
Additional file 1 
 
Supplementary methods 
 
Model description 
Figure S1 shows the structure of the discrete-time stochastic individual-level 
susceptible-exposed-infectious-recovered (SEIR) model used to simulate transmission 
in the shelter. On any given day ! each individual is in one of the seven states shown in 
the flow diagram and defined in Table S1. 
 
The probabilities that individual " is infected on day ! or avoids infection on day ! given 
that they are susceptible to infection are: 
 

#!(!) 	= 1 − *"#!(%),				" ∈ -(!) 
 

1 − #!(!) = *"#!(%),					" ∈ -(!) 
 
where .!(!) is the force of infection on each individual " on day !. The force of infection 
on each individual on each day is equal to the force of infection they are exposed to 
when inside the shelter, which is proportional to the prevalence of infectious individuals 
inside the shelter on that day and the infectiousness of these individuals, plus a 
background force of infection they are exposed to when outside the shelter in the 
community: 
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Here / is the transmission rate coefficient within the shelter (assumed constant); 0!(!) is 
an indicator function for whether the individual is present in the shelter on day !; the 
5(!)’s represent the number of infectious individuals inside the shelter on day ! in 
different states of infection – subclinical and clinical, denoted by subscripts < and = 
respectively, and early and late stage, denoted by subscripts 1 and 2 respectively; ℎ is 
the infectiousness of subclinically infected individuals relative to those with clinical 
symptoms; 4 is the infectiousness of the early infectious stage relative to the late stage; 
and : is the transmission rate outside of the shelter. Mixing of infectious and susceptible 
individuals in the shelter is assumed to be homogeneous due to a lack of contact data 
from the shelter outbreaks with which to parameterize inhomogeneous mixing. 
Transmission from the external community is modeled assuming homogeneous mixing 
of the shelter residents and staff with the community outside of the shelter during each 
day and negligible impact of infected individuals entering the community from the 
shelter on the overall background transmission rate. The background transmission rate 
is treated as constant given the relatively short durations of the outbreaks, and is 
estimated from the incidence of confirmed COVID-19 cases for the city of each shelter 
with adjustments for reporting delay, infection-to-onset time and relative risk of infection 



for homeless individuals as described below (see Estimation of background infection 
rate below).  
 
We note that the formulation of the force of infection in equation (1) corresponds to 
frequency-dependent transmission, i.e. assumes that the number of “contacts” per 
infectious individual in the shelter per day is approximately constant regardless of the 
number of individuals present in the shelter. We make this assumption in common with 
other authors [1] because it is believed that the main mode of SARS-CoV-2 
transmission is from person to person via respiratory droplets containing virus particles 
[2], i.e. occurs over short distances predominantly among close contacts of infectious 
individuals. 
 
The duration ?- of the latent infection stage ℰ, is assumed to be negative-binomial, with 
mean A- = 3 days and shape parameter C- = 4, i.e. probability mass function: 
 

ℙ(?- = F) =
Γ(F + C-)
Γ(C-)F!

1
C-

C- + A- − 1
8
."
1

A- − 1
C- + A- − 1

8
/")

, F = 1,2, …,	 

 
where Γ(z) = ∫ L0")*"1FL	

2
3 is the gamma function. After passing throught the latent 

stage, individuals enter an early (presymptomatic) infectious stage (ℐ+,)) leading to 
clinical symptoms with age-dependent probability N(O!), where O! is the age group (<60 
years/≥60 years) of individual ", or an early infectious stage (ℐ',)) leading to subclinical 
infection (no symptoms/very mild symptoms) with probability 1 − N(O!). After a negative-
binomial number of days (PQ(C) = 4, A) = 2.3)) of early-stage infectiousness individuals 
progress to late-stage subclinical (ℐ',*) or clinical (ℐ+,*) infectiousness. 
 
Following a further negative-binomially-distributed duration (PQ(C* = 4, A* = 8) with 
mean 8 days) subclinical cases recover and are no longer infectious and clinical cases 
either recover or are hospitalized, and therefore no longer contribute to transmission in 
the shelter (ℛ). See Table S1 for the key attributes of each infection state and Table S5 
for a full list of model parameters and their values. The probability of hospitalization for 
clinical cases is age- and co-morbidity dependent (Table S2), and hospitalized cases 
are assumed to have a 26.1% risk of requiring intensive care based on data from 
Wuhan, China [3]. Cases admitted to the intensive care unit (ICU) have an age- and co-
morbidity-dependent risk of death estimated from ICU data from Wuhan, China [4,5].  
 
Basic reproduction number, T3 
The basic reproduction number for the model, defined as the average number of 
secondary infections caused by the average infectious individual in an entirely 
susceptible shelter population (in the absence of interventions) can be calculated from 
first principles as: 
 
T3 = 	probability	of	infection	given	"contact" × "contact"	rate	 × 	duration	of	infectiousness	

=
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where “contact” is defined as susceptible individuals coming into contact with infectious 
material from infected individuals, and the sums are over all individuals in the shelter 
(residents and staff). Variation in the number of secondary infections per infectious 
individual is modeled through the variation in the durations of the early and late 
infectious stages described above. 
 
Relative infectiousness of early infectious stage and subclinical infection 
Evidence suggests that infectiousness of symptomatic COVID-19 cases is not constant 
over time, but peaks at or shortly before symptom onset, such that pre-symptomatic 
individuals are more infectious than symptomatic individuals [6,7]. We approximated this 
variation in infectiousness over time by treating individuals’ infectiousness as constant 
during each of the early and late infectious stages, but higher during the early infectious 
stage. The relative infectiousness of the early infectious stage to the late infectious 
stage, 4 = 2, was chosen to approximately match the estimates of the proportion of pre-
symptomatic transmission of He et al [6] and the lower range of those of Casey et al [7] 
of 44% and 34% respectively, assuming a mean duration of the early infectious stage of 
A) = 2.3 days [6]: 
 

proportion	of	transmission	from	early	infectious	stage =
4A)

4A) +	A*
=

2 × 2.3
2 × 2.3 + 8

= 37%, 

 
We used the lower range of the estimates of Casey et al for the base case analysis, as 
we believe that estimates of pre-symptomatic infectiousness are likely to be biased 
upward due to behavior changes (e.g. self-isolation) upon symptom onset that reduce 
transmission from symptomatic individuals in general settings but are less likely to apply 
in congregate shelter settings. However, we also considered higher relative 
infectiousness (up to 3) in the sensitivity analysis. We assumed the same relative 
infectiousness of early-stage infection for clinical infection and subclinical infection. 
 
Subclinically infected individuals were assumed to be as infectious as clinical cases in 
the base case analysis, due to limited data on the relative infectiousness of subclinical 
infection and the detection of similar viral load in asymptomatic individuals as 
symptomatic individuals in several studies [6,8]. Lower relative infectiousness of 
subclinical infection (down to 50%) was considered in the sensitivity analysis. 
 
Duration of detectable viral load 
Studies that have measured the viral load of individuals infected with SARS-CoV-2 over 
time since symptom onset suggest that the virus remains detectable from throat and 
nasal swabs and sputum and stool samples for longer (~20 days after symptom onset) 
than individuals remain infectious (~7 or 8 days after symptom onset) [6,9]. We 
therefore modelled the duration of detectable viral load for each infected individual by 
assigning a random draw from a truncated discretized normal distribution that 
characterizes the variation in this duration (Figure S3) to each individual when they 
enter the late infectious stages ℐ',* and ℐ+,*. We chose the parameters of the distribution 
based on data on the variation in times after symptom onset at which individuals’ viral 



loads reach the PCR detection limit from several studies [6,9–13], with minimum and 
maximum durations of 5 days and 37 days. 
 
We assumed that individuals in the early infectious stages ℐ',) and ℐ+,) always have 
detectable viral loads and that in the latent infection stage the viral load is undetectable. 
We treated the duration of detectable viral load as being the same for subclinical and 
clinical infection and independent of the individual’s duration of infectiousness. This 
means that individuals can still have a detectable viral load when they are no longer 
infectious and are in the recovered compartment (ℛ). It is likely that there is some 
correlation between viral load and symptom severity and infectious duration (and other 
factors such as age), but as of yet there is insufficient data with which to parameterize 
these relationships and studies measuring viral loads over time by age and severity 
have shown mixed results [6,14–16]. 
 
Sensitivity and specificity of PCR tests 
Although there is some evidence to suggest that the sensitivity of PCR tests varies with 
time since infection (i.e. that it is lower during early and late infection) [17], the data 
currently available to accurately characterize this variation is very limited. We therefore 
made the simplifying assumption that the sensitivity of PCR tests is constant with time 
since the start of infectiousness (time of entering the early infectious stages ℐ',) and ℐ+,)) 
and use a fixed sensitivity of 75% based on available data [17–20] for the base case 
analysis. We assumed perfect specificity of PCR tests for the base case analysis, i.e. no 
false positive test results, as current evidence suggests that they have high specificity 
(~99%) [17,20], but also considered lower specificity in the sensitivity analysis. 
 
Effectiveness and impact of masking 
The impact of mask wearing on transmission depends on the effectiveness with which 
masks reduce infectious material exhaled by infectious individuals, e41, and that with 
which they reduce infectious material inhaled by susceptible individuals, e!5, and 
compliance with mask wearing, =. We modeled the impact of masking via a reduction in 
the transmission rate coefficient: 
 

/6 = /(1 − =e!5)(1 − =e41) 
 
where /6 is the transmission rate coefficient under “universal” masking and we have 
assumed that compliance with masking is the same among infectious individuals as 
among susceptible individuals. 
 
We reviewed several different sources of evidence on the effectiveness of masking for 
reducing transmission of SARS-CoV-2. These included five systematic reviews and 
meta-analyses of impact on infection rates [21–25], a meta-analysis of impact of non-
medical masking on infection rates in a community setting [26], a living rapid review 
[27], a narrative review [28], and a number of primary analyses on impact of mask 
wearing on infection among contacts of confirmed COVID-19 cases [29,30] and on the 
filtration efficiency of different types of masks [31–35]. Overall, these studies suggest 
that mask wearing reduces transmission of SARS-CoV-2. However, there is 



considerable variation in the estimated impact on infection rates and very few studies 
have been performed specifically for SARS-CoV-2 [21,23]. Those that have have 
tended to be in healthcare settings, where the estimated impact of mask wearing has 
generally been found to be higher than in non-healthcare settings [21–23]. Estimates of 
overall odds ratios (ORs) for risk of infection with respiratory viruses (SARS, MERS, 
influenza, H1N1, SARS-CoV-2) for mask wearers compared to non-mask wearers from 
meta-analyses range from 0.15 to 0.94, and 0.2-0.3 in healthcare settings and 0.53-0.56 
in non-healthcare settings [21–25]. A retrospective cohort study of transmission of 
SARS-CoV-2 among household contacts of confirmed cases in China estimated an 
adjusted OR for risk of infection of 0.21 (95% CI 0.06-0.79) in households in which 
masks were used by at least 1 household member before the index case developed 
symptoms, but found no association between mask use after illness onset and infection 
risk [29]. Importantly, evidence from randomized control trials (RCTs) of mask 
effectiveness for preventing SARS-CoV-2 transmission is lacking. The only published 
RCT for SARS-CoV-2 to date did not find a statistically significant effect on infection risk 
[36], and RCTs for other respiratory viruses have either found only a weak effect of 
mask wearing on infection risk or non-statistically-significant associations [24,25,28]. 
 
Compliance with masking has been shown to be a crucial factor for effectiveness. A 
retrospective case-control study among contacts of COVID-19 patients in Thailand 
found that wearing a mask all the time decreased the risk of infection compared to not 
wearing a mask (adjusted OR 0.23, 95% CI 0.09-0.60), but that occasional mask use 
was not associated with a statistically significant decrease in infection risk (adjusted OR 
0.87, 95% CI 0.41-1.84) [30]. A meta-analysis of 40 studies of effectiveness of masks 
for preventing transmission of respiratory viruses that controlled for virus type, setting, 
mask type, and comparison group, among other variables, found that non-medical 
masking reduced risk of infection in the general population by 40% (95% credible 
interval 20-54%) [26]. Mask material has also been shown to be an important factor for 
mask effectiveness, with N95 respirators being more effective at filtering droplets of the 
size that carry virus particles than surgical masks, and surgical masks being more 
effective than cloth masks [24]. Estimates of filtration efficiency for different mask types 
vary considerably, however, from 3 to 90% for cloth masks, to 53-96% for surgical 
masks, to 90-95% for N95 respirators [24,31,34,35]. 
 
To ensure that the overall reduction in transmission from masking is consistent with 
reductions estimated from observational studies [26], we conservatively assume in the 
base case analysis that masks worn in homeless shelters are 30% effective at filtering 
infectious particles exhaled by infected individuals and 40% effective at blocking 
infectious particles from being inhaled by susceptible individuals. However, we also 
consider a wide range of different efficacies in sensitivity analysis (10-50% and 20-60% 
respectively).  
 
Data on mask use among people experiencing homelessness is lacking. Data from 
large surveys of US adults shows that mask use has increased over time, but that the 
percentages of individuals who report always wearing a mask in public and when 
visiting family and friends have only reached approximately 60% and 40% respectively 



[26,37]. People experiencing homelessness are more likely to have issues with access 
to masks. It also may not be possible for them to wear a mask at all times when inside a 
shelter, e.g. when sleeping at night or if they have medical conditions that prevent them 
from wearing a mask. We therefore assume that average masking compliance inside 
the shelter is 60% in the base case analysis (corresponding to a 38% overall reduction 
in transmission with the above base case mask exhalation and inhalation efficacies), 
and consider compliances of 30-100% in sensitivity analysis (corresponding to a 10-
80% overall reduction in transmission with the above uncertainty ranges for the 
efficacies). 
 
Estimation of background infection rate during shelter outbreaks 
We used publicly available data on daily numbers of new confirmed COVID-19 cases in 
the city of each shelter from county public health departments to estimate the 
background infection rate [38–40]. We assumed a fixed delay from infection to reporting 
of 7 days, corresponding to 2 days of pre-symptomatic infection and 5 days of 
symptoms before reporting [41,42], and so used case counts 7 days ahead as an 
estimate of the number of new reported infections on each day. We estimated the 
infection incidence in the community outside the shelter during the period of each 
shelter outbreak, "7 , from the delay-adjusted case counts for the city of the shelter over 
the 3 weeks prior to the end date of data collection, o45/, as: 
 

"7 =
p∑ q%
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r
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where q% is the number of new confirmed cases reported on day !, r  is the city 
population [43], and p is an under-reporting factor to account for only a proportion of 
infections being reported. For the period of the shelter outbreaks we used p = 10, based 
on estimated infection-to-reported-case ratios from seroprevalence data for the period 
of late March–early May from 10 different localities across the US [44]. For the 
intervention simulations, we used p = 4, based on lower estimates from seroprevalence 
data for late May-June from a continuation of the same study [45]. We then estimated 
the background infection rate in homeless individuals outside of the shelter as: 
 

: = C"7 , 
 
where C is a relative risk of infection for homeless individuals. Based on data from 
Seattle & King County, WA, where 1.5% of the population is homeless (11199/753675) 
[43,46] and homeless individuals account for 2.5% (445/18130) of confirmed COVID-19 
cases [38,47], we use an approximate relative risk for homeless individuals of C = 2. 
 
Model calibration 
We calibrated the model by fitting to data on numbers of PCR-positive and negative 
individuals in testing conducted in outbreaks in 5 homeless shelters in 3 different cities: 
San Francisco (n=1), Boston (n=1) and Seattle (n=3). Prevalence of PCR positivity 
among residents and staff during mass testing events in these shelters was markedly 
different, ranging from 2.6%–51.6%. This is likely partly due to testing being conducted 



at different times after the outbreaks started, but likely also reflects differences in 
transmissibility due to other factors, such as variation in infectiousness between 
individuals, shelter living density, bed spacing, air ventilation quality, and differences in 
shared washing and eating facilities. We therefore fitted the model separately to the 
data from each of these outbreaks to estimate the basic reproduction number, T3, for 
each setting. Given uncertainty in when the first infected individuals entered each 
shelter and how many of them there were, due to asymptomatic infection and 
incomplete detection of early cases, we also estimated the time since introduction of 
infection into the shelter at the end of the data collection period, o, and the initial 
number of latently infected individuals who entered the shelter, s3. We assumed that the 
individual(s) who initially introduced infection into the shelter were all latently infected 
when they entered, since a large range of scenarios in which they were in a later 
infection stage or mixture of infection stages are covered by the flexibility in the 
introduction time and the initial number infected. We also assumed that following the 
initial introduction into the shelter any further introductions were solely as a result of 
residents and staff being infected when mixing with the community outside the shelter 
and then returning to the shelter. 
 
Since more detailed individual-level data on PCR test results and symptom onset times 
for clinical cases was available for the outbreak in the San Francisco shelter, we also 
used the numbers of early symptomatic cases who tested PCR-positive and daily 
numbers of new symptom onsets when calibrating the model to this outbreak (see 
Figure S4 and Figure S5A). As exact dates of testing during the cross-sectional surveys 
in the Seattle and Boston shelters were not available, we assumed that all testing 
occurred on the last day of each survey. For all the outbreaks, we assumed that PCR 
tests took a day to be processed, such that results were returned and positive 
individuals removed the day following testing (except on April 10th at the San Francisco 
shelter, when negative individuals were removed instead). 
 
Aggregate data (by age and co-morbidity risk group) on movement of individuals in and 
out of the shelter over time was only available for the San Francisco shelter, so we 
ensured that the population of this shelter matched that in the shelter registry (see 
Demographics and movement of individuals in and out of the shelter below) and 
assumed that the populations of the other shelters remained approximately constant 
over the period of data collection. Residents’ age categories in the Seattle and Boston 
shelters were set according to data on the age distributions from [48] and [49]. For all 
shelters, staff were assumed to be all <60-years-old and at low risk of hospitalization 
and death. 
 
Approximate Bayesian Computation algorithm 
We fitted the model to the data using an approximate Bayesian computation sequential 
Monte Carlo (ABC-SMC) algorithm [50–52] to estimate T3, s3, and o. Since s3 and o 
are discrete parameters, we adapted the model selection algorithm of Toni et al [51,52] 
by replacing the model index as the discrete parameter with the discrete parameter pair 
t = (s3, o) (i.e. the model indices by the different possible combinations of s3 and o). 
The algorithm starts by sampling pairs t∗ = (s3

∗, o∗) from the prior distribution u(t), 



and corresponding T3 values, T3∗∗, from the prior distribution u(T3); simulating outbreaks 
with these parameter values (particles); and accepting those for which the simulated 
number of PCR-positives ?∗ falls within a certain pre-specified tolerance :) of the 
observed number of PCR-positives ? according to a distance measure F(⋅), i.e. 
F(?, ?∗) ≤ :). A sequence of distributions (generations) is then constructed by 
repeating this process with a set of decreasing tolerances x = y:>z>;),*,…, proposing T3 
values for each value of t in each generation by perturbing the particles (T3 values) 
specific to t from the previous generation using a perturbation kernel {(T3|T3∗). In this 
way, the particles in successive generations converge towards the joint posterior 
distribution of the parameters given the data. Pseudocode for the algorithm is as 
follows: 

1. Set the number of generations } and number of particles P. 
2. Set the tolerance schedule :) > :* > ⋯ > :@. Set the generation index Ä = 1. 
3. Set the particle index " to 1. 
4. Sample t∗ from the prior distribution u(t). If Ä = 1, sample T3∗∗ from the prior 

distribution u(T3). If Ä > 1, sample T3∗ from the previous generation {T3(t∗)>")} 
with weights É(t∗)>"), and perturb the particle T3∗ to obtain T3∗∗~{(T3|T3∗). 

5. If u(T3∗∗) = 0, return to step 4. 
6. Run a simulation of the outbreak and PCR testing for the sampled values 

(T3
∗∗, t∗) to generate a candidate dataset ?∗∗. 

7. If ℙÖ(?|?∗) = 0jF(?, ?∗) < :>k = 0, return to step 4. 
8. Set t>

(!) = t∗, and add T3∗∗ to the population of particles {T3(t∗)>} and calculate 
its weight as: 

É>
(!) =

⎩
⎪
⎨

⎪
⎧ 1, if	Ä = 1

u(T3∗∗)

∑
É>")
(!) {(T3

∗∗|T3,>")
(!) )

ℙ(t>") = t∗)!;6&'(;6∗

	 , if	Ä > 1 

9. If " < P, set " = " + 1 and go to step 4. 
10. Normalize the weights É> such that ∑ É>

(!) = 1B
!;) . 

11. Calculate the marginal probabilities for the combinations t = (s3, o), by 
summing the weights for each combination:  

ℙjt> = tk = ã É>
(!)3T3,>

(!) , t>
(!)7.

!;6&
(!);6

 

12. If Ä < }, set Ä = Ä + 1 and go to step 3. 
 
We used } = 10 generations, with P = 1000 particles in each generation, and a normal 
perturbation kernel for T3, {(T3|T3∗)~P(T3∗ , å*), with standard deviation å = 1. We used 
broad uniform prior distributions due to a lack of information to support more informative 
prior distributions: T3	~	ç(1,8), t = (s3, o)	~	ç(1,5) × ç(14,30) (for all shelters except 
Seattle shelter B, for which t	~	ç(1,10) × ç(13,20)), where the prior for t is discrete 
with integer support. The wide bounds for the prior for T3 were chosen based on the 
large range of basic reproduction numbers reported in the literature[41] and 
demonstrated potential of COVID-19 for superspreading events [53–57]. The 14-day 



lower bound of the prior for o was chosen based on the symptom onsets of the first 
cases identified in each of the shelters being at least 9 days before the end of data 
collection and the mean incubation period being approximately 5 days, such that the 
first cases were unlikely to have been infected later than 14 days before the end of data 
collection. Thirty days was taken as the upper bound for o based on it giving the earliest 
plausible time for introduction of infection into the shelters without earlier occurrence 
and detection of symptomatic cases. Lower bounds were used for the prior for o for 
Seattle shelter B to reflect the fact that it did not report any symptomatic cases before 
the first mass testing event on March 30–April 1 and had a very low prevalence of 
infection at that survey. 
 
We used the sum of squared differences between the numbers of PCR-positives on the 
testing days, è8, in the simulations, ?∗, and those in the observed data, ?, for the 
distance metric F(?, ?∗): 
 

F(?, ?∗) = êã(?% − ?%
∗)*

%∈D,
 

 
For the tolerance schedule x8 = (:), … , :@) we used regular steps decreasing from a 
discrepancy of twice the daily number of PCR-positives, :) = ë∑ (2?%)*% , to half the 
width of the exact binomial confidence interval on the number of PCR-positives on each 
day. For the San Francisco shelter, we used additional distance metrics, FE(?E, ?E∗) 
and FF(?F , ?F∗), and tolerance schedules, xE and xF, for the differences in the 
simulated and observed numbers of PCR-positives among early symptomatic cases 
tested, ?E∗ and ?E, on days èE (3/30/20–4/7/20) and the differences in the simulated 
and observed daily numbers of symptom onsets, ?F∗ and ?F: 
 

FE(?E, ?E∗) = êã(?%
E − ?%

E∗)*

%∈D-
	 

FF(?F , ?F∗) = íã(?%
F − ?%

F∗)*
8
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Since the symptom onset data is less reliable than the PCR test data and potentially 
incomplete, we used less strict tolerances for xE and xF, decreasing from discrepancies 
of twice the daily observed number of PCR-positives among early symptomatic cases 
and twice the daily number of new symptom onsets to 2/3 and 1.3 times the observed 
daily numbers respectively: 

xE = (11,10,9,9,8,7,6,5,5,4) 
:F = (49,47,45,43,41,39,37,36,34,32). 

Proposed values of (T3, s3, o) were accepted at each generation Ä only if all tolerances 
were satisfied, i.e. only if F(?, ?∗) ≤ :> and FE(?E, ?E∗) ≤ :>E and FF(?F , ?F∗) ≤ :>F.  



 
We assessed the performance of the algorithm by calculating the effective sample size 
(ESS) of the final generation of particles, sïï = 	1/∑ (É@

(!))*B
!;) , and the acceptance rate 

of proposed particles in each generation. 
 
Details of San Francisco shelter outbreak 
Full details of the outbreak in the San Franciso shelter are provided elsewhere [58]. 
Briefly, the data consisted of individual-level information on age, PCR test date and 
result, and partial data on symptom status, co-morbidity, and health outcome. The first 
two clinical cases identified in the shelter were confirmed on April 5, 2020 from PCR 
tests on April 4 and 5, 2020. The first case had symptom onset on March 31, the 
second on April 2. However, several individuals who later tested PCR-positive reported 
that they had symptom onset around these dates (Table S3 and Figure S5A). After the 
first cases were identified on April 4, contact tracing, symptom screening and PCR 
testing of symptomatic individuals was performed up to April 7. On April 8 and 9 mass 
testing of residents and staff was performed. As of April 10, 2020, 89 individuals out of 
175 tested in the shelter were PCR-positive, of whom 65 were pre-
symptomatic/symptomatic (2 unknown status), 4 required hospitalization (2 unknown 
outcome), and 1 died. Table S3 shows the numbers of positive test results returned 
from the different testing that was conducted by day of testing and number of new 
symptom onsets each day.  
 
Demographics and movement of individuals in and out of the shelter 
Even before the first cases in the shelter in San Francisco were identified, the shelter 
was not running at capacity (340 residents) and efforts were made to move high-risk 
individuals (those aged 60 and over or with co-morbidities) out of the shelter. Following 
identification of the first cases on April 5, progressively more and more individuals were 
removed from the shelter into isolation and quarantine at various sites; first those 
identified as close contacts and bedmates of the first cases and those suspected of 
being infected, then later on April 10 PCR-negative individuals, particularly high-risk 
individuals. Efforts were made to cohort the remaining residents into those who were 
PCR-positive and those with unknown COVID-status, but this was hampered by 
individuals returning to the shelter on the evening of April 10. The shelter was 
disbanded and all residents and staff were moved to isolation and quarantine sites on 
April 11.  
 
According to the shelter register, there were a total of 255 residents who were present 
at some point from March 29 to April 10, 2020. Figure S2 shows the breakdown of the 
number of residents in each of the different risk groups (no co-morbidities and under-60, 
co-morbidities and under-60, no co-morbidities and 60 or over, co-morbidities and 60 or 
over) present on each day from March 29 to April 10. We initialized the resident 
population of the shelter in the simulations such that the numbers in the different risk 
groups matched those present on March 29, and assumed the numbers in the different 
groups remained constant prior to March 29. We assumed that the proportions of the 
remaining individuals not present on March 29 in the different risk groups were the 
same as among those present. The movement of residents in and out of the shelter 



each day was simulated by randomly drawing individuals from each risk group to 
remove/add such that the number present in each risk group matched that in the 
register, accounting for the removal of symptomatic PCR-positive individuals from the 
testing from April 4–8 and their risk group. 
 
A total of 64 staff, covering general running of the shelter, support services, 
maintenance, laundry and food services over 3 shifts per day with approximately 20-25 
staff on each shift, were present at some point from March 29 to April 10. Due to a lack 
of detailed information on staff demographics and movement we assumed that all staff 
had low risk of clinical symptoms, hospitalization and death (were all under-60 without 
co-morbidities), and were present in the shelter each day for approximately the same 
amount of time as the average resident, such that they had the same risk of infection as 
residents. 
 
Estimation of impact of different interventions 
We estimated the impact of six different intervention strategies, listed in Table S6 with 
their component interventions, on the probability of averting an outbreak and the total 
numbers of infections, clinical cases, hospitalizations and deaths over 30 days in a 
shelter of 250 residents and 50 staff into which one latently infected individual is 
introduced by comparing output of simulations in which there were interventions with 
counterfactual simulations without any interventions. An outbreak was defined as ≥3 
cases that originated within the shelter within any 14-day period, which we determined 
by probabilistically assigning an infection source (background transmission vs infectious 
individuals within the shelter) to each infected individual upon infection in the 
simulations and tracking the number of infections whose source was within the shelter 
over time. We ran 1000 simulations for each intervention strategy and the 
counterfactual scenario, and calculated the probability of averting an outbreak from 
pairs of counterfactual and intervention simulations as the proportion of simulation pairs 
with an outbreak in the no-intervention scenario in which there was no outbreak in the 
intervention scenario: 
 
ℙ(outbreak	averted) = ℙ(no	outbreak	with	intervention|outbreak	without	intervention)	

=
#(pairs	with	no	outbreak	in	intervention	simulation	&	an	outbreak	in	counterfactual	simulation)

#(counterfactual	simulations	with	an	outbreak)
 

 
Reductions in cumulative incidence of infections and clinical cases under each 
intervention strategy were calculated as the median percentage reduction in total 
number of infections/clinical cases between the counterfactual simulation and the 
intervention simulation across all simulation pairs, where the percentage reduction was 
treated as 0 if there were no cases in the counterfactual simulation. 
 
Scenario and sensitivity analyses 
To assess the effect of the transmission potential within the shelter (T3) and the 
background infection rate ("7) on intervention impact, we predicted the impact of the 
different intervention strategies for the different T3 estimates from the calibration (T3 =
2.9 (Seattle A), 3.9 (Boston), 6.2 (San Francisco)) and T3 = 1.5 (representing a lower-



risk setting) for different background infection rates estimated from incidence of 
confirmed cases in Seattle, Boston and San Francisco. The background infection rates 
were estimated as in Equation (2) but with the limits in the sum replaced by July 4 and 
July 17, 2020 (to represent reported incidence for June 27–July 10, 2020, with a 7-day 
infection-to-reporting delay) and an infection-to-reported-case ratio, p, of 4 [45]. This 
gave background infection rates ranging from 122/1,000,000/day for Boston to 
439/1,000,000/day for San Francisco. We used the limits of this range and the mean 
across the three cities, along with a zero background infection rate, for the scenario 
analyses. The results are provided in Table 2 in the main text and Tables S9 and S10. 
We also assessed the variation in the probability of averting an outbreak under each 
intervention strategy for a larger number of background infection rates over the same 
range (Figure 1 in the main text). 
 
We assessed the sensitivity of the intervention impact estimates to uncertainty in key 
natural history and intervention parameters (relative infectiousness of subclinical 
infection and the early infectious stage, sensitivities and specificities of symptom 
screening and PCR tests, testing and masking compliances, and mask effectiveness) 
by simulating each intervention strategy with all combinations of minimum and 
maximum values of these parameters over their uncertainty ranges (Table S5) for the 
base case background infection rate of 122/1,000,000/day. We then calculated the 
minimum and maximum values of the probability of averting an outbreak over all 
parameter combinations to generate uncertainty ranges around the base case 
estimates of the probability of averting an outbreak (Table 2 in the main text). The 
sensitivity of the probability of averting an outbreak under the combination strategy to 
variation in the different parameter values is shown in Figure S9 and discussed in the 
main text. 
  



Supplementary results 
 
Model calibration 
Figure S10 shows the posterior distributions and pairwise correlation plots for the 
calibrated parameters T3, s3 and o for each of the shelters. The considerable 
uncertainty in the parameter estimates due to the predominantly cross-sectional 
aggregate nature of the data is reflected in the broad posterior distributions, covering 
most of the range of the prior distributions for the parameters for all the shelters except 
the San Francisco shelter, and the strong correlation between T3 and o for the Boston 
and San Francisco shelters. 
The effective sample sizes of the output for the different shelters ranged between 640 
for Seattle shelter C and 951 for the San Francisco shelter, indicating that a sufficient 
number of particles was used to estimate the posterior distributions. The acceptance 
rates varied across shelters and decreased over successive generations, remaining 
above 50% for all of the Seattle shelters but decreasing to 4% for the San Francisco 
shelter, but overall suggest that the algorithm sampled efficiently from the posterior 
distributions. 
 
Impact of infection control strategies 
The relative impact of the different infection control strategies on reducing cumulative 
infection incidence followed the same pattern as the probability of averting an outbreak 
(cf. Table S10 with Table 2 in the main text and Table S9). However, the percentage 
reduction in cumulative incidence varied non-linearly with T3 due to the bimodal nature 
of the outbreak size distribution (Figures S6–S8), such that the highest percentage 
reductions were achieved for the T3 = 2.9 scenario. Daily symptom screening alone, 
and daily symptom screening with relocation of high-risk individuals led to reductions in 
cumulative incidence of 7% and 6% for T3 = 6.2 to 45% and 44% for T3 = 2.9 (for a 
background infection rate of 122/1,000,000/day). Twice-weekly PCR testing of staff 
provided modest additional benefit, increasing the percentage reduction to 8-50%. 
Reductions under twice-weekly PCR testing of all residents and staff and universal 
masking were much greater (31–75% and 67–83%), though the impact of PCR testing 
attenuated more than that of masking with increasing T3. The highest percentage 
reductions of 72–92% were achieved under the combination strategy, with the biggest 
gain from combining interventions occurring in the highest transmissibility setting (T3 =
6.2).  
 
The pattern of impact of the intervention strategies in terms of reduction in total 
numbers of clinical cases was the same (Table S10), except for relocation of high-risk 
individuals, which led to mostly greater percentage reductions in clinical cases than 
symptom screening and routine PCR testing of staff. Total numbers of hospitalizations 
and deaths over 30 days were small with or without interventions (medians ≤ 4) and 
therefore not considered relevant at the scale of a single shelter.  	



Table S1. Definition of states in the transmission model 
State Symbol Infectious Symptomatic Detectable viral load Immune 

Susceptible !(#) û û û û 
Exposed to infection ℰ(#) û û û û 
Early subclinical 
infection 

ℐ!,#(#) ü û ü û 

Late subclinical 
infection 

ℐ!,$(#) ü û/ü (no/mild 
symptoms) 

ü û 

Early clinical infection ℐ%,#(#) ü û ü û 
Late clinical infection ℐ%,$(#) ü ü ü û 
Recovered ℛ(#) û û ü/û ü 

 
  



Table S2. Risk of clinical symptoms and hospitalization by age group and co-
morbidity status  
Risk group Probability of 

developing clinical 

symptoms, !(#.) 

Probability of 

hospitalization for 

clinical cases 

Probability of 

death for 

hospitalized cases 

admitted to ICU 

Low risk: age <60 yrs + 
no co-morbidities 

0.473 0.040 0.22 

Moderate risk: age <60 
yrs + co-morbidities 

0.473 0.085 0.33 

High risk: age ≥60 yrs + 
no co-morbidities 

0.747 0.289 0.52 

Very high risk: age ≥60 
yrs + co-morbidities 

0.747 0.618 0.77 

 
  



Table S3. Numbers of PCR-positive individuals by day of test result and daily new 
symptom onsets in San Francisco shelter March 28–April 10, 2020  
Date Number 

tested in 

random 

testing 

Number 

PCR-

positive in 

random 

testing  

Number of 

early 

symptomatic 

cases tested 

Number of early 

symptomatic 

cases PCR-

positive 

Number of new 

symptom onsets 

Mar 28 1 0 0 - 2 
Mar 29 1 0 0 - 0 
Mar 30 2 0 1 0 3 
Mar 31 0 - 0 - 2 
Apr 1 0 - 0 - 3 
Apr 2  0 - 0 - 1 
Apr 3  0 - 0 - 1 
Apr 4 1 0 1 1 2 
Apr 5  0 - 1 1 3 
Apr 6 0 - 3 2 7 
Apr 7 1 0 5 5 3 
Apr 8 89 35 - - 4 
Apr 9  64 44 - - 16 
Apr 10  5 1 - - 15 

 
  



Table S4. Numbers of residents and staff PCR tested and PCR positive at three 
shelters in Seattle during two testing events March 30–April 1, 2020 and April 7–8, 
2020 
Shelter Testing event 1 (Mar 30–Apr 1, 2020) Testing event 2 (Apr 7–8, 2020) 

 No. tested No. (%) positive No. tested No. (%) positive 

Seattle A*      
Residents 43 7 (16.3) - - 
Staff 15 4 (26.7) - - 

Seattle B     
Residents 74 2 (2.7) 52 4 (7.7) 
Staff 2 0 (0) 8 1 (12.5) 

Seattle C     
Residents 37 6 (16.2) 44 10 (22.7) 
Staff 10 0 (0) 7 1 (14.3) 

* Shelter A closed April 5, 2020, so data from testing event 2 was not used. 
 
  



Table S5. Input parameters for microsimulation of COVID-19 transmission in 
homeless shelters  

Parameter Symbol Base case value 

Range in 

sensitivity 

analysis References 

Demography     
Number of residents     

Seattle A  43 - [48] 
Seattle B  109 - [48] 
Seattle C  93 - [48] 
Boston  408 - [59] 

San Francisco  
Time-varying (see 
Figure S2) -  

Number of staff     
Seattle A  15 - [48] 
Seattle B  8 - [48] 
Seattle C  10 - [48] 
Boston  50 - [59] 
San Francisco  64 -  

Age group of individual % (<60 
years, ≥60 years) &/ 

Shelter-specific (see 
text)  [48,49] 

     
Natural history      
Mean duration of latent infection 
period '0 3 days - [6] 
Shape parameter of negative-
binomially-distributed latent 
infection period (0 4  [1] 
Mean duration of early infectious 
stage (subclinical/clinical) '1 2.3 days - [6] 
Shape parameter of negative-
binomially-distributed early 
infectious stage 
(subclinical/clinical) (1 4  [1] 
Mean duration of late infectious 
stage (subclinical/clinical)  '2 8 days - [6,9,60,61] 
Shape parameter of negative-
binomially-distributed late 
infectious stage 
(subclinical/clinical) (2 4  [1] 
Relative infectiousness of 
subclinical infection to clinical 
infection ℎ 1 0.5–1 [8,62,63] 
Relative infectiousness of early 
infectious stage to late infectious 
stage * 2 1–3 [6,7] 
Probability of developing clinical 
symptoms +(&/) 

Age-dependent (see 
Table S2) - [1] 



Mean duration of detectable viral 
load from start of late infectious 
stage  20 days - [6,9–13] 
Minimum duration of detectable 
viral load from start of late 
infectious stage  5 days - [6,9–13] 
Maximum duration of detectable 
viral load from start of late 
infectious stage  37 days - [11,13] 

Mean time from symptom onset to 
hospitalization  8 days  

Assumed 
same as 
duration of 
late 
infectious 
stage [41,64] 

Probability of hospitalization for 
clinical cases    

Age- and co-morbidity 
dependent (see Table 
S2) - [4] 

Probability of ICU admission 
among hospitalized cases  0.261 - [3] 
Probability of death for 
hospitalized cases admitted to 
ICU  

Age- and co-morbidity 
dependent (see Table 
S2) - [4] 

Infection-to-reported-case ratio , 10  [44] 
Background infection rate in 
community outside shelter %3    

Seattle A  
561 infections/1,000,000 
person-days  [38] 

Seattle B  
543 infections/1,000,000 
person-days  [38] 

Seattle C  
543 infections/1,000,000 
person-days  [38] 

Boston  

2018 
infections/1,000,000 
person-days  [39] 

San Francisco  
445 infections/1,000,000 
person-days  [40] 

Relative risk of infection for 
homeless individuals ( 2   
Background infection rate in 
homeless community outside 
shelter  - = (%3    
     
Intervention scenarios     
Simulation duration  30 days  Assumed 
Number of residents  250  Assumed 
Number of staff  50  Assumed 
Initial number of infected 
individuals  1 (assumed latent)  Assumed 
Age- and co-morbidity 
stratification  

Same as for San 
Francisco shelter  Assumed 

Basic reproduction number /4    
“low-risk”  1.5  Assumed 



“Seattle”  2.9  Calibrated 
“Boston”  3.9  Calibrated 
“San Francisco”  6.2  Calibrated 

Infection-to-reported-case ratio , 4  [45] 
Background infection rate in 
community outside shelter %3  0–439  

No background infection  
0 infections/1,000,000 
person-days   

Low  
122 infections/1,000,000 
person-days  [39] 

Moderate  
260 infections/1,000,000 
person-days  [38–40] 

High  
439 infections/1,000,000 
person-days  [40] 

Symptom screening     

Sensitivity  0.4 0.3–0.5 

Assumed 
based on 
[65] 

Specificity  0.9 0.8–0.9 Assumed 
Compliance of symptomatic 
individuals with PCR testing  80% 50–100% Assumed 

PCR testing     
Sensitivity  0.75 0.6–0.9 [17–20] 
Specificity  1 0.95–1 [17,20] 

Frequency  Twice weekly 
Daily–
Monthly [66–68] 

Compliance  80% 50–100% Assumed 
Masks     

Effectiveness at reducing 
infectious material exhaled e56 30%  10-50% [25,26,31] 
Effectiveness at reducing 
infectious material inhaled e/7 40% 20-60% [25,26,31] 
Compliance 1 60% 30–100% [26,37] 



Table S6. Different intervention strategies tested 
Strategy Interventions 

 Daily 

symptom 

screening 

Twice-

weekly 

PCR 

testing of 

residents 

Twice-

weekly 

PCR 

testing of 

staff 

Universal 

masking 

Relocation 

of high-risk 

individuals 

(1) Symptom screening ü	 û	 û	 û	 û	
(2) Routine PCR testing ü	 ü	 ü	 û	 û	
(3) Universal mask 
wearing 

ü	 û	 û	 ü	 û	
(4) Relocation of high-
risk individuals 

ü	 û	 û	 û	 ü	
(5) Routine PCR testing 
of staff only 

ü	 û	 ü	 û	 û	
(6) Combination strategy ü ü ü ü ü 

 
  



Table S7. Estimated epidemiologic parameters based on observed outbreak data 
from homeless shelters in Seattle, Boston and San Francisco 

Shelter  

Basic 

reproduction 

number 28, 
median (95% CI)* 

Number of latently 

infected individuals who 

initially entered shelter 

38, median (95% CI)* 

Number of days prior to first 

reported infection that 

infected individuals entered 

shelter† 4, median (95% CI)* 
Seattle A  2.9 (1.1–7.3) 3 (1–5) 16 (9–25) 
Seattle B 2.9 (1.1–6.7) 3 (1–5) 10 (7–14) 
Seattle C 3.0 (1.2–7.2) 3 (1–5) 15 (8–24) 
Boston 3.9 (2.2–7.6) 3 (1–5) 15 (9–23) 
San Francisco 6.2 (4.0–7.9) 3 (1–5) 21 (17–26) 

CI = credible interval. 
Data was available for three shelters in Seattle (labeled A-C).  
* 95% CIs calculated as 2.5%–97.5% quantile interval of posterior distribution. 
† & is calculated from the estimated time since introduction of infection into the shelter at the end of data collection, ', as:  
& = date	first	case	identified − (end	date	of	data	collection − ') + 1  
  



Table S8. Estimated cumulative infection incidence at the end of the PCR testing 
period in homeless shelters in Seattle, Boston and San Francisco  

Shelter  

Cumulative 

infection incidence, 

median (95% CI)*, % 

Seattle A  40 (10–81) 
Seattle B 14 (1–41) 
Seattle C 37 (12–71) 
Boston 64 (52–78) 
San Francisco 83 (72–92) 

CI = credible interval. 
* 95% CIs calculated as 2.5%–97.5% quantile interval of posterior distribution. 
 



Table S9. Probability of averting an outbreak over a 30-day period in a generalized homeless shelter* with 
simulated infection control strategies for different background infection rates in the community outside the 
shelter 
 Probability of averting an outbreak 

Infection control strategy  
!! = #. % 
(low-risk) 

!! = &. ' 
(Seattle) 

!! = (. ' 
(Boston) 

!! = ). & (San 
Francisco) 

Background infection rate = 0 
(1) Symptom screening  0.63 0.31 0.24 0.13 
(2) Routine twice-weekly PCR 
testing 0.78 0.42 0.33 0.13 
(3) Universal mask wearing 0.81 0.54 0.43 0.25 
(4) Relocation of high-risk 
individuals 0.63 0.31 0.23 0.11 
(5) Routine twice-weekly PCR 
testing of staff only 0.66 0.35 0.25 0.14 
(6) Combination strategy 0.91 0.68 0.55 0.27 

Background infection rate = 260/1,000,000/day 
(1) Symptom screening  0.17 0.04 0.02 0.01 
(2) Routine twice-weekly PCR 
testing 0.35 0.07 0.06 0.01 
(3) Universal mask wearing 0.41 0.13 0.07 0.02 
(4) Relocation of high-risk 
individuals 0.16 0.04 0.02 0.01 
(5) Routine twice-weekly PCR 
testing of staff only 0.21 0.04 0.02 0.00 
(6) Combination strategy 0.60 0.25 0.16 0.03 

Background infection rate = 439/1,000,000/day 
(1) Symptom screening  0.08 0.01 0.01 0.00 
(2) Routine twice-weekly PCR 
testing 0.19 0.03 0.01 0.00 
(3) Universal mask wearing 0.23 0.04 0.02 0.01 
(4) Relocation of high-risk 
individuals 0.06 0.01 0.01 0.00 
(5) Routine twice-weekly PCR 
testing of staff only 0.09 0.01 0.00 0.00 
(6) Combination strategy 0.41 0.12 0.05 0.02 

!! = basic reproduction number. 
* Generalized homeless shelter defined as 250 residents and 50 staff. 



Table S10. Reductions in the total number of infections and symptomatic cases over a 30-day period in a 
generalized homeless shelter* with simulated infection control strategies for different background infection rates 
in the community outside the shelter 
Infection control strategy  Median reduction in total infections (%) Median reduction in total symptomatic cases (%) 

 
!! = #. % 
(low-risk) 

!! = &. ' 
(Seattle) 

!! = (. ' 
(Boston) 

!! = ). & 
(San 
Francisco) 

!! = #. % 
(low-risk) 

!! = &. ' 
(Seattle) 

!! = (. ' 
(Boston) 

!! = ). & 
(San 
Francisco) 

Background infection rate = 0         
(1) Symptom screening  55 60 52 13 33 56 49 28 
(2) Routine PCR testing 88 85 82 40 60 75 75 54 
(3) Universal mask wearing 86 94 94 80 67 86 87 84 
(4) Relocation of high-risk 
individuals 53 60 48 10 50 60 51 32 
(5) Routine PCR testing of 
staff only 72 65 56 18 50 59 53 36 
(6) Combination strategy 96 97 98 92 75 92 94 93 

Background infection rate = 122/1,000,000/day 
(1) Symptom screening  40 45 38 7 33 39 41 24 
(2) Routine PCR testing 61 75 69 31 50 63 65 54 
(3) Universal mask wearing 67 83 86 69 50 76 81 79 
(4) Relocation of high-risk 
individuals 36 44 34 6 42 44 45 32 
(5) Routine PCR testing of 
staff only 50 51 45 8 33 48 46 28 
(6) Combination strategy 72 90 92 88 67 85 89 92 

Background infection rate = 260/1,000,000/day 
(1) Symptom screening  33 37 32 5 25 32 34 17 
(2) Routine PCR testing 53 70 69 22 43 60 67 40 
(3) Universal mask wearing 59 76 79 63 50 69 77 73 
(4) Relocation of high-risk 
individuals 30 36 31 5 35 40 41 27 
(5) Routine PCR testing of 
staff only 40 42 38 7 29 38 41 21 
(6) Combination strategy 66 86 90 79 63 81 88 85 

Background infection rate = 439/1,000,000/day 
(1) Symptom screening  31 36 25 3 23 34 31 16 
(2) Routine PCR testing 50 67 60 20 42 61 61 43 
(3) Universal mask wearing 56 74 75 53 48 68 73 67 



(4) Relocation of high-risk 
individuals 28 35 24 3 33 42 37 25 
(5) Routine PCR testing of 
staff only 36 41 33 4 27 38 37 18 
(6) Combination strategy 63 84 86 75 62 80 85 83 

!! = basic reproduction number. 
* Generalized homeless shelter defined as 250 residents and 50 staff. 
 	



Table S11. Numbers of PCR tests used under each infection control strategy 

Infection control 
strategy  

Mean number of tests 
used per person per 
month* 

(1) Symptom screening  2.0 
(2) Routine PCR testing 6.6 
(3) Universal mask 
wearing 2.0 
(4) Relocation of high-
risk individuals 2.0 
(5) Routine PCR testing 
of staff only 2.8 
(6) Combination strategy 6.6 

* All strategies use tests as they all include daily symptom screening. 
Numbers only shown for !! = 2.9 (Seattle), chosen as representative example, and a background infection rate of 
122/1,000,000/day as numbers vary little with !! and background rate. 
  



 
 
Figure S1. Structure of stochastic individual-level susceptible-exposed-
infectious-recovered ("-#-$-%) model of COVID-19 transmission in homeless 
shelter. Notation as defined in Tables S1 and S5 and Equation (1). 
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Figure S2. Daily numbers of residents by risk group present in the San Francisco 
shelter March 29–April 10, 2020. Shelter was disbanded April 11. Dx = co-morbidity. 
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Figure S3. Distribution of duration of detectable viral load from start of late 
infectious stage 
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Figure S4. Calibration of microsimulation to observed PCR testing data from 
outbreaks in homeless shelters in Seattle, Boston and San Francisco. Data was 

available for three shelters in Seattle (labeled A-C). Vertical black lines show exact 

binomial 95% confidence intervals for observed numbers of PCR-positive individuals in 

random testing.  
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Figure S5. Calibration of microsimulation to additional data from San Francisco 
shelter outbreak. (A) Calibration to daily numbers of symptom onsets. Black dots show 

reported number of symptom onsets, grey lines show simulation output. (B) Estimated 

daily numbers of new infections over time in 1000 calibrated simulations. Black line and 

grey shaded region show mean and range respectively across all simulations. 
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Figure S6. Outbreak size distributions 30 days after introduction of infection in a 
generalized homeless shelter under different infection control strategies for &! =
(. * (low-risk setting). Red and green histograms show outbreak size distributions with 

no interventions and under the intervention strategy respectively. Background infection 

rate of 122/1,000,000 person-days. 
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Figure S7. Outbreak size distributions 30 days after introduction of infection in a 
generalized homeless shelter under different infection control strategies for &! =
+. , (Seattle). Red and green histograms show outbreak size distributions with no 

interventions and under the intervention strategy respectively. Background infection rate 

of 122/1,000,000 person-days.	  
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Figure S8. Outbreak size distributions 30 days after introduction of infection in a 
generalized homeless shelter under different infection control strategies for &! =
-. + (San Francisco). Red and green histograms show outbreak size distributions with 

no interventions and under the intervention strategy respectively. Background infection 

rate of 122/1,000,000 person-days. 
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Figure S9. Spider diagrams showing the sensitivity of the estimated probability of 
averting an outbreak to variation in key natural history and intervention 
parameters for different &! values. The horizontal axis shows the percentage 

variation in each parameter relative to its base case value (see Table S5). The vertical 

axis shows the mean probability of averting an outbreak for each parameter under the 

combination strategy across all combinations of the minimums and maximums of the 

other parameter values. 
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Figure S10. Posterior distributions and pairwise correlation plots for calibrated model parameters – !!, "! and # 
– for (A)-(C) Seattle shelters A–C, (D) Boston shelter and (E) San Francisco shelter. $" = basic reproduction number; 
%" = number of latently infected individuals who initially entered the shelter; & = number of days before the end of data 
collection that these individuals entered the shelter. 
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