
 

 

 

 

 

 

Supplementary Materials 

 

The basic reproduction number (R0): 

The basic reproduction number is calculated as follows[23]: 

The four variables of S, E, A and I are not affected by H, R and V. Therefore, we only consider the four compartments of S, E, 

A,I, and the infected compartments are E, A and I. So, 
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The derivation of the above matricesare obtained 
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Calculate the inverse of the matrix V, we get 
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The basic reproduction number is the principal eigenvalue of the matrix  . 

Functions of contact rate and detection rate 

In order to accurately describe the variation of control strategies in this model, we assume that the contact 

rate ( )ijc t  is decreasing(or increasing) as the increasing (or decreasing) intensity of the control strategy with 

respect to time t. In this study, we focus on three countries, China, India and Italy. The function of ( )ijc t  for 

China and India is given by 

0

( )0
( )

( ) c c

ij c

ij r t tf f
ij ij ij c

c t t
c t

c c e c t t 

  
  

                (2)               

where 0
ijc  denotes the baseline contact rate at the initial time and 0f

ij c ijc q c denotes the minimum contact rate under the 

contact control measures before ct ,where 0 1cq  quantifies the intensity of contact control measures with qc=0indicating 

the strongest contact control measures to make the final contact rate as 0, and qc=1 indicating “no any effect” of the contact 

control measures at all. Parameter cr denotes the exponential decreasing rate of the contact rate after the contact control 



measures are implemented. 

   In Italy, the emergency control was established after the first case reported, but shops, theatres and 

cinemas gradually returned to open in June. In October and November, a number of decrees were issued on strengthening 

control measures(https://www.acaps.org/covid-19-government-measures-dataset). Thus, the trajectory of the control measures 

in Italy was initially strong, then relaxed and strong again. Accordingly, we model the function of ( )ijc t  for Italy as follows, 
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where 1f
ijc  (

0

1

1
ijc

f
ij cqc  ), 2f

ijc  ( 1

2

2 f
ijc

f
ij cqc  )and 3f

ijc ( 2

3

3 f
ijc

f
ij cqc  ) are the minimum or the maximum contact rate under 

control strategies or due to relaxation of control.
1c

r ,
2cr  and

3cr denote how an exponential increase or decrease in the contact 

rate is affected by strengthening control or relaxation of control,
1c

t and 
2ct  are the switching time of control strength. 

We also set the transition rate )(t as an increasing function with respect to time t, with the following form: 
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                  (4) 

where 0  is the initial rate of confirmation(detection), f is the fastest confirmation rate ( 0 , 1f q q    ), and r is the 

exponentially increasing rate. The critical time ct for China is January 23th, 2020when Wuhan city and all parts of the country 

continued to take stringent control measures. The onset time of the epidemic in Italy and India was later than January 23, 2020, 

so we set ct  for India and Italy to be 0.  

Parameter estimation 

Other parameters related to control measures such as the variation of contact rate and detection rate, and some initial 

conditions such as initial values of the exposed individuals and infected individuals are estimated by fitting the model to the 

daily reported cases(Fig.1 and Table 1)by the nonlinear least squares (NLS) estimation method. We assume that the 

measurement error of the data(the daily confirmed cases )(tY ) follows a distribution with mean 0 and variance 2 . The NLS 

objective function is 

                           
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
T

t i
iItYL

1

2
16

1

))(()(                              (6) 

where T is the length of the data used for model fitting. The interior-point method was used to optimize the loss function (6), 

and implemented with MATLAB. Here, since there are few exposed and infected persons at the beginning of the epidemic, we 

assume that the number of exposed persons and the number of infected persons(asymptomatic and symptomatic) in different 

age groups are equal. 



Model fitting and parameter estimation results 

Fig.1 shows the data of daily confirmed new cases (circle) and the results of model fitting (solid curve) for the three countries, 

China, India and Italy. We can see that the fitted models capture the trends of the observed data very well. In particular, a small 

wave and a big peak of the epidemic in Italy were captured on March 21 and November 13 respectively(Figure 1b), and a 

single wave of the epidemic in China and India was captured on February 12 and September 16 by the model (Figure 1a and 

1c). The estimated model parameters as well as the derived parameters from literature are shown in Table 1.  
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Fig.S1: The population age distribution for the three countries (China, Italy and India). 

 

 

Fig.S2: Thecontact pattern of the three countries (China, Italy and India) for different age groups. 
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Fig.S3: The contour plot of the three endpoints: the basic reproduction number (R0, 1
st row), the cumulative number of 

infections (Ic, 2
nd row) and the cumulative number of deaths (Dc, 3

rd row) for Italy. The optimal age-specific vaccination 

distributions for these three endpoints are shown in (a4), (b4) and (c4) respectively when %1.0v . RO , IO ,and DO  are the 

optimal points obtained by minimizing the three endpoints (R0, Ic, Dc) respectively. 

 
Fig.S4: The contour plot of the three endpoints: the basic reproduction number (R0, 1

st row), the cumulative number of 



infections (Ic, 2
nd row) and the cumulative number of deaths (Dc, 3

rd row) for China. The optimal age-specific vaccination 

distributions for these three endpoints are shown in (a4), (b4) and (c4)respectively when %1.0v . RO , IO ,and DO  are the 

optimal points obtained by minimizing the three endpoints (R0, Ic, Dc) respectively. 

 

 
Fig.S5: Simulation results for the number of infections (in log10 scale) for Italy during the time period [T+1,T+180] for five 

different scenarios of contact control release (a-e) for different values of q  and   under different releasing times,T+1 (1st 

row), T+30(2nd row), and T+60 (3rd row). The optimal age-specific vaccination strategy with the initiation time of vaccination 

as 1T was assumed for all the simulation scenarios.  
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Fig.S6: Contour plot of the number of infections (log10 scale) as a function of the release ratio of contact rate q

( Ttqctc ijij  ,)( 0
) and the daily vaccination rate v for China within 6 months after releasing under different initial releasing 

time: T+1 (the first line), T+30(the second line), T+60 (the third line).We assumedone infected individual is imported and the 

detection rate 4.0 . 

 

Fig.S7: Contour plot of the basic reproduction number (R0)as a function of the contact control release rate (q) and the detection 

rate (δ) with different daily vaccination rates v=0.1% (the solid line) and v=0.15%(the dash line)under the optimal age-specific 
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vaccination strategy in Italy. The vaccination periods are set to be 3 months(a), 6 months(b), 9 months (c) and 12 months (d). 

The red dot is the current value of these two parameters. 

 

 

 

Fig.S8: Contour plot of the basic reproduction number (R0)as a function of the contact control release rate (q) and the detection 

rate (δ) with different daily vaccination rates v=0.1% (the solid line) and v=0.15%(the dash line)under the optimal age-specific 

vaccination strategy in China. The vaccination periods are set to be 3 months(a), 6 months(b), 9 months (c) and 12 months (d). 

The red dot is the current value of these two parameters. 

 

 

Tables: 

Table S1: Optimal age-specific vaccination distributions for different daily vaccination rates and different endpoints for three 

countries (China, Italy and India). 

China R Cumulative infection Cumulative death 

0.05% Beta(13,20) Beta(13,20) Beta(14,20)
0.15% Beta(8,11) Beta(12,18) Beta(12,17)
Italy R Cumulative infection Cumulative death 

0.05% Beta(17,20) Beta(17,20) Beta(16,1)
0.15% Beta(17,20) Beta(16,18) Beta(20,1)
India R Cumulative infection Cumulative death 

0.05% Beta(7,20) Beta(7,20) Beta(20,1)
0.15% Beta(5,13) Beta(8,20) Beta(20,1)

 


