adaptability of the CoSIR approach, we

also use synthetically generated data from a hypothetical city.

Algorithms.We consider six variants of the transmission control

policies assuming a no restriction level corresponding to 𝛽 = 0.44.

Two of these policies PL-low, PL-high, are based on dynamic peri-

odic interventions [21] alternating between no restrictions for a pe-

riod of 30 days and a constant, but different levels of restriction (𝛽 =

0.1 and 𝛽 = 0.16) for a period of 60 days. In addition, we also study

a completely non-restrictive policy No-Restrictions, the CoSIR
approach CoSIR and an approximate variant CoSIR-approx based
on 𝑘 = 10 discrete levels. Finally, we also include the real outcome

as indicative of the actual public health transmission control that

was adopted. Table 2 enumerates the details of these algorithms.

Parameter Choices. Table 3 enumerates the various parameter

choices and the relevant assumptions for each region.

(a) Target Hospitalization & Infectious levels. Choosing an op-

timal control policy requires consideration of multiple factors. In

this study, we focus primarily on the medical capacity constraints.

We derive an acceptable level for infectious population 𝐼
𝑡𝑎𝑟𝑔𝑒𝑡
𝑎𝑣𝑔 such

that the available medical capacity can meet the hospitalization

requirements at a steady state. Let 𝑝 denote the per-capita hospital

bed capacity of a region with population 𝑁 , 𝜅 the bed occupancy

level for normal functioning, and𝑇ℎ𝑜𝑠𝑝 the average duration of hos-

pitalization. Then, a manageable hospitalization inflow that will not

overwhelm the medical infrastructure is given by Δ𝐻
𝑡𝑎𝑟𝑔𝑒𝑡
𝑎𝑣𝑔 =

𝑁𝑝𝜅

𝑇ℎ𝑜𝑠𝑝
.

On the other hand, following the dynamics of the SIR model, we

know that new cases being identified (i.e., outflow from the 𝐼 bucket)

is given by 𝛾𝐼 . Let ℎ denote the fraction of active cases requiring hos-

pitalization. Then, the new hospitalizations would be given by 𝛾ℎ𝐼 .

Hence, we choose the target infectious level as 𝐼
𝑡𝑎𝑟𝑔𝑒𝑡
𝑎𝑣𝑔 =

𝑁𝑝𝜅

𝛾ℎ𝑇ℎ𝑜𝑠𝑝
.To

concretely instantiate these choices for various regions, we use the

populations of the regions 𝑁 , the per-capita medical capacity [5]

assuming an average hospitalization period 𝑇ℎ𝑜𝑠𝑝 = 20 days and

hospitalization ratio between 2 − 6.6%. Note that these parameters

are likely to vary across regions and there is a significant uncer-

tainty in the estimates across multiple studies. However, the key

insights on the relative behavior of the transmission control policies

hold true regardless of the specific choices of the parameter values.

(b) Under Reporting Factor.While comparing real observed case

counts with simulations, a critical factor to consider is the level of

under reporting. This factor was computed based on the assumption

that the infection fatality rate (𝐼𝐹𝑅) and death detection rate (𝐷𝐷𝑅)

are largely variant within a region and there is a steady lag of 2
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Factor Notation Hypothetical India Netherlands Mexico

Population N 13M 1.366B 17.1M 127.5M

Stage of pandemic (𝑆𝑐𝑢𝑟𝑟 , 𝐼𝑐𝑢𝑟𝑟 ) (12.6M, 0.2M) (1.36B, 279k) (17.09M, 6.7k) (127.2M, 30k)

Bed Occupancy level [50] 𝜅 - 0.76 0.76 0.76

Medical Capacity (per capita) [5] p - 5.3 × 10−4 3.32 × 10−3 1.38 × 10−3
Hospitalization ratio h - 2% 6.6% 2%

Time spent in hospital 𝑇ℎ𝑜𝑠𝑝 - 20 days 20 days 20 days

Target manageable infections 𝐼
𝑡𝑎𝑟𝑔𝑒𝑡
𝑎𝑣𝑔 0.15M 6.88M 0.16M 1.67M

Target max to average ratio 𝐼
𝑡𝑎𝑟𝑔𝑒𝑡
𝑚𝑎𝑥 /𝐼

𝑡𝑎𝑟𝑔𝑒𝑡
𝑎𝑣𝑔 1.3 1.13 1.13 1.13

Infection-Fatality ratio [41, 43–45] IFR - 0.002
4

0.0068 0.0068

Death detection ratio DDR - 0.3 1 0.35

Reported Infections on 1st Dec 2020 [2, 64] - 9.5M 527k 1.11M

Reported Fatalities on 15th Dec 2020 [2, 64] - 144k 10k 114k

Under reporting factor URF - 25.28 2.83 43.127

Periodicity 𝑇𝑝𝑒𝑟𝑖𝑜𝑑 7 days 7 days 7 days 7 days

Reciprocal of infectious period 𝛾 0.2 0.2 0.2 0.2

LV Reproduction rate 𝑟 4.2 4.2 4.2 4.2

Consumption rate 𝑒 2.8 × 10−5 6.1 × 10−7 2.6 × 10−5 2.5 × 10−6
Initial transmission rate 𝛽0 0.2 0.2 0.2 0.2

Learning rate 𝜂 5 5 5 5

Table 3: State of the epidemic, public health requirements, and CoSIR parameters used for the simulations in Section 7.

weeks between infection and the associated fatalities. In particular,

we estimate the under reporting factor (URF) as

𝑈𝑅𝐹 =
Reported Infections

Total Infections

=
(Reported Infections on Dec 1st) × 𝐷𝐷𝑅 × 𝐼𝐹𝑅

Reported Fatalities on Dec 15th

(c) SIR & CoSIR Parameters. The primary parameter of interest

in the SIR model apart from the transmission rate is 𝛾 , i.e., recip-

rocal of the infectious period, which was chosen to be 0.2 across

all simulations since it is a disease-specific factor. For practical im-

plementation of a control policy, a periodicity aligned with typical

economic activity is preferable and hence, we choose a periodicity

of 𝑇𝑝𝑒𝑟𝑖𝑜𝑑 = 7 days for the CoSIR model. Assuming the maximum

value of infections to be 13% higher than the average and following

Algorithm 1, we obtain the LV reproductive rate 𝑟 = 4.2. We choose

the steady state infectious level to be the target infectious level,

i.e., 𝐼∗ = 𝐼
𝑡𝑎𝑟𝑔𝑒𝑡
𝑎𝑣𝑔 and the consumption rate is given by 𝑒 = 𝑟/𝐼∗. To

ensure effective control, we pick an aggressive learning rate 𝜂 = 5.

Evaluation Metrics. In order to assess the effectiveness of the

different control policies, we focus on two aspects.

(a)Hospitalization Influx,which is defined as the number of new

cases being hospitalized every day, which equals 𝛾ℎ𝐼 for a SIR-based

model. We compare this inflow rate with the manageable target

influx based on the available capacity, i.e., Δ𝐻
𝑡𝑎𝑟𝑔𝑒𝑡
𝑎𝑣𝑔 =

𝑁𝑝𝜅

𝑇ℎ𝑜𝑠𝑝
. We

also estimate the relative demand surplus and gap relative to this

target level and average it across the relevant duration.

• Excess hospitalization = min

( 𝛾ℎ𝐼

Δ𝐻
𝑡𝑎𝑟𝑔𝑒𝑡
𝑎𝑣𝑔

− 1, 0
)

• Under hospitalization = min

(
1 − 𝛾ℎ𝐼

Δ𝐻
𝑡𝑎𝑟𝑔𝑒𝑡
𝑎𝑣𝑔

, 0
)

In addition to influx analysis, one can also evaluate the utilization

rate which depends on both inflow and outflow. Consider an SIHR

compartmental model with an additional H compartment for post-

infectious cases with an average duration of 𝑇ℎ𝑜𝑠𝑝 days. Assessing

the𝐻 compartment size adjusted for hospitalization ratio relative to

the available capacity gives an estimate of utilization, but we omit

these results in the interest of brevity since the insights are similar.

(b) Mobility Restriction Distribution. To assess the impact of

the different transmission control policies on socioeconomic activ-

ity, we consider the variation of the restriction level, i.e., 𝛽 over

time. We also compute for each policy, the total number of days

where the transmission rate associated with the policy was higher

(i.e., less restrictive) than a particular 𝛽 and discuss the associated

implications on socioeconomic impact.

7.2 Medical Capacity Utilization.

Figures 5[a-c] show results from simulating the five transmission

control policies over the three regions of interest (India, Mexico,

Netherlands) from April 2020 to April 2021 along with the real case

counts. The curves depict the simulated daily new hospitalizations

( = 𝛾ℎ𝐼 ). Real hospitalization counts are obtained by appropriate

scaling of the reported active case counts using the under reporting

factor 𝑈𝑅𝐹 and the hospitalization fraction ℎ. From the simula-

tions, it is evident that the No-Restrictions policy leads to a rapid
escalation of cases resulting in a hospitalization demand signifi-

cantly higher than the capacity. The periodic lockdown approach

PL-high with 𝛽𝑟𝑒𝑙𝑎𝑥 = 0.16 is also not restrictive enough to limit

the hospitalization needs, while the periodic lockdown PL-low turns
out to be excessively conservative especially in Netherlands. The

CoSIR approach, on the other hand, results in a nearly steady (pe-

riodic with small oscillations) hospitalization inflow that matches

the specified target value resulting in a near-optimal utilization of

the medical capacity. The approximate (CoSIR-approx) approach
with ten restriction levels results in a similar outcome, but begins

to diverge when the susceptible population reduces so much that
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Figure 5: Simulation results using transmission control policies for three regions (India, Mexico, Netherlands). Plots [a-f] show the hospi-

talization inflow for various policies along with the real observations as well as the average excess and under hospitalization levels. Plots

[g-l] depict the variation of policy transmission rate with time and also the restrictiveness profile (number of days where the policy is less

restrictive than a specified 𝛽) for the periodic lockdown and CoSIR-based policies.

the CoSIR optimal 𝛽 is higher than the no restrictions level. This

is especially evident in the case of Mexico (Figure 5-l). The real

hospitalizations corresponding to the actual imposed restrictions

point to periods where the healthcare system in some regions (India,

Mexico) was overwhelmed. In the case of Netherlands, the early

policy was possibly more restrictive than necessary.

Figures 5[d-f] depict the average excess and under hospitaliza-

tions relative to the specified target hospital inflow rate. The CoSIR-
based approaches result in smaller overall deviations from the target

levels relative to other policies including the actual public health

policy that was adopted. There is a possibility that the respective

health authorities preferred a different target than the one in our

simulations. The main takeaway is that periodic lockdowns can be

beneficial in containing the infection spread, but the actual transmis-

sion rate 𝛽 needs to be determined based on the available capacity

and the varying susceptible population, as is being done in the

CoSIR approach.

7.3 Mobility Restriction Impact.

Figures 5[j-l] show the variation of the transmission rate (𝛽) with

time for four intervention policies (CoSIR, CoSIR-approx, PL-high,
PL-low) for the same four regions. All the approaches involve al-

ternating between different levels of restrictions but the CoSIR

based approaches adapt these levels as the susceptible population

decreases over time. In the case of Mexico and Netherlands, this

approach nearly permits a return to no restrictions by April 2021

even without other interventions such as vaccination (conditioned

on the assumptions on the acceptable hospitalization levels).

Figures 5[g-i] show the number of days where a control policy

allows a transmission rate higher than a particular 𝛽 , i.e., in other

words allows all socioeconomic activities that necessitate a trans-

mission rate of 𝛽 . The periodic lockdown policies tend to have a

discontinuous profile while the CoSIR based policies allow a more

continuous transition. In particular, a large number of vital socioe-

conomic activities correspond to 𝛽 between “safer-at-home” and

“new normal”. The CoSIR based policies clearly dominate in this

region. Given a socioeconomic model that maps 𝛽 to socioeconomic
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costs and the distribution of the transmission rate 𝛽 , we could quan-

titatively evaluate the socioeconomic impact of the various policies.

We do not provide such an impact analysis due to the complexity

of socioeconomic modeling in the context of significant variations

between high income and low-middle income regions [57, 66]. How-

ever, since small relaxations in restriction levels in the range be-

tween “stay/safer at home” policies and “new normal” do seem to

allow a substantial increase in socioeconomic activity with dimin-

ishing returns beyond that stage, the differences in the 𝛽 profile are

likely to be amplified when the socioeconomic impact is considered.

In the case of Mexico, where the simulation duration covers most

of the pandemic, the CoSIR based approaches turn out to be more

relaxed than the fixed periodic lockdowns and that would be the

case even for the other regions if the entire duration of the pandemic

is considered.

7.4 Adaptability of CoSIR

An important characteristic of the CoSIR approach is its adaptabil-

ity to sudden changes in the infection levels. Figure 6 shows the

epidemic evolution with three different control policies for a hy-

pothetical city with parameters listed in Table 3. The first policy is

a hypothetical, but realistic one similar to the one adopted in a

large number of cities that experienced multiple waves of infections

while the other two are the CoSIR and CoSIR-approx based on the

acceptable target hospitalization levels. As in the case Section 7.2,

the CoSIR-based approaches lead to a relatively steady rate of infec-

tions while the hypothetical premature relaxation policy tends to

result in infections peaking in narrow time intervals and burdening

the healthcare system. More importantly, when the infection levels

are subject to sudden upward (𝑡 = 50) or downward perturbations

(𝑡 = 100) as in the case of super-spreader events or sudden quar-

antine restrictions respectively, the CoSIR 𝛽-control mechanism is

able to adapt to these changes and continue pushing towards the

equilibrium. In practice, the adaptation is not seamless and depends

on the data collection frequency and the lag required for public

communications to ensure compliance. Incorporation of mobility

data, which is a leading indicator of actual infections, can aid with

faster adaptation.

8 EXTENSIONS

We now briefly describe some key extensions.

Delayed SIR & SEIRModels. The SEIR model allows explicit mod-

elling of the incubation period and is known to closely mimic the

behaviour of the delayed SIR model [34]. When 𝛽 follows Eqn. 2,

the delayed SIR model readily maps to a delayed LV system with

a non-preying growth period for the predators, which is a special

case of the well-studied Wangersky–Cunningham systems [40, 63].

It can be shown that the modified delayed SIR system with a delay 𝜏

has the same equilibrium (𝐽 ∗, 𝐼∗) = (𝛾𝑁, 𝑟/𝑒), exhibits (unbounded)
oscillations and permits control of the form Eqn. 3, where

𝑢 (𝑡 ) = − 𝜂 (𝑡 ) 𝑑𝐿
𝑑𝑤

(
𝐽 (𝑡 )
𝐽 ∗
− 1

)
− 𝑟

(
(𝐼 (𝑡 ) − 𝐼 ∗)
( 𝐽 (𝑡 ) − 𝐽 ∗)

) (
𝐽 (𝑡 − 𝜏)𝐼 (𝑡 − 𝜏) − 𝐽 (𝑡 )𝐼 (𝑡 )

𝐼 (𝑡 )𝐼 ∗

)
with 𝜂 (𝑡) > 0. There is a need for special handling when 𝐽 ap-

proaches 𝐽 ∗ with the behavior depending on 𝜏 .

Testing & Isolation Policy. Testing, tracing and isolation also play

a critical role in regulating the epidemic. In terms of SIR and SEIR

dynamics, the net effect of aggressive testing is minimizing the
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Figure 6: Disease progression (𝑆, 𝐼 , 𝛽) with three restriction policies:

hypothetical, CoSIR and CoSIR-approx (using specified levels). The

CoSIR variants maintain infectious counts close to target levels and

also adapt to a sudden increase (𝑡 = 50) or decrease (𝑡 = 100).

infectious period [13, 37]. This is analogous to the culling of preda-

tors (infectious population) by increasing the death rate for which

there already exists multiple control mechanisms [42]. In particular,

choosing 𝑉 (z) = 𝐿(𝑤 (𝐽 , 𝐼 ),𝑤∗) as the CLF of interest, we obtain

the control, 𝛾 (𝑡) = 𝛾0 + 𝜁 (𝑡) 𝑑𝐿𝑑𝑤 (
𝐼
𝐼 ∗ − 1), with 𝜁 (𝑡) > 0.

Online Learning. The restriction control problem can also be

posed as a non-linear contextual bandit [16] formulation with the

cumulative LV energy 𝑤 (𝐽 , 𝐼 ) of the CoSIR model over a future

horizon interpreted as the (negative) “reward”. Here, the discrete

restriction levels can be viewed as the multiple arms of a bandit, the

context includes the state of the epidemic, and the “reward” distribu-

tion is computed using the context and the observed transmission

rate for the arms.

9 CONCLUSION & FUTURE DIRECTIONS

Our current work proposes an analytical framework for epidemic

control with the intent of supporting an active goal-oriented pub-

lic health response. The proposed framework relies on a mapping

between SIR dynamics to Lotka-Volterra systems when the trans-

mission rate varies with time following a certain form (LVSIR) and

an additional feedback control mechanism (CoSIR). Given the vast

literature on control of LV systems, this mapping can be leveraged

to design new epidemic control techniques as well as extend current

results to richer heterogeneous compartmental models and addi-

tional control variables (e.g., testing levels). Simulation results on a

diverse set of regions point to the potential efficacy and utility of

this approach. Effective practical implementation as part of public

health systems requires robust estimation of parameters associated

with NPIs, addressing the limitations of SIR dynamics, the lags in

observation and communication systems, and incorporation of ad-

ditional signals such as mobility [4]. It might also be beneficial to

explore online and reinforcement learning variants [17, 52].
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A PROOFS

Definition 1. [19] Let z∗ ∈ R𝑛 be a critical point of a system of
ODEs. The critical point z∗ is stable if, for any 𝜖 > 0 ∃ 𝛿 > 0 such that
if z = 𝜙 (𝑡) satisfies | |𝜙 (0) − z∗ | | < 𝛿 then | |𝜙 (𝑡) − z∗ | | < 𝜖, ∀ 𝑡 > 0.

Proof of Theorem 1(a).

At equilibrium (𝐽 ∗, 𝐼∗), we have ¤𝐽 = 0 and ¤𝐼 = 0. From Eqn. 1, it

follows that

¤𝐽 | ( 𝐽 ,𝐼 )=( 𝐽 ∗,𝐼 ∗) = 𝑟 𝐽 ∗ − 𝑒𝐼∗ 𝐽 ∗ = 0⇒ 𝐼∗ =
𝑟

𝑒
,

¤𝐼 | ( 𝐽 ,𝐼 )=( 𝐽 ∗,𝐼 ∗) =
𝐽 ∗𝐼∗

𝑁
− 𝛾𝐼∗ = 0⇒ 𝐽 ∗ = 𝛾𝑁 .

To prove the stability of the critical point at (𝐽 ∗, 𝐼∗), let us consider
the normalized variables 𝜙 (𝑡) =

(
𝑥 (𝑡), 𝑦 (𝑡)

)
where 𝑥 (𝑡) = 𝐽 (𝑡 )

𝐽 ∗ and

𝑦 (𝑡) = 𝐼 (𝑡 )
𝐼 ∗ . z∗ = (1, 1) is the corresponding critical point.

| |𝜙 (0) − z∗ | |2 = (𝑥0 − 1)2 + (𝑦0 − 1)2 < 𝛿2

⇒ 1 − 𝛿 < 𝑥0 < 1 + 𝛿, 1 − 𝛿 < 𝑦0 < 1 + 𝛿.

Let 𝑓 (𝑠) = 𝑠 − log(𝑠) − 1. Since 𝑓 (𝑠) is a convex function, 1 − 𝛿 <

𝑠 < 1 + 𝛿 , implies 𝑓 (𝑠) < max{𝑓 (1 + 𝛿), 𝑓 (1 − 𝛿)}. Denoting this

bound by 𝐷𝑚𝑎𝑥 implies 𝑓 (𝑥0) < 𝐷𝑚𝑎𝑥 and 𝑓 (𝑦0) < 𝐷𝑚𝑎𝑥

From Theorem 2(a), we note that

𝑤 (𝐽0, 𝐼0) = 𝛾 𝑓 (𝑥0) + 𝑟 𝑓 (𝑦0)
< (𝑟 + 𝛾)𝐷𝑚𝑎𝑥

Denoting𝑤𝑏 = (𝑟 + 𝛾)𝐷𝑚𝑎𝑥 , from Theorem 2(a), we note that

𝑤 (𝐽 (𝑡), 𝐼 (𝑡)) = 𝑤 (𝐽0, 𝐼0) < 𝑤𝑏

⇒ 𝑓
(
𝑥 (𝑡)

)
<

𝑤𝑏

𝛾
, 𝑓

(
𝑦 (𝑡)

)
<

𝑤𝑏

𝑟
.

Given the nature of 𝑓 (𝑠), 𝑓 (𝑠) < 𝑐 ⇒ 𝑠𝑚𝑖𝑛 < 𝑠 < 𝑠𝑚𝑎𝑥 where

(𝑠𝑚𝑖𝑛, 𝑠𝑚𝑎𝑥 ) are the finite-valued roots of 𝑓 (𝑠) = 𝑐 . Hence 𝑥 (𝑡) and
𝑦 (𝑡) are both bounded on either side. Consequently, (𝑥 (𝑡) −1, 𝑦 (𝑡) −
1) is confined to a bounded rectangle and thus,

⇒ ||𝜙
(
𝑥 (𝑡), 𝑦 (𝑡)

)
− z∗ | |2 =

(
𝑥 (𝑡) − 1

)
2

+
(
𝑦 (𝑡) − 1

)
2

< 𝜖2

where 𝜖 can be directly expressed in terms of 𝛿 and vice versa.

Hence, from Definition 1, z∗ = (1, 1) (or equivalently (𝐽 ∗, 𝐼∗)) is a
stable equilibrium. □
Proof of Theorem 1(b).

When initial state (𝐽0, 𝐼0) is at equilibrium (𝐽 ∗, 𝐼∗) = (𝛾𝑁, 𝑟/𝑒),
we have (𝐽 (𝑡), 𝐼 (𝑡)) = (𝛾𝑁, 𝑟/𝑒), ∀𝑡 . Hence,

¤𝑆 = − 𝛽𝑆𝐼
∗

𝑁
= − 𝐽

∗𝐼∗

𝑁
= −𝛾𝐼∗

⇒ 𝑆 (𝑡) = 𝑆0 − 𝛾𝐼∗𝑡 .
Similarly,

¤𝑅 = 𝛾𝐼∗ ⇒ 𝑅(𝑡) = 𝑅0 + 𝛾𝐼∗𝑡,

𝛽 (𝑡) = 𝐽 (𝑡)
𝑆 (𝑡) =

𝛾𝑁

𝑆0 − 𝛾𝐼∗𝑡
.

At 𝑡 = 𝑇𝑒𝑛𝑑 , the susceptible population 𝑆 (𝑡) = 0. Hence,

𝑆 (𝑇𝑒𝑛𝑑 ) = 0⇒ 𝑇𝑒𝑛𝑑 =
𝑆0

𝛾𝐼∗
.

□
Proof of Theorem 2(a).

The energy function of the LVSIR system in Figure 4(c) corresponds

to

𝑤 (𝐽 , 𝐼 ) = 𝛾

(
𝐽

𝐽 ∗
− log

( 𝐽

𝐽 ∗

)
− 1

)
+ 𝑟

(
𝐼

𝐼∗
− log

( 𝐼
𝐼∗

)
− 1

)
,

and the dynamics of 𝐼 , 𝐽 are given by

¤𝐽 = (𝑟 − 𝑒𝐼 ) 𝐽 = 𝑟

(
1 − 𝐼

𝐼∗

)
𝐽

¤𝐼 =
(
𝐽

𝑁
− 𝛾

)
𝐼 = 𝛾

(
𝐽

𝐽 ∗
− 1

)
𝐼 .
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Considering the time derivative of𝑤 (𝐽 , 𝐼 ), we have

¤𝑤 (𝐽 , 𝐼 ) = 𝛾

( ¤𝐽
𝐽 ∗
−
¤𝐽
𝐽

)
+ 𝑟

( ¤𝐼
𝐼∗
−
¤𝐼
𝐼

)
= 𝛾 ¤𝐽

(
1

𝐽 ∗
− 1

𝐽

)
+ 𝑟 ¤𝐼

(
1

𝐼∗
− 1

𝐼

)
= 𝛾𝑟 𝐽

(
1 − 𝐼

𝐼∗

) (
1

𝐽 ∗
− 1

𝐽

)
+ 𝑟𝛾𝐼

(
𝐽

𝐽 ∗
− 1

) (
1

𝐼∗
− 1

𝐼

)
(substituting for ¤𝐼 , ¤𝐽 )

= 𝑟𝛾
(𝐼∗ − 𝐼 ) (𝐽 − 𝐽 ∗)

𝐼∗ 𝐽 ∗

+ 𝑟𝛾 (𝐼 − 𝐼
∗) (𝐽 − 𝐽 ∗)
𝐼∗ 𝐽 ∗

= 0

Hence,𝑤 (𝐽 , 𝐼 ) remains invariant throughout and is equal to𝑤 (𝐽0, 𝐼0) =
𝑤0. □
Proof of Theorem 2(b):

Let𝑤0 = 𝑤 (𝐽0, 𝐼0) be the energy associated with the modified SIR

system in Figure 4(c). The conservation law implies that every valid

state (𝐽 , 𝐼 ) corresponds to a point on the level curve given by

𝑤 (𝐽 , 𝐼 ) = 𝛾

(
𝐽

𝐽 ∗
− log

(
𝐽

𝐽 ∗

)
− 1

)
+ 𝑟

(
𝐼

𝐼∗
− log

(
𝐼

𝐼∗

)
− 1

)
= 𝑤0 .

If 𝐽 , 𝐼 functions are continuous5, then these would be periodic func-

tions. In terms of normalized variables, 𝑥 =
𝐽
𝐽 ∗ and𝑦 = 𝐼

𝐼 ∗ , the phase

plot reduces to

𝛾 (𝑥 − log(𝑥) − 1) + 𝑟 (𝑦 − log(𝑦) − 1) = 𝑤0

.

Consider the continuously differentiable function 𝑓 (𝑧) = 𝑧 −
log(𝑧) − 1 defined on R++. Since

𝑑𝑓

𝑑𝑧
= 1 − 1

𝑧 and
𝑑2 𝑓

𝑑𝑧2
= 1

𝑧2
> 0,

𝑓 (𝑧) is a convex function with a single global minimum at 𝑧 = 1

corresponding to 𝑓 (1) = 0. Hence 𝑓 (𝑧) ≤ 𝑐 ⇒ 𝑧𝑚𝑖𝑛 ≤ 𝑧 ≤ 𝑧𝑚𝑎𝑥

where (𝑧𝑚𝑖𝑛, 𝑧𝑚𝑎𝑥 ) correspond to the roots of 𝑓 (𝑧) = 𝑐 .

To identify the extreme 𝑥 values, we observe that

𝛾 (𝑥 − log(𝑥) − 1) + 𝑟 (𝑦 − log(𝑦) − 1) = 𝑤0

⇒ 𝛾 (𝑥 − log(𝑥) − 1) ≤ 𝑤0

( since 𝑓 (𝑦) > 0)
⇒ 𝑥𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑥𝑚𝑎𝑥

where (𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥 ) are roots of 𝑓 (𝑥) = 𝑤0

𝛾 . Both the extreme values

of 𝑥 are realized for 𝑦 = 1. Similarly, the extreme values of 𝑦 are

attained for 𝑥 = 1 and given by (𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥 ) which correspond to

the roots of 𝑓 (𝑥) = 𝑤0

𝑟 .

□
Proof of Theorem 2(c).

The period of a Lotka-Volterra system has been derived in multiple

works [58]. We include the below proof based on Hsu’s method [31]

5
Note that 𝐽 , 𝐼 are actually discrete population counts and not continuous functions.

for completeness.

Let 𝑥 =
𝐽
𝐽 ∗ and 𝑦 = 𝐼

𝐼 ∗ . Then we have

¤𝑥 = −𝑟𝑥 (𝑦 − 1) (5)

¤𝑦 = 𝛾𝑦 (𝑥 − 1). (6)

From 5, we have

¥𝑥 = −𝑟𝑥 ¤𝑦 − 𝑟 ¤𝑥 (𝑦 − 1)
= −𝑟𝑥𝛾𝑦 (𝑥 − 1) − 𝑟 (𝑦 − 1) ¤𝑥 (substituting ¤𝑦 from 6)

= −𝑟𝛾𝑥 (− ¤𝑥
𝑟𝑥
+ 1) (𝑥 − 1) + 𝑟 ( ¤𝑥)

2

𝑟𝑥
(substituting y from 5)

= −𝛾 (𝑟𝑥 − ¤𝑥) (𝑥 − 1) + ¤𝑥
2

𝑥

Thus,

¥𝑥 − ¤𝑥
2

𝑥
− 𝛾 (𝑥 − 1) ( ¤𝑥 − 𝑟𝑥) = 0. (7)

Let 𝑧 = log(𝑥) . Then, ¤𝑥 = 𝑒𝑧 ¤𝑧 and ¥𝑥 = 𝑒𝑧 ( ¥𝑧 + ¤𝑧2) .

From 7, we have

𝑒𝑧 ( ¥𝑧 + ¤𝑧2) − 𝑒2𝑧 ( ¤𝑧)2
𝑒𝑧

−𝛾 (𝑒𝑧 − 1) (𝑒𝑧 ¤𝑧 − 𝑟𝑒𝑧) = 0

⇒ ¥𝑧 − 𝛾 (𝑒𝑧 − 1) ( ¤𝑧 − 𝑟 ) = 0.

Choosing 𝑠 = ¤𝑧 ⇒ 𝑠 = ¤𝑥𝑥 = −𝑟 (𝑦 − 1).

Let𝑤0 = 𝑤 (𝐽0, 𝐼0). Then, the trajectory corresponds to

𝛾 (𝑥 − log𝑥 − 1) + 𝑟 (𝑦 − log𝑦 − 1) = 𝑤0

⇒ 𝛾 (𝑒𝑧 − 𝑧 − 1) + 𝑟 (𝑦 − log𝑦 − 1) = 𝑤0

⇒ 𝛾 (𝑒𝑧 − 𝑧 − 1) + 𝑟 (− 𝑠
𝑟
− log(1 − 𝑠

𝑟
)) = 𝑤0

⇒ 𝛾 (𝑒𝑧 − 𝑧 − 1) −𝑤0 = 𝑠 + 𝑟 log(1 − 𝑠

𝑟
)

⇒ 𝐺 (𝑧) = 𝐹 (𝑠)

where 𝐺 (𝑧) = 𝛾 (𝑒𝑧 − 𝑧 − 1) −𝑤0 and 𝐹 (𝑠) = 𝑠 + 𝑟 log(1 − 𝑠
𝑟 ).

Let 𝐹1 (𝑠), 𝐹2 (𝑠) be the restrictions of 𝐹 (𝑠) for the lower and upper
parts of the phase plot. Then the time period for the lower section

is given by ∫ 𝑧𝑚𝑎𝑥

𝑧𝑚𝑖𝑛

𝑑𝑧

𝑠
=

∫ 𝑧𝑚𝑎𝑥

𝑧𝑚𝑖𝑛

𝑑𝑧

𝐹−1
1
(𝐺 (𝑧))

.

The total time for both the lower and upper section is given by∫
log(𝑥𝑚𝑎𝑥 )

log(𝑥𝑚𝑖𝑛)

(
1

𝐹−1
1
(𝐺 (𝑧))

− 1

𝐹−1
2
(𝐺 (𝑧))

)
𝑑𝑧.

When𝑤0 ≃ 0, linearization is possible. Simplifying the trajectory

𝐹 (𝑠) = 𝐺 (𝑧) using the approximations 𝑒𝑎 = 1+𝑎+ 𝑎2
2
and log(1−𝑎) =
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𝑎 − 𝑎2

2
, we have

𝛾 (𝑒𝑧 − 𝑧 − 1) −𝑤0 = 𝑠 + 𝑟 log(1 − 𝑠

𝑟
)

⇒ 𝛾𝑧2

2

−𝑤0 = 𝑠 + 𝑟 (− 𝑠
𝑟
− 𝑠2

2𝑟2
)

⇒ 𝛾𝑧2

2

+ 𝑠2

2𝑟
= 𝑤0

Essentially, we have an elliptical curve with 𝑥,𝑦 following sinusoidal

behavior with a period
2𝜋√
𝑟𝛾
. □

Proof of Theorem 2(d).

Assuming a continuous form for 𝐽 , we observe that

¤𝐽 = (𝑟 − 𝑒𝐼 ) 𝐽

⇒ 1

𝐽

𝑑 𝐽

𝑑𝑡
= 𝑟 − 𝑒𝐼

𝑑

𝑑𝑡
(log(𝐽 )) = 𝑟 − 𝑒𝐼

𝑡=𝑡0+𝑇𝑝𝑒𝑟𝑖𝑜𝑑∫
𝑡=𝑡0

𝑑 (log(𝐽 )) =
𝑡=𝑡0+𝑇𝑝𝑒𝑟𝑖𝑜𝑑∫

𝑡=𝑡0

(𝑟 − 𝑒𝐼 )𝑑𝑡

(since 𝐽 is periodic)
𝑡=𝑡0+𝑇𝑝𝑒𝑟𝑖𝑜𝑑∫

𝑡=𝑡0

𝑑 (log(𝐽 )) = 0 (for any 𝑡0)

⇒
𝑡=𝑡0+𝑇𝑝𝑒𝑟𝑖𝑜𝑑∫

𝑡=𝑡0

𝐼𝑑𝑡 =
𝑟

𝑒
𝑇𝑝𝑒𝑟𝑖𝑜𝑑

= 𝐼∗𝑇𝑝𝑒𝑟𝑖𝑜𝑑

In other words, 𝐼∗ is also the average value of 𝐼 in each cycle.

Considering the time derivatives of 𝑆 and 𝐼 , we have ¤𝐼 = 𝛽𝑆𝐼

𝑁
+𝛾𝐼

and ¤𝑆 = − 𝛽𝑆𝐼

𝑁
.

Let Δ𝑆 be the drop in 𝑆 during a single cycle starting at any 𝑡0,

then

Δ𝑆 =

∫ 𝑡=𝑡0+𝑇𝑝𝑒𝑟𝑖𝑜𝑑

𝑡=𝑡0

¤𝑆𝑑𝑡

=

∫ 𝑡=𝑡0+𝑇𝑝𝑒𝑟𝑖𝑜𝑑

𝑡=𝑡0

(−¤𝐼 + 𝛾𝐼 )𝑑𝑡

(since ¤𝐼 = − ¤𝑆 + 𝛾𝐼 )

= 0 + 𝛾
∫ 𝑡=𝑡0+𝑇𝑝𝑒𝑟𝑖𝑜𝑑

𝑡=𝑡0

𝐼𝑑𝑡

(since 𝐼 is periodic)
= 𝛾𝐼∗𝑇𝑝𝑒𝑟𝑖𝑜𝑑 (from above)

□

Proof of Theorem 4.

Assuming a proportional additive control on 𝛽 of the form
¤𝛽 =

𝛽2𝑆𝐼

𝑁
+ (𝑟 − 𝑒𝐼 )𝛽 + 𝑢𝛽, the variation of the susceptible contacts 𝐽 is

given by

¤𝐽 = ¤𝛽𝑆 + 𝛽 ¤𝑆

=

(
𝛽2𝑆𝐼

𝑁
+ (𝑟 − 𝑒𝐼 )𝛽 + 𝑢𝛽

)
𝑆

+ 𝛽
(
− 𝛽𝑆𝐼

𝑁

)
= (𝑟 − 𝑒𝐼 + 𝑢) 𝐽

Let z = (𝐽/𝐽 ∗ − 1, 𝐼/𝐼∗ − 1) = (𝑧1, 𝑧2) so that z = (0, 0) corresponds
to the equilibrium state. Then𝑤 (𝐽 , 𝐼 ) = 𝛾 (𝑧1 − log(1 + 𝑧1)) + 𝑟 (𝑧2 −
log(1 + 𝑧2)). For 𝑉 (z) = 𝐿(𝑤 (𝐽 , 𝐼 ),𝑤∗) to be a control-Lyapunov

function, we require ¤𝑉 (z, u) < 0.

¤𝑉 (z, u) = ⟨∇𝑉 (z), ¤z⟩

=
𝑑𝐿

𝑑𝑤
⟨∇𝑤 (z), ¤z⟩

=
𝑑𝐿

𝑑𝑤

(
𝑑𝑤

𝑑𝑧1
¤𝑧1 +

𝑑𝑤

𝑑𝑧2
¤𝑧2

)
=

𝑑𝐿

𝑑𝑤

(
𝛾

(
1 − 1

𝑧1 + 1

)
¤𝑧1

+ 𝑟
(
1 − 1

𝑧2 + 1

)
¤𝑧2

)
=

𝑑𝐿

𝑑𝑤

(
𝛾

( 𝐽

𝐽 ∗
− 1

)
𝑢

)
.

When the control is chosen as

𝑢 = −𝜂 (𝑡) 𝑑𝐿
𝑑𝑤
( 𝐽
𝐽 ∗ − 1) and 𝜂 (𝑡) > 0, ∀𝑡,

¤𝑉 (z, u) =
𝑑𝐿

𝑑𝑤

(
𝛾

( 𝐽

𝐽 ∗
− 1

))
×

(
− 𝜂 (𝑡) 𝑑𝐿

𝑑𝑤

( 𝐽

𝐽 ∗
− 1

))
= −𝜂 (𝑡)𝛾

(
𝑑𝐿

𝑑𝑤

( 𝐽

𝐽 ∗
− 1

))2
< 0 (unless𝑤 = 𝑤∗)

Hence, Artstein’s theorem guarantees convergence to the equi-

librium. □
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