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Readmission in the intensive care unit (ICU) is associated with
poor clinical outcomes and high costs. Traditional scoring meth-
ods to help clinicians deciding whether a patient is ready for
discharge have failed to meet expectations, paving the way for
machine learning based approaches. Freely available datasets
such as MIMIC-III have served as benchmarking media to com-
pare such tools. We used the OMOP-CDM version of MIMIC-
III (MIMIC-OMOP) to train and evaluate a lightweight tree
boosting method to predict readmission in ICU at different time
points after discharge (3, 7 and 30 days), outperforming existing
solutions with an AUROC of 0.805 for 3-days readmission.
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Introduction
Recent studies have shown that readmission in the intensive
care unit (ICU) is associated with poor clinical outcomes, in-
creased length of ICU and hospital stay, and high costs (1, 2).
One of the main reasons for ICU readmission that has been
identified is premature discharge (3); in fact the transfer of
patients from an ICU to a general hospital ward represents a
high-risk event, and thus the decisions about which patients
are ready to be discharged are daily struggles for ICU clini-
cians (4). Other studies have shown that determining the best
timing for ICU discharge is usually based on subjective in-
tuitions and that readmission prediction tools can help physi-
cians in this endeavor, provided their performance and ease of
adoption (5, 6). As traditional scores based on logistic regres-
sion or Cox proportional hazards models such as the Stability
and Workload Index for Transfer score (SWIFT) or the LACE
index have failed to meet expectations (6–10), numerous pre-
diction models using machine learning have been proposed
in the recent past, several of which trained and evaluated on
the Multiparameter Intelligent Monitoring in Intensive Care
(MIMIC-II or MIMIC-III) open database (11–15).
MIMIC-III is a large ICU EHR database widely accessible
to researchers internationally under a data use agreement, al-
lowing clinical studies to be reproduced and benchmarked
(16, 17). In order to make multicenter ressearch possible, a
valuable effort has been made to convert MIMIC-III to the
Observational Medical Outcomes Partnership common data
model (OMOP-CDM), which provides structural and con-
ceptual models relying on international reference terminolo-
gies (18, 19). For the sake of reproducibility and ease of sub-
sequent implementation in other centers using the same data
model, we chose to use the OMOP-CDM version of MIMIC-
III (MIMIC-OMOP), for which documentation and a map-

ping Extract-Transform-Load (ETL) process are freely avail-
able (20).

Related works
Among the numerous works aiming to provide decision-
making tools for ICU clinicians at discharge time, two in
particular caught our attention in terms of performance and
similarity of setting to our own.
Lin et al. (12) proposed an advanced neural network for 30-
day ICU readmission prediction (LSTM-CNN based model)
achieving an Area Under Curve of the Receiver Operating
Characteristic (AUROC) metric of 0.791 on MIMIC-III, us-
ing chart events 48h time series, diagnostic ICD-9 codes em-
beddings, and demographic information of the patients. The
authors claim to offer higher sensitivity (0.742) compared
to existing solutions, regardless of the specificity trade-off.
With a fixed specificity at 0.850 and 0.800, they achieve a
sensitivity of 0.548 and 0.619 respectively with their best
model. There is no mention of precision nor F1-score.
Pakbin et al. (13) trained a simpler and more interpretable
gradient boosting model (XGBoost) for predicting risk of
ICU bounceback and readmission at a variety of time points
using MIMIC-III, achieving AUROC of 0.76 and 0.75, F1-
score of 0.20 and 0.34, for 72h and 30-days ICU readmission
respectively. They use chart events time series, ICD-9 codes
indicators, as well as admission, demographic and length-of-
stay information of the patients. There is no mention of sen-
sitivity, specificity or precision.

Methods
Data and patients. MIMIC-III integrates deidentified, com-
prehensive clinical data of patients admitted from 2001 to
2012 at the Beth Israel Deaconess Medical Center in Boston,
Massachusetts. We restricted our analyses to ICU stays of
patients over 18 years old, ending up with a dataset of 55135
stays. Variables used in the model were age, gender, length of
stay, provenance from a surgery ward, current count of ICU
visits for the same patient (=visit rank), and three values for a
number of measures and blood tests: the first entry for a given
stay, the last one and the absolute difference between the two.
Those measures were total glasgow coma scale (GCS), mo-
tor GCS, verbal GCS, eye movement GCS, systolic blood
pressure, heart rate, respiratory rate, body temperature, oxy-
gen saturation, oxygen inspired fraction, body weight, urine
output, serum bicarbonate, serum urea, total bilirubin, serum
sodium, serum potassium, serum creatinine, blood platelets,
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hemoglobinemia, blood hematocrit, blood leukocytes, serum
lactates, blood PH, blood glucose and the International Nor-
malized Ratio (INR). Three variables were extracted from
medical and nurses text notes: history of AIDS, metastatic
cancer and/or of advanced hematologic condition (myeloma,
lymphoma or leukemia). Finally, one feature counting the
number of available values for all the previous variables
was added. Missing data were then imputed via multivari-
ate imputation from all other available variables (21), with
a Bayesian ridge regression as the estimator (22). A short
summary of the dataset’s main characteristics is reported in
Table1.

Overall
Total ICU visits, n 55135
Gender, n (%) Male 31219 (56.6)

Female 23916 (43.4)
Length of stay (days),
mean (SD)

3.2 (4.9)

Age, n (%) 18-25 1346 (2.4)
25-45 6271 (11.4)
45-65 18887 (34.3)
65-85 22800 (41.4)
85-95 3226 (5.9)
95+ 2605 (4.7)

Visit rank, mean (SD) 0.2 (0.5)

Provenance, n (%)
Other
wards 27391 (49.7)

Surgery 27744 (50.3)
Personal history of AIDS,
n (%)

No 53013 (96.2)

Yes 2122 (3.8)
Personal history of
metastatic cancer, n
(%)

No 50076 (90.8)

Yes 5059 (9.2)
Personal history of ad-
vanced hematologic condi-
tion, n (%)

No 52359 (95.0)

Yes 2776 (5.0)

Table 1. Description of the dataset’s main characteristics

Outcome definition. We used a similar outcome definition
to Lin et al. (12), where positive cases were regarded as
the visits where the patients could benefit from a prediction
of readmission before being transferred or discharged: visits
where the patients were either transferred or discharged but
returned to ICU, or died before a defined time limit (3, 7, or
30 days).

Model training and evaluation. Several model families
were tested in a screening phase, among which linear models,
support vector machines, naive bayes, decision trees and en-
semble methods. XGBoost, a gradient tree boosting method
that is widely used to achieve state-of-the-art results on many
machine learning problems, was consistently outperforming

the others on all metrics and was thus selected as the pre-
diction model for this study (23). Schematically, gradient
boosting methods work by iteratively fitting "weak" models
to the residuals of the previous model, and adding the newly
estimated residuals to the previous model’s prediction, thus
forming a "new" prediction, and so on until a stopping cri-
terion is met. XGBoost implements this algorithm with de-
cision trees, an additional custom regularization term in the
objective function, and several computing tweaks to optimize
speed and performance, such as parallel learning or sparsity
awareness.
Our dataset was divided into three parts, each representing
64%, 16% and 20% of the whole respectively: the first part
to train our model (the training set), the second to tune the
model’s output classification threshold and to apply the early
stopping method (the validation set) and the third part to eval-
uate the performance of our model on unseen data (the test
set). The splits were stratified and grouped by individual pa-
tients, meaning each set contained about the same proportion
of each outcome class and that all visits of a patient were
grouped in the same set.
To reduce overfitting, we used the early stopping method.
At each training epochs, the model’s performance is eval-
uated on the validation set by measuring the negative log-
likelihood: if it hasn’t improved after a fixed number of
epochs (in our case 10), then the training is stopped. As
for the final evaluation, we decided to report a comprehen-
sive set of metrics, for a full overview of the model’s abilities
and to ease future comparability with other approaches: area
under the receiver operating characteristic curve (AUROC),
precision (positive predicted value), specificity (true negative
rate), sensitivity (true positive rate, also known as the recall)
and F1-score, the harmonic mean between precision and re-
call. All metrics were calculated over the test set.
The probability threshold above which the output of our
model would be classified as a positive outcome has been
chosen according to an iterative procedure optimizing for the
highest F-β score on the validation set, with β = 1.5. For ref-
erence, the F-β score is a weighted weighted harmonic mean
between precision and recall, favoring recall when β > 1, and
vice versa. Hyperparameter selection was done via a strati-
fied group 5-fold cross-validation procedure in a grid-search
setting, optimizing for the following subset of parameters:
the number of trees, the maximum depth for each tree, the
proportion of features used for each tree and the learning
rate. Calibration of the models was assessed by separating
the predicted probabilities over the test set into deciles, and
assessing the proportion of realized outcomes in each bin. A
model is said to be well calibrated when each bin’s true out-
come proportion is close to the bin’s predicted probabilities,
resulting in a calibration curve close to the diagonal line when
plotted.
Apart from performance, we also wanted to understand
which features were important to the model. Contributions of
each feature were reported using the TreeExplainer from the
SHAP python library, a state-of-the-art explanation frame-
work for tree based-methods that enables the tractable com-
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putation of optimal local (ie. per sample) explanations, as
defined by desirable properties from game theory elements,
such as Shapley values (24, 25). It is important to note that
this might not necessarily mean that features with a higher
importance are significantly associated with the outcome in
a causal relationship, but it is nonetheless the best available
way to assess the internal correlations learned by the model.

Reproducibility. All code used to produce this
work, essentially written in Python, is available at
http://github.com/deepphong/icu-readmission, accompa-
nied by a step by step example Jupyter notebook and generic
functions to exploit any database in OMOP format for other
use cases.

Results
The evaluation results on the test set are reported in Table2
for each metric and outcome. Overall, at the classification
threshold set for optimal F1.5-score, our model consistently
equals or outperforms the results previously reported by Lin
et al. (12) for 30-days readmission (AUROC 0.794 vs. 0.791,
recall 0.796 vs. 0.742) and Pakbin et al. (13) for 3-days, 7-
days and 30-days readmission (AUROC 0.805 vs. 0.76, 0.807
vs. 0.77 and 0.794 vs. 0.75 respectively; F1-score 0.481
vs. 0.22, 0.527 vs. 0.32 and 0.560 vs. 0.37 respectively).
Performance for other classification thresholds are reported
in Figure 1 for 3-days readmission prediction.

Fig. 1. Performance trade-offs for specificity, sensitivity and precision on the test set
according to different classification thresholds, on 3-days readmission prediction

Calibration of the model was overall very good, as visually
assessed in Figure 2, with a near perfect fit towards the ex-
tremes, meaning that the model is more frequently right the
more confident it is in making its predictions. While cali-
bration statistical tests exist, such as the Hosmer-Lemeshow
test, we feel like a calibration plot gives more information
and intuition.
Figure 3 shows the model’s top 20 features importance for
3-days readmission prediction, sorted by the sum of Shapley
value magnitudes over all samples. While the length-of-stay
seems to be the most discriminative feature for model, with
shorter duration associated with a higher chance of readmis-
sion, an interesting observation is the feature that comes just

Fig. 2. Calibration plot showing the actual proportion of readmission in each decile
of predicted probability of readmission for 3-days readmission predicsion

after: the number of non-missing features of an individual for
a given stay. This feature can be assimilated to the number
of different measurements and blood tests taken on an indi-
vidual for a given stay, and is plausibly correlated with the
severity of the patient’s condition.
Performance trade-offs, calibration plots and features impor-
tance plots for the other evaluated outcomes are available in
the appendix.

Fig. 3. TreeExplainer features importance (top 20) on the test set, ranked by the
sum of Shapley value magnitudes over all samples for the model prediction. Each
dot in the visualization represents one prediction. The color is related to the real
data point; if the actual value in the dataset was high, the dot is colored in red;
blue indicates the actual value is low. Features prefixed with "last_" are the last
available measurements before discharge and features prefixed with "delta_" are
the difference between the first and last available measurement of the stay
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3-days readmission 7-days readmission 30-days readmission
(CIR=15.8%) (CIR=19.7%) (CIR=27.3%)

AUROC 0.805 0.807 0.794
Specificity 0.812 0.757 0.604
Recall/sensitivity 0.633 0.725 0.796
Precision 0.388 0.418 0.432
F1-score 0.481 0.527 0.560

Table 2. Performance metrics over the test set for the three different outcomes, at the classification threshold for optimal F1.5-score. CIR = class imbalance ratio (proportion
of positive cases among the population)

Conclusion and discussion
In this work, we proposed a model based on a tree boost-
ing method to predict ICU readmission at 3, 7 and 30 days
using data of from the patients visit available at discharge
on the freely available MIMIC-III database. Our solution is
open-source and has the advantage of having been conceived
with the OMOP-CDM standard, allowing for easier external
validation and implementation. While this work improves
on existing solutions for ICU readmission prediction, several
points still need to be addressed.
The prediction model was trained and evaluated on MIMIC-
OMOP, and as of this time, no external validation has been
conducted yet. To facilitate this process, all code needed
to reproduce the results has been open-sourced. Although
efforts have been put into its ease-of-transfer on any other
electronic health records (EHR) database using the OMOP-
CDM standard, some non neglectible amount of work is al-
ways needed to adapt the code to new data. The feasibility of
external validation is currently being evaluated on the largest
French EHR database. Further work also needs to be done
to integrate and evaluate such prediction models in clinical
practice. The choice of developing on common health data
standards such as OMOP-CDM and/or HL7’s Fast Health
Interoperability Resources (FHIR) (26) is a step forward in
this direction, as more and more applications are being made
compatible with those.
Although there are numerous similar studies claiming state-
of-the-art performance for machine learning models on vari-
ous tasks, most only report one or two metrics, mainly AU-
ROC. We argue that it is only by reporting a fully compre-
hensive set of metrics that models can be made comparable
and reproducible. The strengths and weaknesses of a model
often rely on the performance trade-offs; depending on the
use-case, one would want to favor one metric over the others
(eg. sensitivity for non-invasive cancer screening), and would
be able to assess the model’s ability to do so with reports such
as Figure 1.
Apart from our model’s intrinsic performance, another in-
teresting finding was the importance of including a variable
accounting for the available measures among the ones se-
lected for the model. This shows that the missing measures
were missing not at random (MNAR), and the rationale be-
hind this seems to be that patients with a poorer progno-
sis usually have more tests and measurements done to them.
This feature could possibly be indirectly correlated with the
care providers’ overall feeling of the patient’s current state,
and we postulate that existing models could be improved by

adding similar information.
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