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Appendix A: Methodological details 

The data analysis methodology is composed of three steps: 

1. Creation of a brain activity representation by novel Brain Activity Features (BAFs)  

2. Creation of Novel Biomarkers based on the BAFs 

3. Examination of the features on previously unseen data 

Each of the steps is described below. 

 

Creation of Brain Activity features (BAFs) 

The creation of the Brain Activity Features (BAFs) occurs prior to application of the 

methodology onto the new data to be analyzed. Calculation of the BAFs is based on 

collecting a large cohort of high dynamic amplitude and frequency range single channel 

EEG data. The cohort includes multiple subjects that are exposed to different cognitive, 

emotional, and resting tasks. A schematic representation of the signal processing is depicted 

in Fig A1. The signal processing module is decomposing the EEG signal input into a large 

number of components which comprise the Brain Activity Features (BAFs). The output of 

the module is a Brain Activity Representation which is constructed based on the BAFs for 

any given EEG signal. 
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Figure A1. schematic representation of the construction of the Brain Activity Features 

(BAFs). See text for the description of the different steps. 

A: electrophysiological signal input 

The EEG cohort described above is the input of the signal processing algorithm presented as 

the first step of the process. 

 

B: Wavelet Packet Analysis  

For a given cohort of EEG recordings, a family of wavelet packet trees is created. For the 

mathematical description, we follow the notation and construction provided in chapters 5, 6 

and 7 of Wickerhauser’s book1. 

To demonstrate the process; let g and h be a set of biorthogonal quadrature filters created 

from the filters G and H respectively. Each of these is a convolution-decimation operator, 

where in the case of the simple Haar wavelet, g is a set of averages and h is a set of 

differences. 

The construction of the full wavelet packet tree is by successive application of these 

functions (Figure A2), so that at every level, a new full orthogonal decomposition of the 

original signal x is created. In the classical wavelet decomposition by Daubechies2, only the 

marked parts are used and the signal is decomposed into Gx, GHx etc., but the full 

construction of the tree continues recursively, on Gx, GHx and so forth, to create a full 

binary tree. Coifman and Wickerhauser3 observed that a large number of orthogonal 

decompositions can be constructed from the full tree by mixing between the different levels 

and different blocks of the tree, following a simple rule. The recursive construction of the 

full tree is described next.                                                                                                  



3 

 

 

Figure A2. Construction of a Discrete Wavelet Transform Tree (Taken from 

Wickerhauser1). The top panel represents the classical wavelet construction and the bottom 

panel extends the construction to a full wavelet packet tree. 

Let 𝜓1 be the mother wavelet associated to the filters 𝑠 ∈ 𝐻, an 𝑑 ∈ 𝐺.  Then, the 

collection of wavelet packets 𝜓𝑛, is given by:  

𝜓2𝑛 = 𝐻𝜓𝑛;                𝜓2𝑛(𝑡) = √2 ∑

𝑗∈𝑍

𝑠(𝑗)𝜓𝑛(2𝑡 − 𝑗), 

𝜓2𝑛+1 = 𝐺𝜓𝑛;                 𝜓2𝑛+1(𝑡) = √2 ∑

𝑗∈𝑍

𝑑(𝑗)𝜓𝑛(2𝑡 − 𝑗). 

The recursive form provides a natural arrangement in the form of a binary tree (Figure A2). 

The functions 𝜓𝑛 have a fixed scale. A library of wavelet packets of any scale s, frequency f, 

and position p is given by: 
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 𝜓𝑠𝑓𝑝(𝑡) = 2−𝑠/2𝜓𝑓(2−𝑠𝑡 − 𝑝). 

 

The wavelet packets {𝜓𝑠𝑓𝑝: 𝑝 ∈ 𝑍} are an orthonormal basis for every f (under 

orthogonality condition of the filters H and G) and are called 

𝑜𝑟𝑡ℎ𝑜𝑛𝑜𝑚𝑎𝑙 𝑤𝑎𝑣𝑒𝑙𝑒𝑡 𝑝𝑎𝑐𝑘𝑒𝑡𝑠. 

Using this construction, Coifman and Wickerhauser applied the best basis algorithm3 to 

search for an orthonormal base that satisfies a specific optimality condition. The optimality 

condition that was chosen is Shannon’s entropy of the coefficients of each component (or 

wavelet packet atom). It is a measure that prefers coefficients with a distribution that is far 

from uniform, in the sense that it prefers a distribution with a small number of high value 

coefficients and a long tale, namely, a large number with low value coefficients. The full 

details of the best basis search are described in chapter 7 of Wickerhaser’s book.  

The process of creating a best basis from the wavelet packet tree can be further iterated by 

an optimization on the mother wavelet using a gradient descent in wavelet space as is 

described in Neretti and Intrator4. 

C: Pruning the optimal representation 

The outcome of the best basis algorithm is an orthogonal decomposition that is adapted to 

the stochastic properties of the collection of EEG signals. However, there is a risk that the 

decomposition is “overfitting” namely it is too adapted to the EEG signals from which it 

was created. To avoid this phenomenon, we first have to get rid of “small” coefficients. This 

can be done by the denoising technique of Coifman and Donoho5. The next step is 

introducing a validation set, which is another collection of EEG-recordings that was not 

used in the creation of the best basis. Using this set, we can determine which atoms maintain 

a high energy (some large coefficients) when decomposing the new signals. These atoms 
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will remain in the representation. At the end of this part, the resulting set of decomposing 

signal contains only a part of the full orthonormal basis that was found. We then reorder the 

basis components not based on the binary tree that created them, but based on the 

correlation between the different components In this way, we created a brain activity 

representation in which components that are more correlated to each other, are also 

geographically close to each other within the representation. This is done for the purpose of 

improved visualization. 

D: brain activity representation output 

The result of the signal processing module is the brain activity representation. Specifically, 

it is a collection of 121 energy components, emanating from the wavelet packets as well as 

standard frequency bands which are updated each second. The representation (D) shows a 

color heatmap of each of the 121 X time matrix, so that the x axis represents time and the y 

axis represents the different components. 

 

Creation of Novel features based on the BAFs 

The signal components, which we termed BAFs, were constructed from single EEG channel 

recordings in an unsupervised manner, namely, there were no labels attached to the 

recordings for the purpose of creating the decomposition. To create biomarkers based on the 

BAFs, task labels are used, indicating the nature of cognitive, emotional, or resting 

challenge the subject is exposed to during the recording. 

Given labels from a collection of subjects, and the corresponding high-dimensional BAF 

data, a collection of models attempting to differentiate between the labels based on the BAF 

activity can be used. In the linear case, these models are of the form: 
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𝑉𝑘(𝑤, 𝑥) = 𝛹 (∑

𝑖

𝑤𝑖𝑥𝑖), 

where w is a vector of weights, and 𝛹  is a transfer function that can either be linear, e.g., 

𝛹(𝑦) = 𝑦,  or sigmoidal for logistic regression 𝛹(𝑦) = 1/(1 + 𝑒−𝑦).  

 

Figure A3. Supervised construction of different features from labeled brain activity 

representation of different cognitive and non-cognitive tasks.    

For each predictor, which we term biomarker, a standard machine learning procedure is 

applied as follows: 

1. Choose a labeled data set with at least two different tasks (e.g. cognitive, emotional, or 

resting challenge). The data set may include the same challenge but for a non-

homogenous group. 

2. Separate the data into three sets: training, validation, and test. 

3. Choose a model to train on from a family of models that includes linear regression, 

linear regression with binary constrains (zero and one values for the weights), linear 

regression with only positive values, logistic regression, discriminant analysis and 

principal components analysis. In the non-linear models, use neural networks, support 

vector machine and the like. 
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4. Train each model on several sets of train/test and validation to best estimate internal 

model such as the variance constraints, on the ridge regression, the kernel size and 

number of kernels in a support vector machine, or the weight constraints in a neural 

network model. 

5. From the above models, obtain predictors to be tested on other data with potentially 

other cognitive, emotional and rest challenges. 

6. The last step in the process includes testing the biomarkers using a test data labeled set 

that was not used in the creation of these features. This allows removal of features that 

were overfitting to the training data, namely, they do not produce high significant 

difference on the validation data. This is still part of the model creation and not part of 

the model testing that is done on new data and is described in step 3. 

All above steps are described in the scheme on Figure A3. 

 

Examination of the features on previously unseen data 

Following the creation of BAFs and the creation of features as described above, the features 

relevance can be tested on various cognitive or emotional challenge. The testing scheme is 

described in Figure A4. Specifically, data is collected with the sensor system and sent to the 

cloud for creation of a BAF representation using the previously determined wavelet packet 

atoms. The BAF representation is provided to previously determined ML models, which 

convert the BAF activity into features. Statistical tests are then applied to determine the 

quality of the predictions and the correlation of the features to the cognitive and emotional 

challenges that the participants undergo. This may include single subject analysis as well as 

group analysis.  
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Figure A4: Testing the relevance of the previously found features on the data. 

In the process of testing the features on new data, we may want to get an upper bound to the 

performance of the feature, by seeking an overfitting biomarker on the currently tested data. 

This is only done to get an idea of the potential upper bound on prediction abilities from the 

existing data, and indirectly can tell us more about the optimality of the actual features that 

were constructed from a different data set and are assumed to be more general in this sense. 
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