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Abstract

Background and Objective

Although automated Skin Lesion Classification (SLC) is a crucial integral step in computer-

aided diagnosis, it remains challenging due to inconsistency in textures, colors, indistinguish-

able boundaries, and shapes.

Methods

This article proposes an automated dermoscopic SLC framework named Dermoscopic

Expert (DermoExpert). The DermoExpert consists of preprocessing and hybrid Convolu-

tional Neural Network (hybrid-CNN), leveraging a transfer learning strategy. The proposed

hybrid-CNN classifier has three different feature extractor modules taking the same input

images, which are fused to achieve better-depth feature maps of the corresponding lesion.

Those unique and fused feature maps are classified using different fully connected layers,

which are then ensembled to predict the lesion class. We apply lesion segmentation, aug-

mentation, and class rebalancing in the proposed preprocessing. We have also employed

geometry- and intensity-based augmentations and class rebalancing by penalizing the ma-

jority class’s loss and combining additional images to the minority classes to enhance lesion

recognition outcomes. Moreover, we leverage the knowledge from a pre-trained model to

build a generic classifier, although small datasets are being used. In the end, we design and

implement a web application by deploying the weights of our DermoExpert for automatic

lesion recognition.
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Results

We evaluate our DermoExpert on the ISIC-2016, ISIC-2017, and ISIC-2018 datasets,

where the DermoExpert has achieved the area under the receiver operating characteristic

curve (AUC) of 0.96, 0.95, and 0.97, respectively. The experimental results defeat the recent

state-of-the-art by the margins of 10.0 % and 2.0 % respectively for the ISIC-2016 and ISIC-

2017 datasets in terms of AUC. The DermoExpert also outperforms by a border of 3.0 % for

the ISIC-2018 dataset concerning a balanced accuracy.

Conclusion

Since our framework can provide better-classification outcomes on three different test

datasets, it can lead to better-recognition of melanoma to assist dermatologists. Our source

code and segmented masks for the ISIC-2018 dataset will be publicly available for further

improvements.

Keywords: ISIC skin lesion datasets, Skin lesion classification and segmentation,

Convolutional neural networks, Transfer learning, Image augmentation.

1. Introduction

1.1. Problem Presentation

Skin cancer, one in every three cancers worldwide [16], is a common type of cancer

originating in the epidermis layer of the skin. Ultraviolet radiation exposure is one of the

leading causes of skin cancer, roughly 90.0 % [52]. It was one of the five diseases in the

United States (US) in a region under strong sunshine [58] in 2018. In 2019, there were 2490

females and 4740 males dropping their lives due to melanoma, whereas almost 20 people died

in a day from melanoma in the US alone [81]. Age-standardized melanoma rates of the top
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twenty countries (see in Fig. 1) anticipated the disease rate, showing that a population would

have melanoma if it had a standard age structure. The statistical results in Fig. 1 confirmed

that the probability of having melanoma is more in males patients than in females subjects.

Approximately 6850 new death cases due to melanoma were recorded in 2020, containing
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Figure 1: Age-standardized rates per 1.0 million of the top 20 countries with higher melanoma in 2018

[4]. The bars from left to right are for the decreasing melanoma case of the countries, such as Australia

(AUS), New Zealand (NZ), Norway (NOR), Denmark (DEN), Netherlands (NET), Sweden (SWE), Germany

(GER), Switzerland (SWI), Belgium (BEL), Slovenia (SLO), Luxembourg (LUX), Ireland (IRE), Finland

(FIN), United Kingdom (UK) Austria (AS), France (FR), United States of America (USA), Czech Republic

(CR), Canada (CA), Italy (IT)

4610 males and 2240 females [63]. However, a precise and robust early recognition is essential

as the survival rate was as high as apparently 90.0 % in advance recognition [16].

Several imaging techniques, like confocal scanning laser microscopy, optical coherence

tomography, ultrasound imaging, and dermoscopic imaging, are currently being practiced

to diagnose skin cancer [64]. Dermoscopic images, also known as epiluminescence light mi-

croscopy, are most popularly utilized to investigate pigmented skin lesions by dermatologists

[14]. Such a visual assessment, via the naked eye, may include a faulty-recognition, as it

endures from the comparability between the lesions and healthy tissues [2, 33]. The der-

matologists’ manual inspection is often tedious, time-consuming, and subjective; leading

to different recognition results [2]. However, to mitigate all of the limitations mentioned
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earlier and improve skin cancer recognition preciseness, image-based Computer-aided Diag-

nosis (CAD) has been developed [32]. The classification action in an SLC-CAD system is

a crucial component, which is a challenging task due to the presence of diverse artifacts,

such as markers, body hair & fibers, air bubbles, reflections, on-uniform lighting, rolling

lines, shadows, non-uniform vignetting, and patient-specific effects like lesion textures &

colors, size of affected lesion area [24, 50]. Fig. 2 demonstrates some of those artifacts in the

dermoscopic images.

Hair
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Water Bubble Ink Marks
Non-uniform 
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Figure 2: An example of the challenging dermoscopic images in ISIC dataset [10, 11, 20, 72] with different

artifacts [24].

1.2. Related Works

Nowadays, several methods are being utilized for the SLC [8, 43]. We review and sum-

marize numerous recent techniques, which are shortly described as follows:

Yu et al. [77] proposed a novel CNN architecture for the SLC, where CNN learned from

the multiple-image resolutions, leveraging pre-trained CNNs. They constructed a Fully Con-

volutional Residual Network (FCRN) and enhanced its capability by incorporating a multi-

scale contextual information scheme. The authors also integrated their proposed FCRN (for

segmentation) and a deep residual network (for classification) to build a two-stage frame-

work. Majtner et al. [47] developed an automatic melanoma detection system by employing

the deep learning method, combining handcrafted RSurf features [48] and local binary pat-

terns [1]. Finally, they applied Support Vector Machine (SVM) [15] for the SLC. A deep
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learning framework consisting of two FCRNs was proposed by Li and Shen [41] to get seg-

mentation and coarse classification results concurrently. The authors also developed a Lesion

Index Calculation Unit (LICU) to estimate the distance heat-map, where the coarse clas-

sification result was refined according to that generated distance map. Mahbod et al. [45]

proposed an ensemble scheme, combining intra- and inter-architecture network fusion, where

they used fine-tuning of AlexNet [37], VGGNet, and two variations of ResNets. The final

prediction was achieved by adopting the SVM. Zhang et al. [80] aimed an Attention Residual

Learning CNN (ARL-CNN) model for the SLC, coupling multiple ARL blocks, a global av-

erage pooling layer, and a classification layer. Each ARL block jointly handled residual and

novel attention learning mechanisms to improve its ability for discriminating representation.

Amin et al. [5] implemented the segmentation using the 2D wavelet transform and Ostu

algorithm. They extracted lesion features using AlexNet and VGG16 models and employed

a Principle Component Analysis (PCA) technique for the feature selection. Finally, the au-

thors categorized the lesions using the k-nearest Neighbour (k-NN) [12, 23] and SVM. The

effect of dermoscopic image size was analyzed by Mahbod et al. [46], using pre-trained CNNs

and transfer learning. Three well-established CNNs, such as EfficientNetB0, EfficientNetB1,

and SeReNeXt-50, were explored for the SLC. The authors also proposed and evaluated a

multi-scale multi-CNN (MSM-CNN) fusion approach based on a three-level ensemble strat-

egy that utilizes the three network architectures trained on cropped dermoscopic images of

different scales. An architecture exploration framework was presented by Kwasigroch et al.

[39] to identify the malignant melanoma. The hill-climbing search strategy was employed

along with network morphism operations to explore the search space for finding a suitable

network structure. Valle et al. [73] optimized the hyperparameter of the deep CNN models

like ResNet-101-V2 [26] and Inception-V4 employing transfer learning and segmentation.

They also performed extensive experiments to pick the best performing classifier using the

ANOVA test. Finally, the authors concluded that the transfer learning and ensembling

model is a better choice for designing the SLC systems. A Multi-class Multi-level (MCML)

algorithm based on “divide and conquer” method was proposed by Hameed et al. [21]. The

MCML consists of four integral parts: preprocessing, segmentation, feature extraction, and
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classification. However, their pipeline is highly dependent on preprocessing like hair, black

frame, and circle removal. Gessert et al. [18] ensembled several deep learning methods,

including EfficientNets, SENet [28], and ResNeXt [44], utilizing a selection strategy. The

authors also fed the metadata as a feature vector, which was then concatenated with the

CNN features. Khan et al. [35] developed a framework for the SLC, consisting of the local-

ization of lesion ROI via faster region-based CNN, feature extraction, and feature selection

by iteration-controlled Newton-Raphson method. Firstly, an artificial bee colony method

was used for the contrast stretching, which was then used for the lesion segmentation. The

DenseNet-201 was then utilized to extract the in-depth features. Finally, the authors em-

ployed a multilayer perceptron as a classifier. Almaraz-Damian et al. [3] proposed a pipeline,

integrating preprocessing, feature extraction, feature fusion, and classification. As a prepro-

cessing, the authors extracted ROIs of the lesion, where they also enhanced the intensity

of the extracted ROIs. They extracted different handcraft features like shape, color, tex-

ture, and CNN features, where mutual information was employed to extract CNN features.

Several classification methods, such as Linear Regression (LR), SVM, and Relevant Vector

Machines (RVMs), were used to classify the ROIs. As a preprocessing, Mporas et al. [51]

used a median filter, followed by bottom-hat filtering to detect the hair or similar noise. The

segmentation was performed to extract lesion ROIs on the grayscale image using the active

contour model. Finally, different color-based features were extracted, which were then clas-

sified using multilayer perceptron and different machine learning algorithms. Yilmaz and

Trocan [76] compared the performance of deep CNN, such as AlexNet, GoogLeNet, and

ResNet-50 for the SLC. The authors experimentally demonstrated that ResNet-50 was the

best performing classifier, whereas AlexNet was better for time complexity. Pereira et al. [55]

adopted the gradient-based histogram thresholding and local binary pattern clustering for

skin lesions’ border-line characteristics. Then, border-line characteristics are concatenated

with CNN to boost the lesion classification performance.
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1.3. Our Contributions

While many methods are already developed and executed for the SLC, there is still room

for performance enhancement. This article aims to build a robust and generic framework for

the dermoscopic SLC, called DermoExpert. The preprocessing, the proposed hybrid-CNN

classifier, and the transfer learning are the crucial integral steps of the intended SLC system.

The proposed hybrid-CNN classifier employs a two-level ensembling. We have channel-wise

concatenated 2D feature maps of different feature map generators to enhance the depth

information in the first-level ensembling. Finally, we have aggregated the different outputs

from fully-connected layers at the second-level ensembling. In the proposed preprocessing,

we employ lesion segmentation, augmentation, and class rebalancing. The ROIs segmen-

tation enables the classifier to learn only the specific lesion areas’ features while avoiding

the surrounding healthy tissues. The precise segmentation, with less-coarseness, is a critical

prerequisite step for the classification as it extracts abstract region and detailed structural

description of various types of skin lesions. The segmentation has performed by using our

recent state-of-the-art DSNet [24] after fine-tuning with other ISIC datasets. We utilize

geometry- and intensity-based image augmentation to enhance training image samples and

evade overfitting. We also use a class rebalancing by combining additional images from

the ISIC archive and weighting the loss function to tackle the unwanted biasing towards

the majority class. Moreover, the transfer learning was applied to all the different feature

extractors in the proposed hybrid classifier. To our best knowledge, our proposed Dermo-

Expert has achieved state-of-the-art results on the three IEEE International Symposium

on Biomedical Imaging (ISBI) datasets, such as ISIC-2016, ISIC-2017, and ISIC-2018 with

respectively two, three, and seven lesion classes, while being an end-to-end system for the

SLC. Additionally, we have implemented and compared the performance of our DermoEx-

pert against several well-established deep learning classification approaches like Xception,

ResNet, and DenseNet under the same experimental environments and preprocessing using

the same dataset. Finally, we have implemented a web application by deploying the trained

DermoExpert for the clinical application, which runs in a web browser.

The remaining sections of the article are organized as follows: section 2 explains the pro-
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posed methodologies and datasets, where we explicitly mention the extensive experiments.

Section 3 describes the obtained results from different extensive experiments. The results

are explained with a proper interpretation in section 4, where we also present a user appli-

cation by employing the trained model for the SLC. Finally, section 5 concludes the article

with future works.

2. Methods and Materials

This section focuses on methods and materials utilized for the study, where subsection

2.1 explains the proposed DermoExpert and datasets for the SLC. In subsection 2.2, we

present the metrics for evaluation and hardware used to conduct this research. Subsection

2.3 presents the training protocol and experimental details.

2.1. Proposed Framework

The proposed DermoExpert consists of dermoscopic image preprocessing, transfer learn-

ing, and a proposed hybrid-CNN classifier (see in Fig. 3). We have employed lesion seg-

mentation for ROI extraction, augmentation, and class rebalancing as a preprocessing. We

validate our DermoExpert with three different datasets having a different number of target

classes to provide the evidence of generality and versatility of the proposed DermoExpert.

There are three distinct inputs in the DermoExpert (see in Fig. 3) for three different datasets,

which are termed as I1, I2, and I3. The input I1, I2, or I3 generates the corresponding output

O1, O2, or O3 using the proposed preprocessing and hybrid-CNN classifier. The different

integral and crucial parts of the DermoExpert are briefly described as follows:

2.1.1. Datasets

The three well-known datasets of skin lesions, such as ISIC-2016 [20], ISIC-2017 [11],

and ISIC-2018 [10, 72] are utilized to evaluate the proposed DermoExpert (see Fig. 3)

respectively denoting by I1, I2, and I3. Table 1 manifests the class-wise distributions and

short descriptions of the utilized datasets. The ISIC-2016 is a binary classification task

to distinguish the lesions as either Nevus (Nev) or Melanoma (Mel). The ISIC-2017 and
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Figure 3: The proposed DermoExpert for the SLC, where the preprocessing has been incorporated with

the pipeline to build a precise and robust diagnostic system. The input I1, I2, or I3 is followed by the

preprocessing (P1, P2, or P3) and then by the proposed classifier to generate the corresponding output O1,

O2, or O3.

ISIC-2018 are the multi-class categorization tasks. In the ISIC-2017, the lesion requires to

classify as either Nevus (Nev) or Seborrheic keratosis (SK) or Melanoma (Mel). The ISIC-

2018 comprises of Nevus (Nev), Seborrheic keratosis (SK), Basal Cell Carcinoma (BCC),

Actinic Keratosis (AK), Dermatofibroma (DF), Vascular Lesion (VL), and Melanoma (Mel)

classes. However, the ground-truths of validation and test images are not provided for

the ISIC-2018 dataset. We have applied a cross-validation technique for ISIC-2018 dataset

to choose training, validation, and testing images. The resolutions in pixels of all 8-bit

dermoscopic images are 540× 576 to 2848× 4288, 540× 576 to 4499× 6748, and 450× 600

respectively for ISIC-2016, ISIC-2017, and ISIC-2018 datasets. The class-distribution of

all ISIC datasets ( see in Table 1) confirms that the images are imbalanced, which makes

the classifier to be biased towards the particular class holding more samples. However, we

have employed several rebalancing techniques to build a generic classifier for the skin lesion

diagnosis even though datasets are imbalanced.
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Table 1: A concise description and class-distribution of the ISIC-2016, 2017, and 2018 datasets.

SL # Class Types Description Train Validation Test

01 Nevus (Nev) Benign tumor derived from melanocytic 727 * 304

02 Melanoma (Mel) Malignant tumor derived from melanocytic 173 * 75

Total Images in ISIC-2016 900 * 379

01 Nevus (Nev) Benign tumor derived from melanocytic 1372 78 393

02 Seborrheic Keratosis (SK) Benign tumor derived from non-melanocytic 254 42 90

03 Melanoma (Mel) Malignant tumor derived from melanocytic 374 30 117

Total Images in ISIC-2017 2000 150 600

01 Nevus (Nev) Benign tumor derived from melanocytic 6705 * *

02 Seborrheic Keratosis (SK) Benign tumor derived from non-melanocytic 1099 * *

03 Basal Cell Carcinoma (BCC) Benign tumor derived from nonmelanocytic 514 * *

04 Actinic Keratosis (AK) Benign tumor derived from keratinocytes 327 * *

05 Dermatofibroma (DF) Benign tumor derived from histiocytes 115 * *

06 Vascular Lesion (VL) Benign tumor derived from blood vessel cell 142 * *

07 Melanoma (Mel) Malignant tumor derived from melanocytic 1113 * *

Total Images in ISIC-2018 10015 * *

*: Not available publicly

2.1.2. Proposed Preprocessing

The proposed preprocessing in Fig. 3 consists of segmentation, augmentation, and class

rebalancing, which are briefly described as follows:

Segmentation. The segmentation, to separate homogeneous lesion areas, is the critical

component for diagnosis and treatment pipeline [27]. It is also a crucial prerequisite for

the skin lesion diagnosis as it extracts promising skin lesion features and delivers critical

information about the shapes and structures. A recent state-of-the-art DSNet [24] for der-

moscopic skin lesion (ISIC-2017) segmentation has been adopted as a lesion ROI extractor.

We fine-tune the selected DSNet with the ISIC-2016 and ISIC-2018 datasets to extract the

lesion ROI of all three datasets as it was trained and tested on only the ISIC-2017 dataset.

Augmentation. CNNs are heavily reliant on big data to avoid overfitting. Unfortu-

nately, many application domains, such as automation in lesion disease diagnosis, suffer

from a small size as a massive number of manually annotated training images are not yet

available [22]. Augmentation is a very potential preprocessing for training the deep learning

models as they are highly discriminative [30]. Data augmentation encompasses a technique
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that enhances training datasets’ size and quality to build a better-CNN classifier [62]. The

geometry-based augmentation, such as a rotation (around row/2 and col/2) of 180◦ and 270◦,

and the intensity-based augmentations, such as gamma, logarithmic, & sigmoid corrections,

and stretching, or shrinking the intensity levels are employed in the proposed preprocessing.

The gamma correction with two gammas (γ) of 0.7 and 1.7 has performed to change the

luminance of the dermoscopic images by Iout = Iγin, where Iout and Iin are the output and

input luminance values. The logarithmic correction, for enhancing an image to provide bet-

ter contrast and a more structural detailed image, has employed by Iout = G× log (1 + Iin),

where G = 0.5 and Iout & Iin are the gain and input & output images, respectively. We have

employed sigmoid correction by Iout = 1
1+expG×(C−Iin) , where G = 15, C = 0.4, and Iout & Iin

are the multiplier in exponential’s power, cutoff of the function that shifts the characteristic

curve in horizontal direction, and input & output images, respectively. We also stretch or

shrink the intensity levels between the minimum and the maximum intensities.

Rebalancing. All of the three dermoscopic datasets are imbalanced, as presented in

Table 1. This scenario is quite common in the medical diagnosis field as manually annotated

training images are not adequately available [22], where the positive cases are the minority

compared to negative cases. The unwanted biasing towards the majority class is likely to

happen in the supervised CNN-based classifiers. However, we have joined additional images

from the ISIC archive website [31], and we also penalize the majority class by weighting the

loss function. Such a weighting pays more attention to the underrepresented class. Here, we

improve the weight of samples from underrepresented classes with a factor of Wj = Nj/N ,

where Wj, N , and Nj are the weight for class j, the total number of samples, and the number

of samples in class j, respectively.

Preprocessing Employment. We have sub-divided the preprocessing (P ) into the

segmentation (P1), segmentation & class rebalancing (P2), and segmentation, class rebal-

ancing, & augmentation (P3) to investigate their effects in the proposed DermoExpert for

the SLC.
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2.1.3. Proposed CNN-based Classifier and Transfer Learning

Deep CNNs are an excellent feature extractor, avoiding complicated and expensive fea-

ture engineering. It has achieved tremendous success since 2012 [57]. Sometimes, it rivals

human expertise. For example, CheXNet [56] was trained on more than 1.0 million chest

X-rays. It was capable of achieving a better performance than the four experts. Again,

Kermany et al. [34] trained Inception-V3 network with roughly 1.0 million optical coherence

tomographic images. They compared the results with six radiologists, where experts got

high sensitivity but low specificity, while the CNN-based system acquired high values of bal-

anced accuracy. However, those above methods are blessed with a massive number of labeled

images, which are hard to collect as it needs much professional expertise for annotation [75].

Moreover, individual CNN architecture may have different capabilities to characterize or

represent the image data, which is often linked to a network’s depth [38]. However, CNN’s

maybe indirectly limited when employed with highly variable and distinctive image datasets

with limited samples, such as dermoscopic image datasets [10, 11, 20, 72]. In this context,

we propose a hybrid-CNN classifier by leveraging several core techniques of the current CNN

networks to build a generic skin lesion diagnostic system with limited training images. Fig. 4

depicts the proposed hybrid-CNN classifier. In our hybrid-CNN, the input batch of images

is simultaneously passed through three different Feature Map Generators (FMGs) to obtain

different presentations of the feature maps (see the output of the encoders in Fig. 4). The

proposed hybrid-CNN classifier comprises the following integrated parts:

Feature Map Generators-1 (FMG-1). The FMG-1 (f 1) consists of the identity or

residual and convolutional blocks [25], where the skip connections allow the information to

flow or skip. Fig. 5 shows the constructional details of the identity and convolutional blocks.

The skip connection in the residual blocks, as in the proposed hybrid-CNN classifier, has two

benefits: firstly, the new layers will not hamper the performance as regularisation will skip

over them, and secondly, if the new layers are useful, even with the presence of regularisation,

the weights or kernels of the layers will be non-zero. However, a 7× 7 input convolution is

applied in FMG-1 before the identity and convolutional blocks, followed by a max-pooling

with a stride of 2 and a pool size of 3 × 3. By stacking these blocks on top of each other
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Figure 4: The proposed hybrid-CNN classifier, where three different feature extractors, also called an en-

coder, receives the same input image (Iin). The first step, encoders, are followed by the second step, called

a fusion (first-level ensembling). Then, the third step, called the FC layer, is followed by the fourth step,

called an averaging (second-level ensembling), to get the final output (Oout).

1×1 3×3 1×1

+

Conv ReLU Batch Norm

+
Addition

Xin XoutF1

1×1 3×3 1×1

+

1×1

Conv ReLU Batch Norm

+
Addition

Xin XoutF1

F2

Figure 5: The residual (or identity) (left) and convolutional (right) blocks [25] of the FMG-1. The output

(Xout) is the summation of Xin and the process (F ), where Xout = F1(Xin) + Xin for residual block and

Xout = F1(Xin) + F2(Xin) for convolutional block.
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(see Fig. 4), an FMG-1 has been formed to get the feature map, where the notation (n×)

under the identity block denotes the number of repetitions (n times). The output feature

map from the FMG-1 is defined as X1 = f 1(Iin), where X1 ∈ RB×H×W×D, and B, H, W ,

and D respectively denote the batch size, height, width, and depth (channel).

Feature Map Generators-2 (FMG-2). The FMG-2 (f 2) consists of the entry flow

(Conv A), middle flow (Conv B), and exit flow (Conv C) blocks, which were originally

proposed by Chollet [9]. The constructional details of those blocks are given in Fig. 6. The

3×3 3×3 3×3 3×3

+

3×3 3×3

+

3×3 3×3

+

1×1 1×1 1×1

Conv Sep Conv ReLU Max Pool

+
Addition

3×3 3×3 3×3

+

Sep Conv ReLU

+
Addition

3×3 3×3

+

1×1

3×3 3×3

Conv Sep Conv ReLU

+
Addition

Figure 6: The entry flow (Conv A) (top), middle flow (Conv B) (bottom-left), and exit flow (Conv C)

(bottom-right) blocks [9] of the FMG-2, where depth-wise separable convolutions were employed in lieu of

traditional convolutions to make it lightweight for real-time applications.

batch of images first goes through the entry flow, then through the middle flow, which is

repeated eight times (8×), and finally through the exit flow. As in the proposed hybrid-CNN

classifier, all the flows have used depth-wise separable convolution and residual connection.

The former one is used to build a lightweight network, whereas the latter one for the benefits,

which were mentioned earlier. The output feature map from the FMG-2 is defined as
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X0 H1 X1 H2 X2 H3 X3 H4

H: Convolution + ReLU+Batch Normalization

Figure 7: Typical dense block of the FMG-3 for a growth rate of 3.0. Each nth layer of a dense block accepts

all previous convolutional layers’ feature maps. The mathematical expression [29] of such a reusibiility is

Xn = Hn([X0, X1, X2, ..., Xn−1]), where Hn is the composite function [29] of the nth layer, which consists

of a convolution, ReLU, and batch normalization.

X2 = f 2(Iin), where X2 ∈ RB×H×W×D, and B, H, W , and D respectively denote the batch

size, height, width, and depth (channel).

Feature Map Generators-3 (FMG-3). The remaining FMG-3 (f 3) consists of the

dense and transition blocks [29], where the constructions of those blocks are displayed in

Fig. 7. The FMG-3, as in the proposed hybrid-CNN classifier, gets rid of the requirement

of learning repetitive features, which can learn the absolute features of the skin lesion [24].

The feature re-usability of FMG-3 reduces the vanishing-gradient problem and strengthens

the feature propagation [29]. It also enables the convolutional layer to access the gradients

of all the previous layers by using a skip connection, as depicted in Fig. 7. However, the

output feature map from the FMG-3 is defined as X3 = f 3(Iin), where X3 ∈ RB×H×W×D,

and B, H, W , and D respectively denote the batch size, height, width, and depth (channel).

Fusion (First-level ensembling). We have employed those three FMGs, to get the

distinct feature maps (see in Fig. 8 (c), Fig. 8 (d), and Fig. 8 (e)) for building a proposed

hybrid-CNN classifier. It is very impractical to choose a better-fusion mechanism without

experiments as there are many ways to get a fused map (XF ). However, we perform two types

of fusion, such as fusion by channel-concatenation (see Fig. 8 (g)) and fusion by channel-

averaging (see Fig. 8 (f)), and we have named them as a first-level ensembling. In channel-
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(a) (b) (c) (d)

(e) (f) (g)

Figure 8: The extracted feature map from different FMGs with corresponding original input image (a),

where (b) the down-sampled (7 × 7) image using nearest-neighbor interpolation, (c) the output of FMG-

1, (d) the output of FMG-2, (e) the output of FMG-3, (f) the average of the three FMGs, and (g) the

channel-wise concatenation of the output of the three FMGs.

concatenation, the fused feature map is XFC = [X1 ++X2 ++X3], where XFC ∈ RB×H×W×3D

and ++ denotes the channel concatenation. In channel-averaging, the fused feature map is

XFA = 1
N=3

∑N=3
n=1 Xn, where XFA ∈ RB×H×W×D,

∑
is the element-wise summation, and

N is the numbers of FMG.

Fully Connected Layer. The different feature maps are classified into desired cate-

gories using the Fully Connected (FC) layers, where the output is denoted by FM for M th

input feature map. However, to vectorize the 2D feature maps into a single long continuous

linear vector before the FC layer, we use a Global Average Pooling (GAP) layer [42], which

improves generalization and prevents overfitting. The GAP layer performs a more extreme

dimensionality reduction to avoid overfitting. An height×weight× depth dimensional ten-

sor, in GAP, is reduced to a 1×1×depth vector by transferring height×width feature map

to a single number. Such a GAP layer also contributes to the lightweight design of the CNN

classifiers. Additionally, each FC layer is followed by a dropout layer [67] as a regulariser,
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where we randomly set 50.0 % neurons of the FC layer to zero during the training. Such a

dropout layer assists in building a generic CNN classifier by reducing the overfitting.

Averaging (Second-level ensembling). Finally, the output probability (Oj=1,2,3)

is the average of the outputs of different FM , and we have named it as a second-level

ensembling. The output (Oj=1,2,3) lies in N -dimensional space, where O1 ∈ RN=2, O2 ∈
RN=3, and O3 ∈ RN=7 respectively for the inputs I1, I2, and I3 (see subsection 2.1 and

Fig. 3) by applying the proposed preprocessing (either P1 or P2 or P3).

Possible hybrid-CNN classifiers. However, this article proposes five possible ensem-

bling classifiers by using first- and second-level ensembling, which are enlisted as follows:

1. Method-1: Selection of only the first-level ensembling by using the fused feature map

XFC , and performing the classification using an FC layer (FXFC
) for achieving a final

probability Oj

2. Method-2: Selection of only the first-level ensembling by using the fused feature map

XFA, and performing the classification using an FC layer (FXFA
) for achieving a final

probability Oj

3. Method-3: Selection of only the second-level ensembling by employing the feature

maps (X1, X2, and X3) except the fused maps (XFC and XFA), and performing the

classification using the FC layers (FX1 , FX2 , and FX3) for achieving a final probability

Oj

4. Method-4: Selection of both the first and second-level ensembling by using the fea-

ture maps (X1, X2, X3, and XFA) except the fused map (XFC), and performing the

classification using the FC layers (FX1 , FX2 , FX3 , and FXFA
) for achieving a final

probability Oj

5. Method-5: Selection of both the first- and second-level ensembling by using the

feature maps (X1, X2, X3, and XFC) except the fused map (XFA), and performing

the classification using the FC layers (FX1 , FX2 , FX3 , and FXFC
) for achieving a final

probability Oj
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However, we perform the ablation studies (see in subsection 3.3) on those five different

methods mentioned above to achieve the best hybrid-CNN classifier for the SLC.

Transfer Learning. Moreover, when the data number is relatively small, as the skin

lesion datasets in this article, the model overfit after several epochs. However, the scarcity

of such relatively small medical image datasets has been partially overcome by employing

a transfer learning [61, 68]. It applies the representations learned by a previous model and

employs a new domain, reducing the need for sizeable computational power [69]. However,

in the proposed DermoExpert, we use the previously trained weights to our FMG-1, FMG-2,

and FMG-3 for transferring the knowledge.

2.2. Hardware and Evaluation

Hardware. We have implemented our DermoExpert on a Windows-10 machine using

the Python programming language with different Python and Keras [17] APIs. The hardware

configuration of the used machine are: IntelR© CoreTM i7-7700 HQ CPU @ 2.80GHz processor

with Install memory (RAM): 16.0GB and GeForce GTX 1060 GPU with 6GB GDDR5

memory.

Evaluation Metrics. We utilize recall, specificity, and intersection over union (IoU) for

measuring the segmentation performance quantitatively. The recall and specificity measure

the percentage of true and wrong regions, whereas the IoU measures the overlap between the

true and predicted masks. We evaluate the proposed SLC results using the recall, precision,

and F1-score. The recall quantifies the type-II error (the lesion, with the positive syndromes,

inappropriately fails to be nullified), and precision quantifies the positive predictive values

(percentage of truly positive recognition among all the positive recognition). The F1-score

indicates the harmonic mean of recall and precision, conferring the tradeoff between them.

We have also reported the confusion matrix for evaluating the DermoExpert by investigating

the class-wise performance of the SLC. Moreover, the Receiver Operating Characteristics

(ROC) with Area Under the ROC Curve (AUC) value is also used to quantify any randomly

picked sample’s prediction probability.
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2.3. Training Protocol and Experiments

As we segment the lesion using the recent state-of-the-art DSNet, all the kernels have been

initialized with the pre-trained weights of the DSNet. We resize all the images to 192× 256

pixels using the nearest-neighbor interpolation for the segmentation, as the DSNet receives

the images having a resolution of 192× 256 pixels. Additionally, we have standardized and

rescaled the training images to [0 1]. The fine-tuning of the DSNet has been conducted using

the following loss function (L) [24] as Eq. 1.

L (y, ŷ) = 1−

N∑
i=1

yi × ŷi

N∑
i=1

yi +
N∑
i=1

ŷi −
N∑
i=1

yi × ŷi
− 1

N

N∑
i=1

[yi log ŷi + (1− yi) log(1− ŷi)] (1)

where y and ŷ, N respectively denote the true and predicted label, the total number of

pixels.

The pre-trained weights from ImageNet [13] were applied to initialize the kernels of all the

FMGs. Xavier distribution, also called glorot uniform distribution [19], is used to initialize

the kernels in FC layers. It draws the samples from a truncated normal distribution centered

on 0.0 with a standard deviation of
√

(2/(Fin + Fout)). Fin and Fout respectively denotes

the number of input and output units in the weight tensor. The aspect ratio distribution

extracted ROIs of the lesion for ISIC-2016, ISIC-2017, and ISIC-2018 datasets reveal that

most of the ROIs have an aspect ratio of 1 : 1. Therefore, all the ROIs have been resized to

192×192 pixels using a nearest-neighbor interpolation for classification using the DermoEx-

pert. The categorical cross-entropy function is used as a loss function in our DermoExpert.

However, it is very impractical to guesstimate the useful optimizer and the learning rate

as they are highly dependent on the networks and datasets. In this literature, we perform

extensive experiments for selecting those hyperparameters as described in subsection 3.2.

We set the initial epochs as 200 and stop the training using a callback function when the

validation loss has stopped improving. However, we conduct several extensive experiments

to achieve the highest possible performance for a robust and accurate SLC system. Firstly,
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we select the optimizer with learning rate and the best hybrid-CNN classifier (see in sub-

section 2.1.3), for the proposed DermoExpert, via comprehensive experiments. Then, we

perform the following experiments:

1. We fine-tuned DSNet on the ISIC-n dataset, where n = 2016, 2017, 2018. Then, we

extract the lesion ROI and resize the images to 192× 192

2. We complete the classification using the proposed DermoExpert on those segmented

ROIs

3. We rebalance the lesion classes of the segmented ROIs since the class distributions are

imbalanced, and then do the classification

4. Finally, we add the intensity- and geometry-based augmentations on the experiment-3

We have repeated all the experiments mentioned above for the three different datasets,

such as ISIC-2016, ISIC-2017, and ISIC-2018.

3. Experimental Results

This section reports the qualitative and quantitative results through several extensive

experiments. The segmentation results of the fine-tuned DSNet and the qualitative results

for different augmentations are detailed in subsection 3.1. We present ablation studies

for optimizer and learning rate adaptation in subsection 3.2. We also exhibit the ablation

examinations in subsection 3.3 for the best hybrid-CNN classifier selection (see in subsection

2.1.3) for the DermoExpert. The classification results on ISIC-2016, ISIC-2017, and ISIC-

2018 datasets are manifested in the subsections 3.4, 3.5, and 3.6, respectively. Finally, we

compare our results with the state-of-the-art results for the SLC in subsection 3.7.

3.1. Segmentation and Augmentation

Table 2 displays the quantitative results for the lesion ROI extraction (segmentation) for

further classification in the SLC. The results in Table 2 demonstrate that the type-I errors
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Table 2: Segmentation results on the test datasets of the ISIC-2016, ISIC-2017, and ISIC-2018 from the

fine-tuned DSNet, where the mRc, mSp, and mIoU respectively indicate the mean recall, specificity, and

IoU.

Performance metricsFine-tune

datasets

Testing

datasets mRc mSp mIoU

ISIC-2016 0.908± 0.12 0.962± 0.09 0.859± 0.13

ISIC-2017 0.880± 0.17 0.935± 0.15 0.794± 0.17
ISIC-2016

ISIC-2018
ISIC-2018 0.911± 0.14 0.954± 0.12 0.838± 0.14

are 3.8 %, 6.5 %, and 4.6 % respectively for ISIC-2016, ISIC-2017, and ISIC-2018 datasets,

whereas the respective type-II errors are 9.2 %, 12.0 %, and 8.9 %. Such fewer type-I and

type-II errors reveal that our segmented ROIs are blessed with fewer false-negative and false-

positive regions, making them better-applicable for the SLC. The qualitative results of the

segmented masks (see in Fig. 9) depict that the extracted green ROIs have approximately

coincided with the actual yellow ROIs. More segmentation results for all the test images

are available on YouTube (ISIC-20162, ISIC-20173, and ISIC-20184). The qualitative results

in Fig. 9 also confirm that the segmented masks are also as better as in the microscopic

skin images (first and last columns of the second row). The quantitative and qualitative

representations of the segmentation results demonstrate that the mean overlapping between

the true and predicted masks of all the test images is as high as the recent state-of-the-art

results for dermoscopic lesion segmentation [6, 71, 74, 82]. However, all the segmented ROIs

are further processed for the augmentation as both the quantitative and qualitative results

of the segmentation point that they yield the most reliable ROIs for the SLC.

Fig. 10 bestows the representative examples of the augmented images of the segmented

lesion ROIs. Those qualitative results reveal each image’s distinctiveness, which is crucial

for the CNN training. Fig. 10 (d) shows that the sigmoid corrected image provides the

2ISIC-2016 (Segmentation): https://youtu.be/kB0Bf5D0WsA
3ISIC-2017 (Segmentation): https://youtu.be/m3u58LN9lns
4ISIC-2018 (Segmentation): https://youtu.be/r4hxv8WdQHM
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ISIC-2016 ISIC-2017 ISIC-2018

Figure 9: The example of some extracted ROIs on the ISIC-2016, ISIC-2017, and ISIC-2018 test datasets

from the fine-tuned DSNet, where the green and yellow color denote the extracted and true bounding boxes,

accordingly.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10: Examples of the geometry- and intensity-based augmentations of a dermoscopic image, where (a)

the original image, (b) 180◦ rotated, (c) 270◦ rotated, (d) sigmoid corrected, (e) gamma corrected (γ = 0.7),

(f) gamma corrected (γ = 1.7), (g) logarithmic corrected, and (h) intensity rescaled.

specified lesion region to the network for learning about the lesion. The gamma-corrected

image in Fig. 10 (f), for γ = 1.7, provides more intense lesion area, whereas Fig. 10 (e), for

γ = 0.7, is brighter than the original image in Fig. 10 (a). The logarithmic corrected image

(see in Fig. 10 (g)) is also darker, showing the distinctiveness.
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3.2. Optimizer and Learning Rate Selection

The Learning Rate (LR) is one of the essential hyperparameters, challenging to choose

initially without experiments. Too small of an LR performs a slowly converging training,

while too large of an LR makes the training algorithm diverge [54]. However, to update the

weight parameters for minimizing the loss function, the optimizer is also very critical and

crucial to select. We have done several experiments to get a better-LR and optimizer for

the SLC. We have applied input (I1) and preprocessing (P1) to generate the output (O1)

by employing different optimizers and LRs, as presented in Fig. 11. This experiment has
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Figure 11: The experimental results for different optimizers and LR, where (a) is for the training accuracy,

and (b) is for the validation accuracy.

been conducted using multiple optimizers, such as Stochastic Gradient Descent (SGD) [59],

Adadelta [79], Adamax & Adam [36], and different LR scheduler schemes, such as constant

LR, decaying LR with epochs, and Cyclical Learning Rates (CyLR) [65]. We set the initial

epochs of 100 with the early stopping scheme for all the experiments. The training has

been terminated when it stops improving the validation accuracy up to 10 epochs. The

Adadelta optimizer, with an initial LR of 1.0, reaches the training accuracy of 100.0 % after

few epochs, whereas the validation accuracy stagnates the improvement. Adam optimizer

has also stopped improving training and validation accuracy with the increased epochs.

The constant LR, decaying LR, and CyLR with SGD also produce many overshoots and
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undershoots in training and validation accuracies. On the other hand, the adaptive optimizer

Adamax, with an initial LR of 0.0001, has smoothly increased training accuracy with the

highest validation accuracy. We employ the LR scheduler (reduction of initial LR after 5

epochs if validation accuracy does not improve) along with the Adamax. However, those

experiments reveal that an Adamax, with the LR scheduler, is a better choice for the SLC

in our proposed DermoExpert, which is employed in the rest of the upcoming experiments.

3.3. Classifier Selection

In this subsection, we exhibit the ablation studies on the proposed hybrid-CNN classifiers,

as described in subsection 2.1.3, by comparing them quantitatively. We have used input

(I1) and preprocessing (P1) to generate the output (O1) for five different classifiers, where

we also apply the best optimizer and LR from the previous experiment. The results of

this experiment are presented in the ROC curves in Fig. 12, where we have also announced

AUCs for different classifiers. The results in Fig. 12 show that the Method-1 outperforms the
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Figure 12: The ROC curves for the ISIC-2016 test dataset by employing the proposed five different networks

and preprocessing (P1).

Method-2 by a margin of 16.0 % in term of AUC. The true-positive rates are approximately
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50.0 % and 25.0 % respectively for Method-1 and Method-2 for a 10.0 % false-positive rate

(see in Fig. 12). Those results indicate that the channel-wise concatenation (XFC) is a

better-fusion technique than the averaging (XFA) of the FMGs as the former has 3-times

more depth information about the lesion. The comparison between the figures (see in Fig. 8

(b), Fig. 8 (c), Fig. 8 (d), Fig. 8 (e), and Fig. 8 (f)) also demonstrates that the addition of

those feature maps produces a scattered feature distribution, whereas the individual feature

map either from FMG-1, FMG-2, or FMG-3 depicts better-map of the lesion area (see in

Fig. 8 (b)). Those phenomena could be the possible reasons for better results from the

Method-1 than Method-2. Again, Method-3, where we have employed only the second-

level ensembling, beats the former two methods, revealing that second-level ensembling

has good prospects in the proposed classifier than the first-level ensembling alone. The

employment of the fusion-by-averaging (XFA) with all three distinct feature maps, called

Method-4, further improves Method-3 by a margin of 0.5 % concerning the AUC. Finally,

in Method-5, if we replace XFA by fusion-by-concatenation (XFC) in Method-4, it shows a

better performance comparing all the former methods as XFC has a better representation

of the lesion than the XFA. However, the Method-5 beats all the other four methods by

the margins of 8.3 %, 24.3 %, 7.0 %, and 6.5 % concerning AUC respectively for Method-1

to Method-4. The above discussions reveal that the hybrid-CNN classifier (Method-5) has a

better-prospect for the SLC, comprising of both the first- and second-level ensembling. We

have used fusion-by-concatenation in the first-level, and in the second-level, we aggregate

the individual probability to get the final prediction probability. However, for all the next

experiments for the SLC on the ISIC-2016, ISIC-2017, and ISIC-2018 datasets, we will use

our proposed hybrid-CNN classifier (Method-5) as it has better-prospects as a classifier for

the robust DermoExpert.

3.4. Results on ISIC-2016

The binary SLC’s performance in the proposed DermoExpert has been validated using

379 dermoscopic test images of the ISIC-2016 dataset. The overall quantitative results from

all the extensive experiments are exhibited in Table 3 in terms of the recall, precision, and
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F1-score. The results in Table 3 show that the preprocessing (P3) along with the proposed

Table 3: The classification results on the ISIC-2016 test dataset from the different extensive experiments.

Recall Precision F1-score
Preprocessing

Nev Mel W. Avg. Nev Mel W. Avg. Nev Mel W. Avg.

P1 0.99 0.35 0.87 0.86 0.93 0.87 0.92 0.50 0.84

P2 0.98 0.69 0.93 0.93 0.91 0.93 0.96 0.79 0.92

P3 0.93 0.85 0.92 0.96 0.76 0.92 0.95 0.81 0.92

P1: Segmentation; P2: Segmentation and Rebalancing; P3: Segmentation, Rebalancing, and Augmentation.

hybrid-CNN classifier yields the best performance for the binary SLC. The recall of the

positive class (Mel) reveals that the type-II errors are 65.0 %, 31.0 %, and 15.0 % for the

respective preprocessing P1, P2, and P3. It also points that rebalancing with segmenta-

tion improves the type-II errors by 34.0 %, whereas the rebalancing and augmentation with

segmentation significantly improve the type-II errors by 50.0 %. Although the FN reduces

when we move from P1 to P3, the FP increases accordingly. For a P3 preprocessing, the Mel

class’s precision (76.0 %) also shows the evidence of increasing FP with the decreasing of FN,

as 24.0 % recognized positives are the wrong positives. However, the decreasing FN-rates

(65.0 % to 15.0 %) is better than the increasing FP-rates (1.0 % to 7.0 %) in medical diagnosis

applications. Moreover, the harmonic mean of the precision and recall for both the classes

(Nev and Mel) is improving when we move from P1 to P3 by the margins of 3.0 % and 31.0 %

respectively for Nev and Mel classes. The confusion matrix in Table 4, for more detailed

analysis of the SLC-2016 results, shows that among 304 Nev samples, correctly classified

samples are 284 (93.4 %), whereas only 20 (6.58 %) samples are incorrectly classified as Mel.

It also shows that among 75 Mel samples, rightly classified samples are 64 (85.33 %), whereas

only 11 (14.67 %) samples are mistakenly classified as Nev. Fig. 13 shows the ROC curves

of the best SLC-2016 and the baseline Xception [9], ResNet-50 [25], and DenseNet-121 [29].

The proposed DermoExpert obtains an AUC of 0.96, indicating the probability of correct

lesion recognition is as high as 96.0 % for any given random sample. It has beaten the base-

line Xception, ResNet-50, and DenseNet-121 respectively by 11.6 %, 13.0 %, and 10.6 % in
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Table 4: The confusion matrix for the ISIC-2016 test dataset by using the proposed CNN-based hybrid

classifier and preprocessing (P3).

Actual

Nev Mel

Nev
284

93.42 %

11

14.67 %

Predicted
Mel

20

6.58 %

64

85.33 %
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Figure 13: The ROC curves for the ISIC-2016 test dataset by employing the proposed CNN-based hybrid

classifier and preprocessing (P3).

terms of AUC. Also from Fig. 13 and given a 10.0 % false-positive rates, the true-positive

rates of the proposed DermoExpert, Xception, ResNet-50, and DenseNet-121 are approxi-

mately 83.0 %, 55.0 %, 50.0 %, and 58.0 %, respectively. The above-discussions for the SLC

on ISIC-2016 test dataset indicate that the proposed DermoExpert can be potentially used

as an SLC-CAD tool for lesion classification.
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3.5. Results on ISIC-2017

This subsection represents the potentiality of the proposed DermoExpert to recognize

three different lesions as Nev, SK, and Mel. The quantitative results on the ISIC-2017 test

dataset have been summarized in Table 5 using different metrics, such as recall, precision, and

F1-score. As in Table 5, the results depict the weighted average metrics for aggregate cases

concerning the class population. The SLC results, as shown in Table 5, demonstrate that the

Table 5: The classification results on the ISIC-2017 test dataset from the different extensive experiments.

Recall Precision F1-score
Preprocessing

Nev SK Mel W. Avg. Nev SK Mel W. Avg. Nev SK Mel W. Avg.

P1 0.98 0.67 0.38 0.81 0.80 0.92 0.80 0.82 0.88 0.77 0.51 0.79

P2 0.90 0.84 0.62 0.84 0.88 0.68 0.84 0.84 0.89 0.75 0.71 0.84

P3 0.95 0.84 0.61 0.86 0.90 0.76 0.82 0.86 0.92 0.80 0.70 0.86

P1: Segmentation; P2: Segmentation and Rebalancing; P3: Segmentation, Rebalancing, and Augmentation.

recall is increased by 24.0 %, and 17.0 % respectively for Mel and SK due to the employment

of preprocess P2 instead of baseline P1. The further employment of the preprocess P3 in

place of P2 could not reduce the type-II errors somewhat remains constant, but reduces

type-II errors of the Nev class by a border of 5.0 %. The weighted average recall has been

increased when we employ the preprocess P2 instead of baseline P1, and then the preprocess

P3 instead of baseline P2. However, it is beneficial to apply the preprocess P3 instead of P2

and P1 in terms of type-II errors. It is noticed from Table 5 that the weighted precisions are

increasing, when we change the preprocess P1 to P2 and P2 to P3. The class-wise precision

also reveals that the FN is reducing significantly, although the FP is increasing. However,

such a result in medical disease diagnosis for the SLC is acceptable as the patients with

the positive symptom should not be classified as negative patients. Additionally, the class-

wise F1-score for the Nev, SK, and Mel have improved significantly, when we change the

prepossess P1 to P2, and then P2 to P3. The improved F1-score tells that both the recall and

precision are praiseworthy, although the uneven class distribution was being used. Details of

class-wise investigation of the best performing SLC has been present in the confusion matrix

in Table 6, applying the preprocessing (P3) and the proposed hybrid-CNN classifier. The
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Table 6: The confusion matrix for the ISIC-2017 test dataset by using the proposed hybrid-CNN classifier

and preprocessing (P3).

Actual

Nev SK Mel

Nev
372

94.66 %

6

6.67 %

35

29.91 %

SK
13

3.31 %

76

84.44 %

11

9.40 %
Predicted

Mel
8

2.03 %

8

8.89 %

71

60.69 %

confusion matrix in Table 6 for the SLC-2017 shows that 94.66 % Nev samples are correctly

classified as Nev, whereas 5.34 % (3.31 % as SK and 2.03 % as Mel) samples are wrongly

classified. 84.44 % SK samples are correctly categorized as SK, whereas 15.56 % (6.67 %

as Nev and 8.89 % as Mel) samples are improperly classified. On the other hand, 60.69 %

Mel samples are genuinely classified as Mel, whereas 39.31 % (29.91 % as Nev and 9.40 % as

SK) samples are awkwardly classified. Although the 39.31 % of the positive samples (Mel)

are wrongfully classified, it is still better than the baseline 62.0 % errors in the baseline

preprocessing P1. Fig. 14 shows the ROC curves of the best SLC-2017 and baseline state-

of-the-art Xception, ResNet-50, and DenseNet-121. The proposed DermoExpert for the

SLC-2017 obtains an AUC of 0.947, designating the probability of correct lesion recognition

is as high as 94.7 % for any given random sample. The proposed DermoExpert outperforms

the Xception, ResNet-50, and DenseNet-121 respectively by 10.0 %, 12.3 %, and 19.7 % for

AUC. Also from Fig. 14 and given a 10.0 % false-positive rate, the true-positive rates of the

proposed DermoExpert, Xception, ResNet-50, and DenseNet-121 are approximately 85.0 %,

60.0 %, 55.0 %, and 41.0 %, respectively. In contrast, the above-discussions for the SLC on

ISIC-2017 demonstrate that the proposed DermoExpert can be potentially applied as an

SLC-CAD tool.
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Figure 14: The ROC curves for the ISIC-2017 test dataset by employing the proposed classifier and prepro-

cessing (P3).

3.6. Results on ISIC-2018

This subsection represents the experimental results for the SLC-2018 from the proposed

DermoExpert for recognizing very challenging lesion categories into seven classes, such as

Nev, SK, BCC, AK, DF, VL, and Mel. As presented earlier, in subsection 2.1.1, the ISIC-

2018 provides only the training set. Therefore, we employed 5-fold cross-validation, where

60.0 %, 20.0 %, and 20.0 % samples are utilized respectively for training, validation, and

testing. We repeat the experiments 5-times for the SLC-2018, and the final results in Fig. 15

are the average classification result of the 5-folds. The investigation on the results (see in

Fig. 15) explicates that for a baseline preprocessing (P1), the metrics (see blue bar in Fig. 15

(a), Fig. 15 (b), and Fig. 15 (c)) are varied in significant margins, where the recall, precision,

and F1-score of the Nev class are higher than the other classes. Moreover, the melanoma

class has a recall of 42.0 %, which is significantly less. Additionally, the recall, precision,

and F1-score for the DF class are 0.0 %, where all the DF class images are classified as

other classes. Such a weak result from the proposed DermoExpert by applying the baseline

preprocessing (P1) is due to the unequal class distribution, where class distribution was
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Figure 15: The experimental results for the ISIC-2018 test dataset classification, where blue, green, and

black bar of different class respectively denote the results (recall (a), precision (b), and F1-score (c)) for the

preprocessing P1, P2, and P3.

1.0 : 6.1 : 13.02 : 20.47 : 58.3 : 47.47 : 6.02 respectively for the classes Nev, SK, BCC, AK,

DF, VL, and Mel. In terms of recall, precision, and F1-score, the DF and VL classes’ weak

performance is likely to happen as they are the most minority (underrepresented) classes.

However, the rebalancing of the class distribution, as in the preprocessing (P2), boosts the

class-wise performance in significant portions (see green bar in Fig. 15 (a), Fig. 15 (b),

and Fig. 15 (c)), where the recall, precision, and F1-score of the DF class respectively

increase to 65.0 %, 64.0 %, and 64.0 % from the baseline 0.0 % for all metrics. Not only the

DF class but also the other classes have improved the performance, especially the recalls

of BCC, AK, and Mel class have increased by the margins of 33.0 %, 29.0 %, and 11.0 %,
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respectively. Another point can be claimed that moving the preprocessing, from P1 to P2,

does not degrade the best performing Nev class’s performance in P1. Instead, it improves in

terms of precision and F1-score, while the recall remains constant. However, the proposed

augmentations with the preprocessing (P2) improve all the metrics for most classes, while

the other classes’ performance remain constant. The more enhanced class-wise precision and

F1-score, due to the third preprocessing appliance (P3), confirm that the positive predictive

value and the balanced precision-recall are also increased than the type-II errors (recall).

The more detailed class-wise assessment of the best performing SLC for the ISIC-2018 test

dataset has been presented in the confusion matrix in Table 7, employing the preprocessing

(P3) and the proposed hybrid-CNN classifier. The matrix in Table 7 reveals the FN and

Table 7: The confusion matrix for the ISIC-2018 test dataset by using the proposed classifier and prepro-

cessing (P3).

Actual

Nev SK BCC AK DF VL Mel

Nev
1283

95.67 %

43

19.55 %

10

9.80 %

3

4.62 %

4

17.39 %

1

3.45 %

64

28.83 %

SK
21

1.57 %

148

67.27 %

7

6.86 %

11

16.92 %

2

8.69 %

0

0.0 %

27

12.16 %

BCC
9

0.67 %

4

1.82 %

84

82.36 %

8

12.31 %

0

0.0 %

0

0.0 %

3

1.35 %

AK
0

0.0 %

9

4.09 %

0

0.0 %

36

55.38 %

0

0.0 %

0

0.0 %

3

1.35 %

DF
5

0.37 %

2

0.91 %

0

0.0 %

1

1.54 %

16

69.57 %

0

0.0 %

0

0.0 %

VL
0

0.0 %

0

0.0 %

0

0.0 %

0

0.0 %

0

0.0 %

28

96.55 %

5

2.25 %

Predicted

Mel
23

1.72 %

14

6.36 %

1

0.98 %

6

9.23 %

1

4.35 %

0

0.0 %

120

54.06 %

FP for the SLC-2018, where number of wrongly classified images (type-I or type-II errors)

are 58/1341 (4.33 %), 72/220 (32.73 %), 18/102 (17.65 %), 29/65 (44.62 %), 7/23 (30.43 %),

1/29 (3.45 %), and 102/222 (45.94 %) respectively for the Nev, SK, BCC, AK, DF, VL and

Mel. Although some classes’ performance is not highly improved as in other classes, it

is still better than the baseline process. Fig. 16 shows the ROC curves of the best SLC-
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Figure 16: The ROC curves for the ISIC-2018 test dataset by employing the proposed network and prepro-

cessing (P3).

2018 and baseline state-of-the-art Xception, ResNet-50, and DenseNet-121. The proposed

DermoExpert for the SLC-2018 achieves an AUC of 0.969, which designates the probability

of correct lesion recognition is as high as 96.9 % for any given random sample. It has defeated

all the baseline Xception, ResNet-50, and DenseNet-121 respectively by 2.4 %, 2.4 %, and

2.3 % with respect to AUC. Also from Fig. 16 and given a 10 % false-positive rate, the true-

positive rates of the proposed DermoExpert, Xception, ResNet-50, and DenseNet-121 are

approximately 92.0 %, 83.0 %, 82.0 %, and 86.0 %, respectively. In conclusion, the above-

discussions for the SLC on ISIC-2018 demonstrate that the proposed DermoExpert can be

potentially applied as an SLC-CAD tool.

3.7. Results Comparison

In this subsection, the performance of the proposed DermoExpert is compared and con-

trasted to several current state-of-the-art methods.

Table 8 represents the performance comparison of the proposed DermoExpert with other

recent methods for all the ISIC-2016, ISIC-2017, and ISIC-2018 datasets. To improve clas-

sification performance, authors in several recent works used the external data to train their
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Table 8: The state-of-the-art comparison with proposed DermoExpert, which were trained, validated and

tested on the ISIC-2016, ISIC-2017, and ISIC-2018 datasets.

ISIC-2016 ISIC-2017 ISIC-2018
Methods

Recall Precision AUC Recall Precision AUC Recall Precision AUC

ResNet-50 [7] 0.56 0.71 0.85 - - - - - -

GR [60] - - - 0.15 - 0.91 - - -

ARLCNN [80] - - - 0.77 - 0.92 - - -

IR [2] 0.82 - 0.77 0.76 - - 0.81 - -

FPRPN [66] 0.99 0.82 0.81 0.98 0.82 0.79 - - -

GCD [70] 0.32 0.73 0.86 0.55 - 0.93 - - -

MFA [78] 0.60 0.69 0.86 - 0.72 0.90 - -

MIAG [49] - - - - - - 0.78 0.87 0.98

DenseNet [40] - - - - - - 0.80 0.85 0.98

RDI [53] - - - - - - 0.83 0.83 0.98

DermoExpert (Proposed, 2020) 0.92 0.92 0.96 0.86 0.86 0.95 0.86 0.85 0.97

GR: Gabor Wavelet-based CNN [60]

ARLCNN: Attention residual learning convolutional neural network (ResNet-14 & ResNet-50) [81]

IR: Inception-ResNet-V2 (ISIC-2016), ResNet-50 (ISIC-2017,ISIC-2018) [2]

FPRPN: Feature Pyramid Network (FPN) and Region Proposal Network (RPN) [66]

GCD: Global-Part CNN Model with Data-Transformed Ensemble Learning [70]

MFA: Multi-network based feature aggregation [78]

MIAG: Emsembling classifier [49]

RDI: Emsembling of ResNet, DenseNet, and Inception [53]

models, which are not publicly available yet. The improvement of the classification network

may not be due to the network’s superiority, but the external data characteristics, which

are similar to the test datasets. However, for fairness in comparison, we have reported the

results, which were too strict for the datasets on the ISIC archive only. The proposed Der-

moExpert produces the best classification, as shown in Table 8, for five out of the nine cases

while performing second best with the winning methods on the other four cases.

Comparison of SLC-2016. The proposed DermoExpert produces the best results for

the AUC by beating the state-of-the-art [70, 78] with a 10.0 % margin. Concerning the

type-II errors (recall), DermoExpert is behind the state-of-the-art [66] by 7.0 %, but the

DermoExpert outperforms the FPRPN [66] by a 10.0 % margin concerning the positive

predictive value (precision). However, in terms of balanced accuracy (avg. of recall and

precision), DermoExpert beats the state-of-the-art [66] by a 1.5 % margin.
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Comparison of SLC-2017. For AUC, the DermoExpert wins by defeating the second-

highest [70] by a margin of 2.0 %. DermoExpert has beaten the work of Song et al. [66]

by the margins of 4.0 %, and 16.0 % with respective precision and AUC although it lost

by Song et al. [66] in terms of recall. However, the proposed DermoExpert produces the

second-highest results by beating the third results [80] with a margin of 9.0 % for recall.

Comparison of SLC-2018. The results of DermoExpert for ISIC-2018 are compared

with the top three performers of the ISIC-2018 competition leaderboard [40, 49, 53], where

DermoExpert wins in recall and serves as a second winner in the other two metrics. It also

beats the recently published method of Al-Masni et al. [2] by a margin of 5.0 % in terms of

type-II errors. It means that 5.0 % additional samples will be classified correctly as the actual

class than the method of Al-Masni et al. [2]. However, in terms of the balanced accuracy,

DermoExpert beats the challenge topper by a margin of 3.0 %. The recent method proposed

by Mahbod et al. [46], for the test results of ISIC-2018, are not presented in Table 8, as they

did not use the same dataset to train their model, as in the proposed DermoExpert.

4. Discussion and Application

CNN-based classifiers are better-choice in different medical imaging context, where they

automatically learn low-, middle-, and high-level features directly from the input images.

Finally, fully connected neural networks, also known as multilayer perceptron, classify those

features. However, such deep CNN-based classifiers’ training is an arduously challenging pro-

cess, especially when training with a smaller dataset, such as the ISIC skin lesion datasets.

There are two commonly occurring limitations in the CNN-based classifiers: prone to over-

fitting and vanishing gradient problems. Those two critical limitations are reduced for the

SLC in this article.

We proposed a hybrid classifier to build a generic and robust end-to-end SLC system

utilizing a smaller dataset. We use three distinct feature map-generators rather than a

single generator as in Xception, ResNet-50, DenseNet-121, and etc. In each generator in the

proposed classifier, we employ several skip connections, enabling each layer of the generator

to access the gradients of all previous layers directly. However, such a CNN network design is
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more likely to alleviate the vanishing gradient problem and also partly reduce the overfitting

as the final feature map has a more in-depth skin lesion presentation. The adaptation of

pre-trained weights in place of the CNN classifiers training from scratch, with any random

initialization, also partially reduces the overfitting and improves the performance. As in

subsection 3.3, the experimental results have validated that multiple generators’ multiple

features provide better results. Moreover, channel-wise concatenation of different features

is better than the addition of them as the latter one generates scattered feature maps (see

in Fig. 8). In the same experimental conditions, the former approach outperforms the latter

approach by a margin of 16.0 % concerning AUC (see in Fig. 12). Further addition of

second-level ensembling, as described in subsection 2.1.3, provides 7.0 % more AUC than

first- or second-level ensembling alone (see in Fig. 12). Instead of a random selection of

LR and optimizer, it is better to conduct several extensive experiments. The cost functions

depend on the data distribution, size, and inter- or intra-class variability. However, our

experimental results, as presented in subsection 3.2, have demonstrated that the adaptive

optimizer Adamax, with an initial LR of 0.0001, has a better-prospect for the SLC (see in

Fig. 11) when the LR scheduler is incorporated with the Adamax.

The classification results by the proposed DermoExpert, for the ISIC-2016 (see in subsec-

tion 3.4), ISIC-2017 (see in subsection 3.5), and ISIC-2018 (see in subsection 3.6), confirm

that class rebalancing along with the segmentation enhances the performance of underrep-

resented class. The F1-score of the test datasets of ISIC-2016, ISIC-2017, and ISIC-2018

are improved by the margins of 8.0%, 5.0 %, and 1.0 %, respectively, when we have united

additional images to underrepresented class and weighted the loss function. Further addi-

tion of image augmentation, with segmentation and rebalancing, improves the classification

performance. It also reduces the overfitting, for the lesion classification, by reducing the

differences between the training and testing performances. For all the test datasets of le-

sion classification, the proposed DermoExpert, with multiple feature map generators and

two-level ensembling, performs better than the classifier having a single generator (see in

Fig. 13, Fig. 14, and Fig. 16). The experimental results, in subsections 3.4, 3.5, and 3.6,

also demonstrate that the classification performance for ISIC-2016 (two classes) is better
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than ISIC-2017 (three classes). The addition of SK class, as in ISIC-2017, reduces the F1-

score of Nev and Mel classes respectively by the margins of 3.0 %, and 11.0 %. The higher

similarity of SK with Nev and Mel classes is causing such a reduction in ISIC-2017 test

results. Moreover, many classes tend to bring complications in the classifiers, especially

when training with fewer examples and intra-class similarity, as in the SLC on the ISIC

skin lesion datasets. It is also observable that the classification performance for ISIC-2018

has improved, although it has more classes (7 classes). However, the distribution of all the

ISIC datasets (see in Table 1) depicts that the ISIC-2018 has much higher samples than the

ISIC-2016 and ISIC-2017 datasets.

However, those discussions reveal the superiority of the proposed DermoExpert for the

SLC, showing its acceptance for the SLC-CAD system. A few qualitative results of the

proposed DermoExpert are illustrated in Fig. 17, where the segmented masks from the

fine-tuned DSNet are used to detect the lesion ROI (yellow color contour) along with the

recognized class. More classification results for all the test images are available on YouTube

(ISIC-20165, ISIC-20176, and ISIC-20187). Fig. 17 also shows a few challenging images to

be classified and some wrongly recognized images. Although the DermoExpert wrongly

predicts those images, they visually seem like the predicted class. However, in this article,

we have presented the future applications of the DermoExpert by building a web application,

as shown in Fig. 18 (a), for the user of the DermoExpert. We have implemented the app

in our local machine, which runs in a web browser at “http://127.0.0.1:5000/” by accessing

the CNN environments of that local machine. Our source code and segmented masks of the

ISIC-2018 dataset will be publicly available in GitHub8.

5ISIC-2016 (Classification): https://youtu.be/wwHwkQmigqU
6ISIC-2017 (Classification): https://youtu.be/1Dn5l4g4h6Y
7ISIC-2018 (Classification): https://youtu.be/NXVw2cyqd6k
8https://github.com/kamruleee51/Web-App-of-Skin-Lesion-Classification
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ISIC-2016 ISIC-2017 ISIC-2018

Figure 17: The qualitative classification results using the DermoExpert, where the classification has been

accomplished using the segmented ROIs (yellow color) and the proposed DermoExpert.

(a) (b)

Figure 18: The web app for predicting the lesion class by employing the trained weights of the DermoExpert.

Users can drag or choose an image by clicking the button, as shown on the left side, and can clear if the

selection is wrong. After that, by clicking the submit button, the user can see the recognized result on the

screen, as shown on the right side.

5. Conclusion

Although it is very challenging due to high visual similarity and diverse artifacts, skin

lesions’ automatic recognition is significant. However, in this article, the skin lesion recog-

38

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted February 16, 2021. ; https://doi.org/10.1101/2021.02.02.21251038doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.02.21251038


nition has been automated by proposing a pipeline called DermoExpert. This article em-

phasized a systematic evaluation of an integrated skin lesion recognition system, including

lesion ROI extraction, image augmentation, rebalancing, and hybrid-CNN classifier. Our

experimental results demonstrate that the proposed DermoExpert can discriminate against

the lesion features more accurately as we concatenated features from three distinct genera-

tors. Thus, it achieves state-of-the-art performance for the SLC of three different datasets.

The segmented skin lesions, rather than the whole images, can provide more salient and

representative features from the CNNs, leading to the SLC’s improvement. Moreover, the

rebalanced class distribution attained better SLC performance compared to the imbalanced

distribution. Additionally, the augmentation can lead the CNN-based classifier to be more

generic as CNNs can learn from diverse training samples. We will further explore and inves-

tigate the effects of improving segmentation and weighting of the underrepresented classes in

the future. The weights of the DermoExpert will be deployed to the Google Cloud platform

to make it publicly available. We will provide our segmented masks of the ISIC-2018 dataset

(Task 3: Lesion Diagnosis (10015 images)) for the research purpose (on-request) as they are

not available yet. The proposed framework will be applied to other domains for medical

imaging to verify its versatility and generality.
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[17] Géron, A., 2019. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts,

Tools, and Techniques to Build Intelligent Systems. O’Reilly Media.

[18] Gessert, N., Nielsen, M., Shaikh, M., Werner, R., Schlaefer, A., 2020. Skin lesion classification using

ensembles of multi-resolution efficientnets with meta data. MethodsX , 100864.

[19] Glorot, X., Bengio, Y., 2010. Understanding the difficulty of training deep feedforward neural networks,

in: Proceedings of the thirteenth international conference on artificial intelligence and statistics, pp.

249–256.

[20] Gutman, D., Codella, N.C., Celebi, E., Helba, B., Marchetti, M., Mishra, N., Halpern, A., 2016. Skin

lesion analysis toward melanoma detection: A challenge at the international symposium on biomedical

imaging (isbi) 2016, hosted by the international skin imaging collaboration (isic). arXiv:1605.01397 .

[21] Hameed, N., Shabut, A.M., Ghosh, M.K., Hossain, M., 2020. Multi-class multi-level classification

algorithm for skin lesions classification using machine learning techniques. Expert Systems with Ap-

plications 141, 112961.

[22] Harangi, B., 2018. Skin lesion classification with ensembles of deep convolutional neural networks.

Journal of biomedical informatics 86, 25–32.

[23] Hasan, M., Ahamed, M., Ahmad, M., Rashid, M., et al., 2017. Prediction of epileptic seizure by

analysing time series eeg signal using k-nn classifier. Applied bionics and biomechanics 2017.

[24] Hasan, M.K., Dahal, L., Samarakoon, P.N., Tushar, F.I., Mart́ı, R., 2020. DSNet: Automatic dermo-

scopic skin lesion segmentation. Computers in Biology and Medicine 120, 103738.

[25] He, K., Zhang, X., Ren, S., Sun, J., 2016a. Deep residual learning for image recognition, in: Proceedings

of the IEEE conference on computer vision and pattern recognition, pp. 770–778.

[26] He, K., Zhang, X., Ren, S., Sun, J., 2016b. Identity mappings in deep residual networks, in: European

conference on computer vision, Springer. pp. 630–645.

[27] Hesamian, M.H., Jia, W., He, X., Kennedy, P., 2019. Deep learning techniques for medical image

segmentation: Achievements and challenges. Journal of digital imaging 32, 582–596.

41

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted February 16, 2021. ; https://doi.org/10.1101/2021.02.02.21251038doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.02.21251038


[28] Hu, J., Shen, L., Sun, G., 2018. Squeeze-and-excitation networks, in: Proceedings of the IEEE confer-

ence on computer vision and pattern recognition, pp. 7132–7141.

[29] Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q., 2017. Densely connected convolutional

networks, in: Proceedings of the IEEE conference on computer vision and pattern recognition, pp.

4700–4708.

[30] Hussain, Z., Gimenez, F., Yi, D., Rubin, D., 2017. Differential data augmentation techniques for

medical imaging classification tasks, in: AMIA Annual Symposium Proceedings, American Medical

Informatics Association. p. 979.

[31] ISIC, 2018. ISIC Archive. https://www.isic-archive.com/\#!/topWithHeader/onlyHeaderTop/

gallery [Accessed: 09 May 2020].

[32] Jalalian, A., Mashohor, S., Mahmud, R., Karasfi, B., Saripan, M.I.B., Ramli, A.R.B., 2017. Foundation

and methodologies in computer-aided diagnosis systems for breast cancer detection. EXCLI Journal

16, 113–137.

[33] Jones, O., Jurascheck, L., van Melle, M., Hickman, S., Burrows, N., Hall, P., Emery, J., Walter, F.,

2019. Dermoscopy for melanoma detection and triage in primary care: a systematic review. BMJ open

9, e027529.

[34] Kermany, D.S., Goldbaum, M., Cai, W., Valentim, C.C., Liang, H., Baxter, S.L., McKeown, A., Yang,

G., Wu, X., Yan, F., et al., 2018. Identifying medical diagnoses and treatable diseases by image-based

deep learning. Cell 172, 1122–1131.

[35] Khan, M.A., Sharif, M., Akram, T., Bukhari, S.A.C., Nayak, R.S., 2020. Developed newton-raphson

based deep features selection framework for skin lesion recognition. Pattern Recognition Letters 129,

293–303.

[36] Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization. arXiv:1412.6980 .

[37] Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. Imagenet classification with deep convolutional

neural networks, in: Advances in neural information processing systems, pp. 1097–1105.

[38] Kumar, A., Kim, J., Lyndon, D., Fulham, M., Feng, D., 2016. An ensemble of fine-tuned convolutional

neural networks for medical image classification. IEEE journal of biomedical and health informatics

21, 31–40.

[39] Kwasigroch, A., Grochowski, M., Miko lajczyk, A., 2020. Neural architecture search for skin lesion

classification. IEEE Access 8, 9061–9071.

[40] Li, K.M., Li, E.C., 2018. Skin lesion analysis towards melanoma detection via end-to-end deep learning

of convolutional neural networks. arXiv:1807.08332 .

[41] Li, Y., Shen, L., 2018. Skin lesion analysis towards melanoma detection using deep learning network.

Sensors 18, 556.

42

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted February 16, 2021. ; https://doi.org/10.1101/2021.02.02.21251038doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.02.21251038


[42] Lin, M., Chen, Q., Yan, S., 2013. Network in network. arXiv:1312.4400 .

[43] Ma, Z., Tavares, J.M.R., et al., 2015. A review of the quantification and classification of pigmented

skin lesions: from dedicated to hand-held devices. Journal of medical systems 39, 177.

[44] Mahajan, D., Girshick, R., Ramanathan, V., He, K., Paluri, M., Li, Y., Bharambe, A., van der Maaten,

L., 2018. Exploring the limits of weakly supervised pretraining, in: Proceedings of the European

Conference on Computer Vision (ECCV), pp. 181–196.

[45] Mahbod, A., Schaefer, G., Ellinger, I., Ecker, R., Pitiot, A., Wang, C., 2019. Fusing fine-tuned deep

features for skin lesion classification. Computerized Medical Imaging and Graphics 71, 19–29.

[46] Mahbod, A., Schaefer, G., Wang, C., Dorffner, G., Ecker, R., Ellinger, I., 2020. Transfer learning

using a multi-scale and multi-network ensemble for skin lesion classification. Computer Methods and

Programs in Biomedicine , 105475.

[47] Majtner, T., Yildirim-Yayilgan, S., Hardeberg, J.Y., 2016a. Combining deep learning and hand-crafted

features for skin lesion classification, in: 2016 Sixth International Conference on Image Processing

Theory, Tools and Applications (IPTA), IEEE. pp. 1–6.

[48] Majtner, T., Yildirim-Yayilgan, S., Hardeberg, J.Y., 2016b. Efficient melanoma detection using texture-

based rsurf features, in: International Conference on Image Analysis and Recognition, Springer. pp.

30–37.

[49] MIA Group, 2018. Medical Image Analysis Group. https://challenge2018.isic-archive.com/

leaderboards/ [Accessed: 01 April 2020].

[50] Mishraa, N.K., Celebi, M.E., 2016. An overview of melanoma detection in dermoscopy images using

image processing and machine learning. arXiv:1601.07843 .

[51] Mporas, I., Perikos, I., Paraskevas, M., 2020. Color models for skin lesion classification from dermato-

scopic images, in: Advances in Integrations of Intelligent Methods. Springer, pp. 85–98.

[52] Narayanamurthy, V., Padmapriya, P., Noorasafrin, A., Pooja, B., Hema, K., Nithyakalyani, K., Sam-

suri, F., et al., 2018. Skin cancer detection using non-invasive techniques. RSC advances 8, 28095–28130.

[53] Nozdryn-Plotnicki, A., Yap, J., Yolland, W., 2018. Ensembling convolutional neural networks for skin

cancer classification. International Skin Imaging Collaboration (ISIC) Challenge on Skin Image Analysis

for Melanoma Detection. MICCAI .

[54] Orr, G.B., Müller, K.R., 2003. Neural networks: tricks of the trade. Springer.

[55] Pereira, P.M., Fonseca-Pinto, R., Paiva, R.P., Assuncao, P.A., Tavora, L.M., Thomaz, L.A., Faria,

S.M., 2020. Skin lesion classification enhancement using border-line features–the melanoma vs nevus

problem. Biomedical Signal Processing and Control 57, 101765.

[56] Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., Ding, D., Bagul, A., Langlotz, C.,

Shpanskaya, K., et al., 2017. Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep

43

All rights reserved. No reuse allowed without permission. 
perpetuity. 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 
The copyright holder for thisthis version posted February 16, 2021. ; https://doi.org/10.1101/2021.02.02.21251038doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.02.21251038


learning. arXiv:1711.05225 .

[57] Rawat, W., Wang, Z., 2017. Deep convolutional neural networks for image classification: A compre-

hensive review. Neural computation 29, 2352–2449.

[58] Ries, L.A., Harkins, D., Krapcho, M., Mariotto, A., Miller, B., Feuer, E.J., Clegg, L.X., Eisner, M.,

Horner, M.J., Howlader, N., et al., 2006. Seer cancer statistics review, 1975-2003 .

[59] Ruder, S., 2016. An overview of gradient descent optimization algorithms. arXiv:1609.04747 .

[60] Serte, S., Demirel, H., 2019. Gabor wavelet-based deep learning for skin lesion classification. Computers

in biology and medicine 113, 103423.

[61] Shin, H.C., Roth, H.R., Gao, M., Lu, L., Xu, Z., Nogues, I., Yao, J., Mollura, D., Summers, R.M.,

2016. Deep convolutional neural networks for computer-aided detection: Cnn architectures, dataset

characteristics and transfer learning. IEEE transactions on medical imaging 35, 1285–1298.

[62] Shorten, C., Khoshgoftaar, T.M., 2019. A survey on image data augmentation for deep learning.

Journal of Big Data 6, 60.

[63] Siegel, R.L., Miller, K.D., Jemal, A., 2020. Cancer statistics, 2020. CA: A Cancer Journal for Clinicians

70, 7–30.

[64] Smith, L., MacNeil, S., 2011. State of the art in non-invasive imaging of cutaneous melanoma. Skin

Res. Technol. 17, 257–269.

[65] Smith, L.N., 2017. Cyclical learning rates for training neural networks, in: 2017 IEEE Winter Confer-

ence on Applications of Computer Vision (WACV), IEEE. pp. 464–472.

[66] Song, L., Lin, J.P., Wang, Z.J., Wang, H., 2020. An end-to-end multi-task deep learning framework for

skin lesion analysis. IEEE Journal of Biomedical and Health Informatics .

[67] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R., 2014. Dropout: a simple

way to prevent neural networks from overfitting. The journal of machine learning research 15, 1929–

1958.

[68] Tajbakhsh, N., Shin, J.Y., Gurudu, S.R., Hurst, R.T., Kendall, C.B., Gotway, M.B., Liang, J., 2016.

Convolutional neural networks for medical image analysis: Full training or fine tuning? IEEE transac-

tions on medical imaging 35, 1299–1312.
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