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Text	A1:	Applications	of	Susceptible-Exposed-Infectious-Recovered	(SEIR)	
models	to	guide	policy	making	throughout	the	COVID-19	pandemic	

	
Mathematical	epidemiological	models	have	been	widely	applied	throughout	the	
COVID-19	pandemic	to	provide	quantitative	and	reproducible	in	silico	simulation	
of	the	epidemiological	dynamics	of	COVID-19.	They	provide	a	holistic	approach	
to	 modelling	 the	 epidemiological	 system,	 considering	 multiple	 dynamic	
processes	 that	 interact	 to	drive	 virus	 transmission	patterns.	 For	 example,	 they	
model	 processes	 of	 viral	 transmission	 in	 the	 human	 population,	 utilising	 data	
describing	expected	rates	of	human-to-human	contact	in	different	environments	
(such	 as	workplace,	 school	 and	 home	 environments)	 and	 different	 geographic	
regions.	They	also	include	data	on	the	characteristics	of	the	COVID-19	virus	such	
as	its	transmissibility	and	the	duration	of	the	viral	incubation	period,	as	well	as	
the	expected	rates	of	severe	infections	and	deaths.	They	can	include	information	
about	 how	 these	 processes	 vary	 across	 different	 demographic	 variables	 and	
vulnerability	 characteristics.	 Models	 combine	 these	 epidemiological	 processes	
and	 describe	 their	 highly	 non-linear	 interactions,	 which	 are	 difficult	 to	
understand	 using	 only	 intuition	 (1).	 Models	 have	 been	 applied	 globally	
throughout	 the	 pandemic	 to	 guide	 policy	 makers	 about	 possible	 future	
trajectories	 of	 COVID-19	 infections	 and	 deaths,	 the	 consequent	 demands	 on	
healthcare	systems,	and	how	these	can	be	 influenced	by	the	 implementation	of	
various	public	health	and	social	measures	(PHSM).	
	
1.1	The	SEIR	model	
Many	epidemiological	models	of	COVID-19,	including	the	CoMo	model,	are	based	
on	 mechanistic	 Susceptible-Exposed-Infectious-Recovered	 (SEIR)	 modelling	
approaches	 (2)	 that	 model	 the	 mechanisms	 of	 viral	 transmission	 and	 the	
progression	of	the	infection	in	individuals	who	have	contracted	the	virus.	 In	 its	
simplest	form,	the	SEIR	model	subdivides	the	human	population	into	four	classes	
of	individuals	(Figure	A1):	(i)	Susceptible	individuals,	meaning	those	who	are	not	
currently	 infected	 and	 can	 potentially	 contract	 the	 infection	 upon	 making	 an	
infectious	 contact;	 (ii)	 Exposed	 individuals,	 meaning	 those	 who	 have	 become	
infected	 with	 a	 virus	 that	 is	 still	 undergoing	 incubation;	 (iii)	 Infectious	
individuals,	meaning	those	who	are	infected	with	a	virus	that	has	completed	the	
incubation	 phase	 and	 can	 potentially	 cause	 clinical	 symptoms;	 (iv)	 Recovered	
individuals,	meaning	 those	who	 have	 recovered	 from	 the	 infection	 and	 are	 no	
longer	 infected.	 The	 rates	 of	 transition	 between	 each	 of	 the	 four	 classes	 are	
defined	by	parameters	that	are	estimated	based	on	observations	of	viral	spread	
and	 infection	 progression	 in	 the	 human	 population.	 Importantly,	 the	 rate	 at	
which	Susceptible	individuals	become	infected	is	proportional	to	the	number	of	
individuals	who	are	Infectious	(Figure	A1),	thus	infections	grow	exponentially	in	
the	 initial	phase	of	 the	 epidemic.	The	mathematical	model	 tracks	 the	 temporal	
evolution	 of	 the	 number	 of	 individuals	 in	 each	 of	 the	 Susceptible,	 Exposed,	
Infectious	and	Recovered	classes	using	a	series	of	differential	equations.	
The	 SEIR	 framework	 can	 be	 modified	 to	 include	 several	 types	 of	 additional	
structure	 that	 is	 relevant	 to	 the	 COVID-19	 epidemic.	 For	 example,	 the	 CoMo	
model	 subdivides	 the	 population	 according	 to	 age	 (Figure	 A2),	 and	 allows	
patterns	of	human-to-human	contact	to	vary	with	age	as	well	as	environmental	
setting.	 Age-dependent	 contact	 rates	 are	 specified	 for	 four	 different	
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environments,	 including	 home,	 school,	 workplace	 and	 other	 environments,	
where	 the	“other”	environment	 type	summarizes	all	contacts	outside	 the	home	
that	are	not	workplace	or	school	contacts.	 	The	CoMo	model	allows	the	impacts	
of	specific	PHSM	on	different	contact	rates	 to	be	explored,	 including	 those	 that	
affect	specific	environments	such	as	the	closure	of	schools	or	workplaces,	as	well	
as	 wider	 lockdowns	 that	 reduce	 contacts	 in	 all	 non-home	 environments.	
Additionally,	 the	model	 can	 consider	 reductions	 in	 contacts	 in	 individuals	who	
are	 self-isolating	 or	who	 are	 in	 quarantine.	 It	 is	 important	 to	note	 that	 human	
mobility,	and	the	spatial	and	geographic	dimensions	of	human	contact	patterns,	
are	 also	 an	 important	 determinant	 of	 the	 spread	 of	 COVID-19	 infections.	 At	
present,	the	CoMo	model	does	not	include	spatial	structure,	and	therefore	does	
not	represent	variation	in	contact	rates	and	viral	transmission	according	to	the	
spatial	proximity	of	individuals,	or	across	different	geographic	regions.	There	are	
other	SEIR	models	of	 the	COVID-19	pandemic	that	have	been	applied	to	Lower	
and	Middle	Income	Countries	(LMICs)	that	do	explicitly	model	spatial	structure	
and	human	movement	(3).	

	
Figure	 A1.	A	simple	SEIR	model.	 Susceptible	 individuals	 contract	 the	 infection	
and	become	Exposed	at	a	rate	proportional	to	the	number	of	infected	individuals	
in	the	population,	I,	the	average	number	of	daily	contacts,	c,	and	the	probability	
of	viral	transmission	given	an	infectious	contact,	β.	Exposed	individuals	enter	the	
Infected	class	at	a	rate	λ,	and	infected	individuals	either	recover	at	a	rate	γ	or	die	
from	 the	 disease	 at	 a	 rate	 μ.	 Recovered	 individuals	 lose	 their	 immunity	 to	
reinfection	at	a	rate	δ.	
	
The	 CoMo	 model	 also	 incorporates	 a	 hospital	 sub-model	 (Figure	 A2)	 that	
subdivides	 infectious	 individuals	according	to	hospital	 treatment	requirements,	
and	represents	an	age-dependent	increase	in	the	likelihood	of	severe	infections	
that	 require	 specialized	 hospital	 treatment.	 This	 allows	 projection	 of	 the	
expected	burden	on	the	healthcare	system.	As	we	learn	more	about	the	COVID-
19	virus,	models	can	be	further	refined	to	represent	additional	mechanisms	and	
structure.	 For	 example,	 recent	 updates	 to	 the	 CoMo	 model	 consider	 varying	
degrees	of	immunity	to	re-infection	with	COVID-19	in	recovered	individuals	and	
how	 this	 depends	 on	 the	 decay	 of	 COVID-19	 antibodies	 over	 time	 (4).	Models	
may	also	consider	how	the	disease	burden	is	impacted	by	the	prevalence	of	other	
health	conditions	that	can	increase	vulnerability	to	severe	disease	outcomes.		
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Figure	A2.	The	CoMo	model	incorporates	a	hospital	submodel	(enclosed	by	the	
dashed	 line).	 The	 model	 subdivides	 the	 Infected	 individuals	 into	 those	 who	
experience	 no	 symptoms,	 mild	 symptoms,	 or	 a	 level	 of	 severity	 that	 requires	
hospitalized	treatment.	Hospitalized	individuals	are	categorized	according	to	the	
type	of	 treatment	 they	 require	 (hospital,	 ICU,	or	 ICU	and	Ventilator	 treatment)	
and	whether	or	not	they	are	receiving	the	required	treatment.	When	the	hospital	
reaches	its	capacity	for	a	given	treatment	type,	 individuals	who	require	a	given	
treatment	 but	 do	 not	 receive	 treatment	 are	 placed	 in	 either	 the	 “Hospital	
required”,	“ICU	required”,	or	“Ventilator	required”	classes	according	to	the	type	
of	 treatment	 required.	 These	 individuals	 can	move	 into	 the	 “Hospital	 treated”,	
“ICU	 treated”	 or	 “Ventilator	 treated”	 classes	 if	 resources	 become	 available.	
COVID-19	 attributable	 mortality	 occurs	 only	 in	 individuals	 with	 an	 infection	
severity	that	requires	either	hospital,	ICU	or	ventilator	treatment.	
		
1.2.	Appropriate	use	of	models	to	guide	policy-making	
The	 COVID-19	 pandemic	 has	 generated	 a	 heightened	 interest	 in	mathematical	
epidemiological	models	across	many	sectors	of	society	as	policy-makers	and	the	
public	 seek	 clarity	 around	 the	 future	 implications	 of	 this	 novel	 virus.	
Mathematical	 modelling	 has	 played	 a	 prominent	 role	 in	 policy	 making	
throughout	 the	pandemic,	and	 this	novel	 focus	on	modelling,	 together	with	 the	
novelty	 of	 the	 pandemic	 itself,	 has	 led	 at	 times	 to	 confusion	 and	
misunderstanding	 about	 how	 to	 use	 models	 appropriately	 and	 effectively	 to	
guide	public	health	decision	making.	The	scientific	modelling	community	has	an	
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important	 role	 to	 play	 in	 guiding	 public	 health	 managers,	 politicians	 and	 the	
wider	public	about	how	to	 interpret	and	apply	 the	results	of	models.	Since	 the	
beginning	 of	 the	 pandemic	 several	 modelling	 research	 groups	 have	 published	
guidance	 that	 summarizes	 and	 reviews,	 in	 non-technical	 language,	 key	
underlying	 principles	 for	 using	 mathematical	 models	 to	 guide	 policy	 making	
(1,5,6).	
An	important	and	widely	emphasized	principle	is	that	model	predictions	need	to	
be	 accompanied	 by	 a	 full	 and	 transparent	 assessment	 of	 the	 associated	
uncertainty	 (1,5–8).	 Predictions	 need	 to	 be	 presented	 as	 range	 of	 values	
describing	 the	 uncertainty	 interval,	 namely	 the	 confidence	 or	 credible	 interval	
(CI),	rather	than	a	single	numeric	value.	CIs	only	provide	estimates	of	a	part	of	
the	uncertainty,	however,	 and	do	not	 capture	all	uncertain	aspects,	because	all	
models	are	a	simplified	representation	of	reality	and	are	based	on	assumptions.	
It	 is	 therefore	 important	 that	 statements	 about	 uncertainty	 include	 a	 full	
articulation	 and	 assessment	 of	 model	 assumptions,	 including	 how	 these	 may	
impact	model	predictions,	and	that	areas	of	ignorance	are	acknowledged.		
Moreover,	the	validity	of	model	estimates	depends	entirely	on	the	quality	of	the	
epidemiological	data	used	to	construct	and	parameterize	the	model.	In	the	case	
of	COVID-19,	there	is	considerable	uncertainty	in	reported	epidemic	trajectories	
due	 to	 a	multitude	 of	 factors	 such	 as	 biases	 in	 the	 sets	 of	 individuals	who	 are	
tested,	under-reporting	of	cases	and	deaths,	and	uncertainty	in	laboratory	assays	
and	diagnoses.	Key	aspects	of	 the	epidemiology	of	COVID-19	remain	uncertain,	
including	the	extent	and	duration	of	immunity	following	infection,	the	extent	and	
transmissibility	 of	 asymptomatic	 infections,	 and	 patterns	 of	 human-to-human	
contacts	across	different	populations	and	regions	(1).	
Thus,	while	public	health	managers	seek	accurate	numbers	about	future	COVID-
19	 infection	 rates,	 hospitalizations	 and	 deaths,	 models	 cannot	 provide	
predictions	with	this	level	of	certainty.	Models	are	not	crystal	balls	(9),	and	it	is	
not	 appropriate	 to	 use	 models	 to	 provide	 a	 single	 precise	 forecast	 of	 future	
epidemiological	 outcomes	 (6).	Models	 are	more	 effective	when	 used	 to	 assess	
relative	 impacts	 across	 several	 sets	 of	 predictions	 (6).	 For	 example	 scenario-
based	modelling	approaches	present	results	across	multiple	scenarios	that	make	
different	 explicit	 assumptions	 about	 parameters	 and	 processes	 of	 interest	
(10,11),	 and	 draw	 insights	 from	 the	 qualitative	 as	 well	 as	 quantitative	
differences	 in	 predictions	 across	 different	 scenarios.	 	 From	 the	 perspective	 of	
public	 health	 policy	 making,	 it	 is	 useful	 to	 focus	 on	 the	 relative	 impacts	 of	
different	PHSM,	and	to	include	an	assessment	of	the	scale	of	the	expected	burden	
on	the	healthcare	system	(6).		
Quantitative	 predictions	 are	 typically	 only	 useful	 in	 short	 term	 forecasts.	 An	
important	aspect	of	assessing	model	validity	and	uncertainty	involves	follow-up	
analyses	 to	 compare	 short	 term	 predictions	 to	 observations	 as	 they	 become	
available.	 It	 is	 critical	 that	 modelling	 analyses	 are	 reproducible	 so	 that	
predictions	made	at	different	times	can	be	regenerated	and	assessed.	
There	can	be	a	tendency	to	favour	complex	models	over	simpler	approaches,	and	
to	assume	that	greater	complexity	leads	to	more	realistic	and	robust	predictions.	
This	will	not	be	the	case,	however,	if	complex	models	misrepresent	or	omit	key	
biological	 aspects	 (1,6).	 It	 is	 therefore	 important	 that	model	 choice	and	design	
incorporates	 an	 assessment	 of	 the	 trade-off	 between	 simplicity	 and	 complexity.	
This	trade-off	depends	on	the	availability	of	data	to	support	the	development	of	a	



	 6	

more	 complex	 model.	 Modellers	 need	 to	 acknowledge	 issues	 associated	 with	
parameter	 identifiability,	 and	 recognize	 that	 it	 is	 more	 difficult	 to	 infer	
parameters,	and	to	identify	errors,	for	complex	models	than	for	simpler	models.		
Moreover,	 it	 is	beneficial	 to	use	modelling	approaches	 that	are	 interpretable	to	
both	analysts	and	end	users,	as	this	allows	an	assessment	of	how	model	results	
are	 related	 to	 the	 choice	 of	 questions	 addressed,	 the	 inputs	 used,	 and	 the	
assumptions	 made	 (5).	 This	 feedback	 is	 valuable	 to	 adapting	 and	 improving	
subsequent	modelling	analyses,	and	continuing	to	guide	decision-making.	
Finally,	it	is	important	that	modelling	analyses	are	accompanied	by	a	description	
of	 the	 context	 in	 which	 the	 analyses	 were	 conducted,	 including	 the	 intended	
purpose	 of	 the	 analyses,	 and	 the	 background	 and	 motivation	 of	 the	 model	
developers,	analysts	and	stakeholders.	The	choice	of	modelling	approach	and	the	
design	of	analyses	is	never	neutral	(5),	and	can	greatly	influence	the	results	and	
conclusions.	 Analysts	 therefore	 need	 to	 provide	 an	 explicit	 statement	 of	 these	
biases	and	motivations.	Scientists	need	to	work	with	politicians,	journalists	and	
the	media	to	ensure	that	model	results	are	not	politicized,	and	reports	of	model	
predictions	 are	 couched	 in	 appropriate	 statements	 about	 context,	 the	 key	
caveats	and	uncertainty.	
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Table	A1:	Summary	of	the	methodological	approach,	including	participants	
and	 resource	 requirements,	 for	 the	 participatory	 modelling	 analyses	
conducted	by	the	WHO	EMRO	modelling	support	team.	

Participants	 Resources	required	 Methods	
Considerations	in	
choosing	the	
modelling	
approach	

Guiding	principles	
for	modelling	
analysis	

• Ministry	of	Health	
in	Member	States	

• WHO	focal	points	
• Technical	

modellers	
• Surveillance	

officers	
• Epidemiologists	
• Communication	

and	Policy	experts	

• Software	application	
for	implementing	
epidemiological	
modelling	analysis	that	
is:		
(i)	computationally	
efficient	
(ii)	user-friendly	
(iii)	reproducible	

• Additional	
mathematical	and	
statistical	software	for	
analysis	and	
visualization	of	model	
results	e.g.	R,	python.	

• Software	for	producing	
scientific	
presentations,	reports	
and	publications	e.g.	
MS	Office,	Reference	
Manager	

• Software	for	
telecommunication	
support	e.g.	Cisco	
Webex	

• Access	to	WHO	and	
publicly	available	
databases,	including	
WHO	dashboards,	GIS	
databases,	Google	
mobility	databases	and	
academic	research	
databases.	

• Timely	availability	
for	immediate	
application	

• Open	source,	user-
friendly	software	
application	

• Access	to	technical	
support	from	model	
developers	

• Model	and	software	
is	actively	developed	
and	maintained	

• Model	is	adaptable	to	
LMIC	settings	

• Access	to	an	active,	
collaborative	
consortium	of	model	
users	and	developers	

• Modelling	approach	
is	transparent	and	
interpretable	to	users	
from	a	wide	range	of	
professional	
backgrounds.	

We	follow	published	
scientific	advice	
summarized	in	Text	A1	
for	applying	
mathematical	models	to	
analyzing	the	
epidemiological	
dynamics	of	COVID-19.	
In	summary	this	advice	
recommends:	
• full	and	transparent	

assessment	of	
model	uncertainty	

• present	results	for	
several	equally	
plausible	scenarios	

• all	results	must	be	
reproducible	

• assessment	of	
tradeoffs	between	
simplicity	and	
complexity	

• use	an	interpretable	
modelling	approach	
and	discuss	results	
in	terms	of	
assumptions	and	
limitations.	

• Provide	a	
description	of	the	
context	and	
motivations	for	
conducting	the	
modelling	analyses	
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Figure	A3:	Participatory	modelling	approach	structure	and	participants	
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Table	A2:		Evaluation	of	the	modelling	process	and	results	
Process and results  Evaluation questions  Summary of experience  

 
1. Introduce modelling 
approach  

 - Do the participants understand 
and agree on expectations 
regarding what the modelling 
analysis can achieve? 

 - At the start of the process, it is 
important to establish a 
common expectations and 
understanding about what 
models can and can not do.  

2. Assemble modelling team   - Does the modelling team has a 
representation from an 
appropriate range of 
backgrounds? 

 - The modelling team should 
consider participants from 
broad range of backgrounds as 
detailed in (table A1) and (figure 
A3) 

3. Collect model input data 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4. Review input data  

 - Could the necessary country-
specific model inputs be 
collected and validated? 

 

 - Unavailability and poor quality 
data especially from conflict 
affected countries 

 - Hospital line lists are frequently 
not sufficient to fully quantify 
the rates of hospitalisation and 
deaths in the population 

 - Not sufficient community level 
data to fully quantify the effect 
of public health and social 
measure on the virus 
transmission rate 

 - These sources of uncertainty 
should be recognised 

 - A scenario-based modelling 
approach (text A1) needs to be 
used to provide model results 
across range of possible 
parameter values  

 
 - After model inputs are being 

cross-checked against 
literature values and other data 
sources, the modelling team 
should discuss any 
discrepancies and have 
common understanding and a 
consensus on the input values 
prior to conducting any 
modelling analysis.  

5. Conduct initial modelling 
analysis  

 - Do country collaborators have 
the capacity to run models 
independently? 

 - Several EMR countries has 
limited capacity for data 
processing and modelling  

 - The participatory modelling 
process is a step towards 
building national modelling 
capacity 
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Process and results  Evaluation questions  Summary of experience  

6. Review initial results   - Can modelling results be 
interpreted in the light of 
uncertainties around model 
inputs and model limitations? 

 - Model results interpretation 
can be challenging given the 
limitations of the models and 
the quality of the input data  

 - Continuous communication is 
needed to clearly interpret 
model results and convey 
models limitations and caveats  

7. Update modelling analysis   - How does the modelling team 
plan to update the modelling 
analysis?  

 - Models need to be regularly 
updated (e.g. monthly) to 
produce short-term forecasts 

 - It is important to conduct 
regular literature searches to 
guide updating model inputs 
and/or structure 

 - Updating model parameters 
should be after developing a 
common understanding of 
model’s main findings and be 
subjected to any changes in 
disease dynamics and/or the 
implementation of PHSM in 
real life.  

 - Timely to respond to pressing 
policy questions (e.g. different 
school re-opening strategies) 

8. Summarise policy 
implications  

 - Are the policy implications 
clearly stated and can they be 
translated into actionable 
decisions? 

 - Policy implications should be 
clearly and concisely 
summarised in plain language 
and target a wide range of 
backgrounds 

 - The trust and ownership 
established through the 
participatory approach 
facilitates the translation of 
model results and their policy 
implications to decisions  

9. Continue collaboration   - What are the key drivers to 
continue collaboration?  

 - Continuing collaboration builds 
capacity for epidemiological 
modelling in the region  

 - The participatory approach 
encourages continued 
involvement and collaboration  
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