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38   

39 Abstract   

40 Mitochondrial  genome  copy  number  (MT-CN)  varies  among  humans  and  across  tissues  and  is  highly                

41 heritable,  but  its  causes  and  consequences  are  not  well  understood.  When  measured  by  bulk  DNA                 

42 sequencing  in  blood,  MT-CN  may  reflect  a  combination  of  the  number  of  mitochondria  per  cell  and                  

43 cell  type  composition.  Here,  we  studied  MT-CN  variation  in  blood-derived  DNA  from  19,184  Finnish                

44 individuals  using  a  combination  of  genome  (N  =  4,163)  and  exome  sequencing  (N  =  19,034)  data  as                   

45 well  as  imputed  genotypes  (N  =  17,718).  We  identified  two  loci  significantly  associated  with  MT-CN                 

46 variation:  a  common  variant  at  the   MYB-HBS1L  locus  (P  =  1.6×10 -8 ),  which  has  previously  been                 

47 associated  with  numerous  hematological  parameters;  and  a  burden  of  rare  variants  in  the   TMBIM1                

48 gene  (P  =  3.0×10 -8 ),  which  has  been  reported  to  protect  against  non-alcoholic  fatty  liver  disease.  We                  

49 also  found  that  MT-CN  is  strongly  associated  with  insulin  levels  (P  =  2.0×10 -21 )  and  other  metabolic                  

50 syndrome  (metS)  related  traits.  Using  a  Mendelian  randomization  framework,  we  show  evidence  that               

51 MT-CN  measured  in  blood  is  causally  related  to  insulin  levels.  We  then  applied  an  MT-CN  polygenic                  

52 risk  score  (PRS)  derived  from  Finnish  data  to  the  UK  Biobank,  where  the  association  between  the                  

53 PRS  and  metS  traits  was  replicated.  Adjusting  for  cell  counts  largely  eliminated  these  signals,                

54 suggesting  that  MT-CN  affects  metS  via  cell  type  composition.  These  results  suggest  that               

55 measurements  of  MT-CN  in  blood-derived  DNA  partially  reflect  differences  in  cell-type  composition              

56 and   that   these   differences   are   causally   linked   to   insulin   and   related   traits.     

57   

58 Introduction   

59 There  are  many  reported  links  between  mitochondrial  content  and  cardiometabolic  phenotypes  in              

60 various  tissues,  including  adipose 1–3 ,  liver 1,4,5 ,  skeletal  muscle 1,6–10 ,  and  blood 11–17 .  Traits  associated             
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61 with  mitochondrial  (MT)  content  include  coronary  heart  disease  (CHD),  type  2  diabetes,  and               

62 metabolic  syndrome  traits  such  as  insulin  sensitivity/resistance,  obesity,  and  blood  triglycerides.             

63 However,  these  studies  have  generally  been  limited  by  small  sample  sizes  and  low  statistical  power.                 

64 This,  in  addition  to  the  use  of  heterogeneous  mitochondrial  quantification  methods 18 ,  has  led  to                

65 inconsistencies  in  the  literature  about  the  strength  and  directions  of  effect  between  mitochondrial               

66 content  and  metabolic  syndrome  (metS)  traits.  In  one  large  WGS  study  of  mitochondrial  genome  copy                 

67 number  (MT-CN)  in  2,077  Sardinians,  Ding   et  al .  estimated  the  heritability  of  MT-CN  at  54%  and                  

68 detected  significant  associations  between  MT-CN  and  both  waist  circumference  and  waist-hip  ratio,              

69 but  found  no  association  with  body  mass  index  (BMI) 11 .  Another  large  study  (N  =  5,150)  found                  

70 virtually  no  evidence  of  association  between  qPCR-measured  MT-CN  and  any  of  several              

71 cardiometabolic  phenotypes 19 .  The  only  exception  was  an  inverse  association  with  insulin  that  was              

72 identified  in  one  cohort  but  did  not  survive  meta-analysis  across  cohorts.  However,  a  study  of  21,870                  

73 individuals  from  3  cohorts  showed  a  significant  inverse  relationship  between  MT-CN  (measured  by               

74 microarray  probe  intensities  in  two  cohorts  and  qPCR  in  the  third)  and  incident  cardiovascular                

75 disease 20 .   

76 Although  variations  in  MT-CN  measured  from  whole  blood  can  in  principle  be  attributed  to                

77 either  variability  of  MT  copy  number  within  cells  or  the  cell  type  composition  of  the  blood  (given  that                    

78 different  cell  types  have  varying  MT  content 21–23 ),  the  literature  on  this  subject  is  inconclusive.  Using                 

79 CpG  methylation  data,  a  large  (N  =  11,443),  low-coverage  (1.7x  autosomal;  102x  mitochondrial)               

80 sequencing  study  of  the  link  between  MT-CN  and  major  depressive  disorder  using  buccal  DNA  from                 

81 Chinese  women  concluded  that  variability  of  MT-CN  from  buccal  swabs  was  not  due  to  differences  in                  

82 cell  type  composition 24 .  However,  this  study  did  not  do  a  similar  experiment  in  blood.  Two  small  (N  =                    

83 756  and  N  =  400)  studies  identified  an  association  between  MT  content  and  CHD  that  they  attributed                   

84 to  variable  MT-CN  within  leukocytes,  but  they  did  not  directly  investigate  the  possibility  of  cell  type                  
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85 composition  being  the  true  driver  of  the  association 12,17 .  For  brevity,  we  will  use  the  term  “MT-CN”  to                   

86 refer  to  the  underlying  phenotype  reflected  by  measuring  this  quantity  for  the  remainder  of  this  work,                  

87 with   these   caveats.   

88 While  several  studies  have  found  that  peripheral  blood  MT  content  is  heritable,  only  a  small                 

89 number  of  MT-CN  associated  loci  have  been  identified 25–27 .  In  one  of  these  studies,  Curran   et  al .  used                   

90 linkage  analysis  in  Mexican  Americans  to  find  an  MT-CN  associated  locus  near  a  marker  previously                 

91 associated  with  triglyceride  levels 26,28,29 ,  providing  further  indirect  evidence  for  the  link  between              

92 MT-CN   and   metabolic   syndrome.   

93 Here,  we  take  advantage  of  large-scale  genome,  exome,  and  array  genotype  data  to               

94 investigate  the  causes  and  effects  of  MT-CN  in  a  large,  deeply  phenotyped  Finnish  cohort.  Our                 

95 results  reveal  novel  links  with  metabolic  syndrome  and  provide  evidence  supporting  a  causal  role  for                 

96 MT-CN.     

97   

98 Material   and   Methods   

99 Genotype   and   phenotype   data   

100 Whole  genome  sequencing  (WGS)  was  performed  on  a  cohort  of  4,163  samples  comprising  3,074                

101 male  samples  from  the  METSIM  study 30  and  1,089  male  and  female  samples  from  the  FINRISK                 

102 study 31 .  Genomic  DNA  was  fragmented  on  the  Covaris  LE220  instrument  targeting  375  bp  inserts.                

103 Automated  Illumina  libraries  were  constructed  with  the  TruSeq  PCR-free  (Illumina)  or   KAPA  Hyper               

104 PCR-free  library  prep  kit  (KAPA  Biosystems/Roche)  on  the  SciClone  NGS  platform  (Perkin  Elmer).               

105 The  fragmented  genomic  DNA  was  size-selected  on  the  SciClone  instrument  with  AMPure  XP  beads                

106 to  tighten  the  distribution  of  fragmented  DNA  to  ensure  the  average  insert  of  the  libraries  was                  

107 350-375  bp.  We  followed  the  manufacturer’s  protocol  as  provided  by  Perkin  Elmer,  with  the  following                 

108 exception:  post  ligation,  the  libraries  were  purified  twice  with  a  0.7x  AMPure  bead/sample  ratio  to                 
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109 eliminate  any  residual  adaptors  present.  An  aliquot  of  the  final  libraries  was  diluted  1:20  and                 

110 quantitated  on  the  Caliper  GX  instrument  (Perkin  Elmer).  The  concentration  of  each  library  was                

111 accurately  determined  through  qPCR  utilizing  the  KAPA  library  Quantification  Kit  according  to  the               

112 manufacturer's  protocol  (KAPA  Biosystems/Roche)  to  produce  cluster  counts  appropriate  for  the             

113 Illumina  HiSeqX  instrument.  Libraries  were  pooled  and  run  over  a  few  lanes  of  the  HiSeq  X  to  ensure                    

114 the  libraries  within  the  pool  were  equally  balanced.  The  final  pool  of  balanced  libraries  was  loaded                  

115 over  the  remaining  number  of  HiSeq  X  lanes  to  achieve  the  desired  coverage  for  this  project.  2x150                   

116 paired  end  sequence  data  were  demultiplexed  using  a  single  index,  which  was  a  restriction  on  the                  

117 HiSeqX   instrument   at   this   time.   A   minimum   of   19.5x   coverage   was   achieved   per   sample.   

118 The  quality  of  the  aligned  sequence  data  was  assessed  using  metrics  generated  by  Picard 32                

119 v2.4.1,  Samtools 33  v1.3.1  and  VerifyBamID 34  v1.1.3.  Based  on  the  output  files  from  Picard,  the                

120 following  alignment  statistics  were  collected  for  review:  PF_MISMATCH_RATE,  PF_READS,           

121 PF_ALIGNED_BASES,  PCT_ADAPTER,  PCT_CHIMERAS,  PCT_PF_READS_ALIGNED,      

122 PCT_READS_ALIGNED_IN_PAIRS,  PF_HQ_ALIGNED_BASES,  PF_HQ_ALIGNED_Q20_BASES,     

123 PF_HQ_ALIGNED_READS,  MEAN_INSERT_SIZE,  STANDARD_DEVIATION,     

124 MEDIAN_INSERT_SIZE,  TOTAL_READS,  PCT_10x,  and  PCT_20x.  Alignment  rate  was  calculated           

125 as  PF_READS_ALIGNED/TOTAL_READS.  The  formula  for  haploid  coverage  was  as  follows:            

126 .  From  the  Samtools  output,  aploid coverage EAN_COV ERAGE  H = M 1 PCT_EXC_DUPE
1   PCT_EXC_TOTAL      

127 inter-chromosomal  rate  was  calculated  as:   and  discordant  rate  was       reads_mapped_in_pair
reads_mapped_in_interchromosomal_pairs      

128 calculated   as:   .  eads_mapped_percentage  reads_mapped_in_proper_pairs_percentage  r    

129 Properly  paired  percentage  (reads_mapped_in_proper_pairs_percentage)  and  singleton  percentage         

130 (reads_mapped_as_singleton_percentage)  were  also  reviewed.  From  VerifyBamID,  the  Freemix          

131 value   was   reviewed.   
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132 The  metrics  for  judgement  of  passing  data  quality  were:  FIRST_OF_PAIR_MISMATCH_RATE            

133 <  .05,  SECOND_OF_PAIR_MISMATCH_RATE  <  0.05,  haploid  coverage  ≥  19.5,  interchromosomal            

134 rate  <  .05,  and  discordant  rate  <  5.  All  of  the  above  metrics  must  have  been  met  in  order  for  the                       

135 sample  to  be  assigned  as  QC  pass.  If  a  sample  did  not  meet  the  passing  criteria,  the  following  failure                     

136 analysis  was  performed:  a)  If  the  Freemix  score  was  at  least  0.05,  the  sample  or  the  library  was                    

137 considered  contaminated,  and  both  the  library  and  the  sample  were  abandoned;  b)  if  the  discordant                 

138 rate  was  over  5  and/or  the  inter-chromosomal  rate  was  over  0.05,  the  quality  of  DNA  was  considered                   

139 poor  and  the  sample  was  removed  from  the  sequencing  pipeline;  and  c)  in  the  case  of  a)  and  b),  the                      

140 collaborator  was  contacted  to  determine  if  selection  of  a  replacement  sample  from  the  same  cohort                 

141 was   desired   or   feasible.   

142 Separately,  whole  exome  sequencing  (WES)  data  (N  =  19,034),  genotyping  array  data  (N  =               

143 17,718)  imputed  using  the  Haplotype  Reference  Consortium  panel 35  v1.1,  and  transformed,             

144 normalized  quantitative  cardiometabolic  trait  data  were  obtained  from  an  earlier  study 36 .  FINRISK              

145 array  data  came  in  nine  genotyping  batches,  two  of  which  were  excluded  from  the  present  study  due                   

146 to  small  sample  size.  The  traits,  normalization  and  transformation  procedures,  and  sample  sizes  are                

147 described  in  a  previous  publication 36 .  The  WES  and  imputed  sample  sets  contained  4,013  and  3,929                 

148 of   the   4,163   WGS   samples   included   in   the   present   study.   

149 All  participants  in  both  the  METSIM  and  FINRISK  studies  provided  informed  consent,  and               

150 study  protocols  were  approved  by  the  Ethics  Committees  at  participating  institutions  (National  Public               

151 Health  Institute  of  Finland;  Hospital  District  of  Helsinki  and  Uusimaa;  Hospital  District  of  Northern                

152 Savo).   All   relevant   ethics   committees   approved   this   study.   

153   

154 WGS   callset   generation   and   quality   control   
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155 Single  nucleotide  polymorphisms  (SNPs)  and  small  insertions  and  deletions  were  called  from  the  full                

156 set  of  4,163  samples  using  GATK 37  v3.5.   GVCFs  containing  SNVs  and  Indels  from  GATK                

157 HaplotypeCaller  ( -ERC  GVCF  -GQB  5  -GQB  20  -GQB  60  -variant_index_type  LINEAR             

158 -variant_index_parameter  128000 )  were  first  processed  to  ensure  no  GVCF  blocks  crossed             

159 boundaries  every  1  Mb  (CombineGVCFs;   --breakBandsAtMultiplesOf  1000000 ).  The         

160 resulting  GVCFs  were  then  processed  in  10  Mb  shards  across  each  chromosome.  Each  shard  was                 

161 combined   ( CombineGVCFs),  genotyped  (GenotypeGVCFs;   -stand_call_conf  30        

162 -stand_emit_conf  0 ),  hard  filtered  to  remove  alternate  alleles  uncalled  in  any  individual  removed               

163 (SelectVariants;   --removeUnusedAlternates ),  and  hard  filtered  to  remove  lines  solely  reporting            

164 symbolic  deletions  in  parallel.  All  shards  were  jointly  recalibrated  (VariantRecalibrator)  and  then              

165 individually  filtered  (ApplyRecalibration)  based  on  the  recalibration  results.  All  of  the  above  methods               

166 were  performed  using  GATK  v3.5.  SNP  variant  recalibration  was  performed  using  the  following               

167 options  to  VariantRecalibrator  and  all  resources  were  drawn  from  the  GATK  hg38  resource  bundle                

168 (v0):   

169 -mode   SNP   

170 -resource:hapmap,known=false,training=true,truth=true,prior=15.0   

171 -resource:omni,known=false,training=true,truth=true,prior=12.0   

172 -resource:1000G,known=false,training=true,truth=false,prior=10.0   

173 -resource:dbsnp,known=true,training=false,truth=false,prior=2.0   

174 -an   QD   -an   DP   -an   FS   -an   MQRankSum   -an   ReadPosRankSum   

175 -tranche   100.0   -tranche   99.9   -tranche   99.0   -tranche   90.0   

176 Indel  variant  recalibration  was  performed  using  the  following  options  to  VariantRecalibrator  (with  the               

177 same   resource   bundle   as   with   SNPs):   

178 -mode   INDEL   
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179 -resource:mills,known=true,training=true,truth=true,prior=12.0   

180 -an   DP   -an   FS   -an   MQRankSum   -an   ReadPosRankSum   

181 --maxGaussians   4   

182 -tranche   100.0   -tranche   99.9   -tranche   99.0   -tranche   90.0   

183 When   applying   the   variant   recalibration   the   following   options   were   used:   

184 For   SNPs:    --ts_filter_level   99.0   

185 For   Indels:    --ts_filter_level   99.0   

186   

187 Following  SNP  and  INDEL  variant  recalibration,  multiallelic  variants  were  decomposed  and             

188 normalized  with  vt 38  v0.5.  Duplicate  variants  and  variants  with  symbolic  alleles  were  subsequently               

189 removed.   T he  bottom  tranche  of  variants  identified  by  GATK’s  Variant  Quality  Score  Recalibration  tool                

190 and  variants  with  missingness  greater  than  2%  were  removed  as  well,  although  variants  with  allele                 

191 balance  between  0.3  and  0.7  were  rescued.  Variants  with  Hardy-Weinberg  equilibrium  (on  a               

192 second-degree  unrelated  subset  of  3,969  individuals,  as  determined  by  KING 39 )  P  value  less  than  10 -6                 

193 and   those   with   allele   balance   less   than   0.3   or   greater   than   0.7   were   also   removed.   

194 Sample-level  quality  control  was  also  undertaken  on  this  dataset;  13  samples  were  identified               

195 for  exclusion  because  of  singleton  counts  that  were  at  least  eight  median  absolute  deviations  above                 

196 the  median.  Separately,  12  sex-discordant  samples  were  flagged  using   plink  --check-sex ,  and              

197 after  examining  chromosome  Y  missingness  and  F  coefficient  values  for  these  samples,  only  the  one                 

198 that  clearly  differed  from  its  reported  sex  was  marked  for  exclusion.  No  samples  were  excluded  based                  

199 on  missingness  fraction  or  the  first  five  principal  components.  In  total,  14  samples  were  excluded  from                  

200 the  heritability,  GWAS,  and  Mendelian  randomization  analyses;  the  other  analyses  were  performed              

201 without  exclusion  of  these  samples.  As  a  result,  the  former  analyses  were  performed  with  N  =  4,149                   

202 while   the   latter   had   N   =   4,163.   
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203   

204 Mitochondrial   genome   copy   number   estimation   

205 We  estimated  mitochondrial  genome  copy  number  (MT-CN)  from  both  WGS  and  WES  data.  In  WGS                 

206 data,  we  used  BEDTools 40  to  calculate  per-base  coverage  on  the  mitochondrial  genome  from  the                

207 latest  available  4,163  WGS  CRAM  files.  MT-CN  was  then  calculated  by  normalizing  the  mean                

208 coverage  of  the  mitochondrial  genome  to  the  "haploid  coverage"  of  the  autosomes  as  calculated  by                 

209 Picard 32 .  The  result  was  then  doubled  to  account  for  the  diploidy  of  the  autosomal  genome.  This                  

210 normalization   is   summarized   by   the   following   equation:   .  ×MT_CNWGS = 2
mean mtDNA coverage

haploid autosomal coverage  

211 The  output  from  the  above  equation  served  as  the  raw  measurement  of  per  sample  MT-CN.  To                  

212 reduce  batch  effects,  we  separated  the  4,163  samples  into  three  groups:  METSIM,  FINRISK  collected                

213 in  1992  or  1997,  and  FINRISK  collected  in  2002  or  2007  (the  FINRISK  batching  decisions  were  made                   

214 based  on  the  means  shown  in   Figure  S4 ).  Within  each  cohort,  the  raw  estimates  were  regressed  on                   

215 age,  age 2  and  sex  (FINRISK  only)  and  the  residuals  were  inverse-normal  transformed.  We  combined                

216 the  three  batches  of  normalized  MT-CN  values  and  inverse-normal  transformed  the  combined  values               

217 for   downstream   analysis.   

218 We  used  a  similar  procedure  to  estimate  MT-CN  from  WES  data,  with  mean  autosomal                

219 coverage  estimates  taken  from  XHMM 41 .  However,  as  mitochondrial  genomic  coverage  was             

220 nonuniform  due  to  the  use  of  hybrid  capture  probes,  mean  mtDNA  coverage  was  not  an  obvious                 

221 choice  of  metric  for  MT-CN  estimation  ( Figure  S5 ).  To  summarize  this  nonuniform  mitochondrial               

222 genomic  coverage  into  a  single  number,  we  tried  taking  the  mean  and  the  maximum  depth  of  reads                   

223 that  aligned  to  the  mitochondrial  chromosome;  the  resulting  values  were  then  processed  in  the  same                 

224 way  as  the  WGS-estimated  values.  We  evaluated  the  approaches  by  measuring  the  R 2  between                

225 WGS-estimated  and  WES-estimated  MT-CN  in  the  4,013  samples  for  which  both  data  types  were                

226 available  ( Figure  S6 ).  While  R 2  was  fairly  high  using  both  approaches,  the  maximum  coverage                
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227 method  was  ultimately  selected  for  use  as  it  yielded  a  higher  R 2  (0.445  vs  0.380).  As  a  result,  the                     

228 WES   MT-CN   estimate   was   calculated   as   follows:   .  × MT_CNWES = 2
maximum mtDNA coverage

mean haploid autosomal coverage  

229   

230 Mitochondrial   haplogroup   estimation   

231 We  assigned  mitochondrial  haplogroups  using  HaploGrep 42  v1.0.  Mitochondrial  SNP/indel  variants            

232 were  genotyped  using  GATK  GenotypeGVCFs,  and  a  customized  filter  based  on  allele  balance  was                

233 applied  to  the  combined  callset.  HaploGrep  was  then  used  to  call  mitochondrial  haplotypes  for  each                 

234 individual.  We  adjusted  for  major  haplogroups  in  the  same  linear  regressions  of  metabolic  traits  onto                 

235 MT-CN  (see  Results)  and  calculated  the  summary  statistics  from  a  permutation  test  as  implemented                

236 in   the   R   package   lmPerm.   

237   

238 Heritability   analysis   

239 To  estimate  heritability  of  MT-CN,  a  genomic  relatedness-based  restricted  maximum-likelihood            

240 (GREML)  method  was  used  as  implemented  in  GCTA 43 .  The  original  GREML 44  method  was  used  first,                 

241 followed  by  GREML-LDMS 45  to  account  for  biases  arising  from  differences  in  minor  allele  frequency                

242 (MAF)  spectrum  or  linkage  disequilibrium  (LD)  properties  between  the  genotyped  variants  and  the               

243 true  causal  variants 46 .  For  both  analyses,  MT-CN  values  were  normalized  and  residualized  for  sex,                

244 age,  and  age 2  as  described  above.  Heritability  estimation  was  performed  jointly  and  separately  for                

245 METSIM  and  FINRISK  samples  using  WGS  and  imputed  array  genotypes.  In  all  cases,  a  minimum                 

246 MAF  threshold  of  1%  was  applied.  Beyond  those  covariates  already  adjusted  for  in  the  normalization                 

247 process,  sensitivity  analyses  were  performed  on  imputed  array  data  to  determine  whether  heritability               

248 estimates  were  sensitive  to  inclusion  of  covariates.  In  these  experiments,  either  cohort  or  FINRISK                

249 genotyping  array  batch  were  included  as  fixed-effect  covariates  in  joint  analyses  of  imputed  array                

250 data;  in  neither  case  was  the  final  heritability  estimate  significantly  affected  (h 2  =  0.09,  SE  =  0.02  in                    

10   

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 12, 2021. ; https://doi.org/10.1101/2020.10.23.20218586doi: medRxiv preprint 

https://paperpile.com/c/43POvq/i8AYi
https://paperpile.com/c/43POvq/Z8iVK
https://paperpile.com/c/43POvq/sMYwI
https://paperpile.com/c/43POvq/6Dmcq
https://paperpile.com/c/43POvq/4N1nf
https://doi.org/10.1101/2020.10.23.20218586
http://creativecommons.org/licenses/by-nc-nd/4.0/


  
251 both  cases).  In  GREML-LDMS,  genotypes  were  split  into  four  SNP-based  LD  score  quartiles  and  two                 

252 MAF  bins  (1%  >  MAF  >  5%  and  MAF  >  5%),  and  genetic  relatedness  matrices  (GRMs)  were                   

253 estimated  separately  for  each  of  the  eight  combinations.  The  GREML  algorithm  was  then  run  on  all                  

254 eight  GRMs  simultaneously  using  the  first  ten  principal  components  (PCs)  of  the  genotype  matrix  (as                 

255 calculated  by  smartPCA  v13050)  as  fixed  covariates 45 .  The  use  of  GREML-LDMS  over  GREML  also                

256 did  not  affect  estimated  heritability  values  ( Table  3 ),  suggesting  that  the  properties  of  the  causal                 

257 variants   for   this   trait   do   not   lead   to   significant   biases   when   using   the   standard   GREML   approach.   

258 We  observed  that  WGS  heritability  estimates  decrease  when  analyzing  FINRISK  and  METSIM              

259 data  together  compared  to  analysis  of  METSIM  alone  ( Table  2 )  (note  that  FINRISK-only  heritability                

260 estimates  are  not  reliable  as  they  have  large  standard  errors  resulting  from  the  small  number  of                  

261 FINRISK  samples  sequenced).  One  potential  explanation  for  this  is  that  there  exists  substantial               

262 heterogeneity  across  FINRISK  survey  years  ( Figure  S4 ),  and  between  the  FINRISK  and  METSIM               

263 cohorts,  with  respect  to  the  reliability  with  which  mtDNA  was  captured  (likely  due  to  different  DNA                  

264 preparation   protocols).   

265   

266 Genome-wide   association   analyses   

267 Genome-wide  association  studies  (GWAS)  were  performed  using  the  same  normalized  phenotype             

268 used  in  heritability  analyses.  Single-variant  GWAS  were  conducted  using  EMMAX  as  implemented  in               

269 EPACTS.  Kinship  matrices  required  by  EMMAX  were  generated  by  EPACTS;  kinship  matrices  for               

270 WGS  GWAS  were  generated  from  WGS  data,  while  those  for  WES  and  imputed  array  based  GWAS                  

271 were  generated  from  WES  data.  A  P  value  threshold  of  5×10 -8  was  used  for  the  WGS  and  imputed                    

272 array  GWAS  while  5×10 -7  was  used  for  significance  in  the  WES  GWAS.  Single-variant  association                

273 analyses  of  WGS  and  WES  data  did  not  include  any  covariates  in  the  EMMAX  model,  although  all                   

274 association  analyses  were  performed  using  MT-CN  values  that  adjusted  for  age,  age 2 ,  sex,  and                
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275 cohort  (see  “Mitochondrial  Genome  Copy  Number  Estimation”).  All  association  tests  labeled  “joint”              

276 were  performed  on  METSIM  and  FINRISK  cohorts  together;  in  one  case,  a  random-effects               

277 meta-analysis   was   performed   using   individual-cohort   summary   statistics   and   the   R   package   meta 47 .   

278 Gene-based  variant  aggregation  studies  (RVAS)  were  done  using  a  mixed-model  version  of              

279 SKAT-O 48  as  implemented  in  EPACTS.  Variants  with  CADD 49  score  greater  than  20  and  minor  allele                 

280 frequency  less  than  1%  were  grouped  into  genes  as  annotated  by  VEP 50  (which  annotates  a  variant                  

281 with  a  gene  name  if  the  gene  falls  within  5k  of  that  gene  by  default).  For  gene-based  RVAS,                    

282 genome-wide  significance  thresholds  varied  slightly  due  to  differing  the  number  of  genes  with  at  least                 

283 two   variants   meeting   the   above   criteria   in   each   test,   but   were   approximately   2×10 -6    in   all   cases.   

284   

285 Mendelian   randomization   

286 To  assess  the  evidence  for  a  causal  relationship  between  mitochondrial  genome  copy  number  and                

287 fasting  serum  insulin  levels,  the  METSIM  cohort  alone  was  used  due  to  its  homogeneity  of  sex,                  

288 collection  procedures,  and  location.  A  penalized  regression  based,  multiple  variant  Mendelian             

289 randomization  (MR)  approach  was  employed  to  enforce  the  necessary  assumptions  of  MR  methods.               

290 While  some  MR  studies  have  tested  one  or  more  assumptions   post  hoc ,  to  our  knowledge,  there  is  no                    

291 published  method  that  tries  to  enforce  these  assumptions  during  the  process  of  building  the  genetic                 

292 instrument  in  the  absence  of  a  large  set  of  known  genotype-exposure  associations.  In  our  formulation                 

293 ( Figure  4a ),   X ,  the  natural  log  of  MT-CN  (adjusted  for  nuclear  genomic  coverage  but  not  for  age,                   

294 age 2 ,  or  sex),  and  a  genotype  matrix   G  were  used  to  build  a  genetic  instrument   Z ,  which  was  then                     

295 tested  against   Y ,  the  natural  log  of  fasting  serum  insulin.  The  goal  of  the  MR  approach  was  to  use  a                      

296 large  number  of  common  variants  to  build  a  genetic  instrument   Z  that  satisfied  the  three  assumptions                  

297 of   MR 51 :   

298 1. Association   of    Z    with    X   
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299 2. Independence   of    Z    from   any   variables    U    confounding   the   relationship   between    X    and    Y   

300 3. Independence   of    Z    and    Y    given    X    and    U   

301 To  attempt  to  build  a  genetic  instrument  satisfying  assumptions  2  and  3,  the  deep  METSIM                 

302 phenotype  data  were  leveraged.  A  matrix   W  was  constructed  using  the  75  measured  traits  and  first                  

303 20  PCs  of  the  genotype  matrix  (including  a  third-degree  polynomial  basis  for  PC  1).  From  these                  

304 variables,  covariates  that  could  violate  one  of  these  two  assumptions  were  chosen  by  selecting                

305 columns  of   W  associated  with   X  or   Y  ( Figure  4b ).  These  columns  were  selected  using  two  successive                   

306 LASSO  feature  selection  procedures.  First,  a  set   A  of  covariates  associated  with   Y  was  chosen  by                  

307 using  LASSO  to  regress   Y  onto   W .  In  this  regression,  age  and  the  third-degree  polynomial  basis  for                   

308 PC  1  were  left  unpenalized  to  ensure  that A  contains  these  covariates.  The  shrinkage  parameter  was                 

309 chosen  by  tenfold  cross-validation  as  the  largest  value  that  gives  a  mean  squared  error  (MSE)  within                  

310 one  standard  error  of  the  minimum  observed  MSE.  Next,  the  columns  of   W  associated  with   X                  

311 conditional  on   A  were  chosen  using  a  similar  LASSO  procedure  in  the  regression  of   X  onto   W .  In  this                     

312 step,  however,  the  variables  in  set   A  were  left  unpenalized  in  order  to  only  capture  associations  that                   

313 are  conditionally  independent  of   A .  The  selected  variables  from  this  regression  were  designated  set                

314 B .   

315 The  instrument  was  built  using  a  penalized  regression  (using  either  an  L1  or  L2  penalty,  as                  

316 implemented  in  glmnet 52 )  of  the  form  ,  where   W A  and   W B  are  the  columns  of   W         ∼ G W  X +   A +W B           

317 representing  sets   A  and   B ,  respectively,  and   G  is  a  genotype  matrix  containing  the  alternate  allele                  

318 dosage  (missing  alleles  are  replaced  with  the  MAF,  similarly  to  PLINK 53 )  of  all  variants  with  MAF                  

319 greater  than  1%  and  marginal  GWAS  P  value  below  0.01.  As   X  was  the  target  vector  for  this                    

320 regression,  assumption  1  of  MR  was  trivial.  In  the  penalized  regression,   W A  and   W B  were  unpenalized                  

321 in  an  effort  to  orthogonalize  the  regression  coefficients  of  the  genotypes  to  these  covariates  in  an                  

322 effort  to  enforce  assumptions  2  and  3.  glmnet  was  run  with  a  convergence  threshold  of  1×10 -10  and                   
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323 maximum  number  of  iterations  of  200,000.  To  avoid  the  overfitting  that  would  result  from  calculating                 

324 instrument  values  on  the  same  samples  on  which  regression  coefficients  are  learned 54 ,  the  penalized                

325 regression  model  was  fit  on  independent  subsets  of  the  data  as  follows.  Five  models  were  fit,  each  by                    

326 holding  out  a  different  20%  of  samples,  such  that  the  instrument  value  computed  for  each  sample                  

327 was  calculated  using  the  regression  coefficient  vector  learned  without  that  sample.  The  vector  of                

328 possible  shrinkage  parameters   λ  for  all  five  models  was  supplied  as  (10 3 ,10 2 ,…,10 -13 ,10 -14 ),  and  the   λ                 

329 value  which  minimized  the  joint  residual  sum  of  squares  of  all  five  models  was  chosen  for  instrument                   

330 calculation.   

331 Formally,  we  randomly  partitioned  the  set  of  samples   S  with  nonmissing  insulin  measurements               

332 into  five  nonoverlapping  sets   S j  for  .  We  denote  set  complements  as  ,  such        1, , }j = { … 5          SSj
C = S j   

333 that  each   S j C  contained  80%  of  the  training  samples.  The  instrument  vector   Z j  for  each   S j  was                   

334 computed  as  follows:  ,  where   Z j  is  the  instrument  vector  for   S j ,   G j  is  the  genotype  matrix      Z j = Gj βG
( j)               

335 of   S j ,  and   β G 
(-j)  is  the  vector  of  genotype  regression  coefficients  from  the  model  described  above,                  

336 trained  on   S j C .  The  instrument  values  within  each   S j  were  inverse  rank-normalized  using  a  Blom                 

337 transformation 55,56  before  being  concatenated  across  the  values  of   j  to  give  the  final  instrument  vector                 

338 Z .  Because  samples  with  missing  insulin  values  could  not  be  included  in  the  causality  test  anyway,                  

339 these  samples  were  excluded  from   S  but  safely  included  in  the  training  sets  of  all  five  models.  The                    

340 instrument   values   of   these   samples   were   never   calculated   or   used   in   downstream   analyses.   

341 Often,  the  inclusion  of  unpenalized  covariate  sets   A  and   B  in  the  instrument-building  regression                

342 was  not  sufficient  to  completely  orthogonalize   Z  to  these  covariates  (see  below).  As  a  result,  the  test                   

343 for  association  between   Z  and   Y  was  performed  conditional  on  a  set  of  potentially                

344 assumption-violating  covariates  chosen  using  the  newly  constructed  instrument   Z  in  another  attempt              

345 to  account  for  possible  violations  of  MR  assumptions  in  the  causality  test  ( Figure  4c ).  To  choose  this                   

346 set  of  covariates   C ,  a  final  feature  selection  step  was  performed  using  LASSO  regression  of   Z  on   W                    
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347 with  covariate  set   A  excluded  from  the  penalty.  As  in  the  previous  feature  selection  steps,  the                  

348 shrinkage  parameter  was  chosen  via  tenfold  cross-validation  as  the  largest  value  with  MSE  within                

349 one  standard  error  of  the  minimum  observed  MSE.  Once  this  set,   D ,  of  covariates  associated  with   Z                   

350 was  chosen,  the  covariates  in   W  were  partitioned  into  sets   I ,   II ,   III ,  and   IV  based  on  their  membership                     

351 in   A  and   D  (see   Figure  4 ).  Formally,  this  partitioning  was  done  as  follows:  ,                   (A )  I = W D  

352 ,  ,  and  ,  where   and  .  Then,  the  test  for  I  I = D AC  II  I = A DC   V  I = A D      AAC = W      DDC = W      

353 causality  came  from  the  regression  coefficient  of   Z  in  the  multiple  regression  ,  where   C  is               ∼ Z  Y + C     

354 the   union   of   sets    II ,    III ,   and    IV    (colored   blue   in    Figure   4c ).   

355 To  account  for  missing  data  in   W ,  missing  values  were  multiply  imputed  using  regression  trees                 

356 as  implemented  in  the  R  package  mice 57  v3.4.0  ( maxit=25 ).  This  imputation  was  repeated  1000                

357 times  in  parallel,  with  each  set  of  imputed  values  being  carried  through  the  entire  procedure                 

358 described  above.  The  resulting  1000  computed  instrument  effect  sizes  and  standard  errors  were               

359 combined  using  Rubin’s  method  as  implemented  in  the  R  package  Amelia 58  v1.7.5.  The  combined                

360 effect  size  and  standard  error  were  then  tested  for  significance  using  a  t-test  with  998  degrees  of                   

361 freedom.   

362 The  above  procedure  was  performed  separately  for  METSIM  samples  with  WGS  data  (N  =                

363 3,034)  and  METSIM  samples  with  only  imputed  array  data  (N  =  6,774)  using  an  L1  penalty  in  the                    

364 instrument-building  regression,  and  again  using  an  L2  penalty.  Both  sample  sets  were  limited  to  those                 

365 for  which  relevant  quantitative  traits  were  available.  An  inverse-variance  weighted  meta-analysis  was              

366 performed  across  data  sets  for  L1  and  L2-penalized  regression  separately.  The  resulting  effect  size                

367 and   standard   error   were   tested   for   significance   using   a   Z   test.   

368 To  ensure  that  our  results  were  not  driven  by  outlier  samples,  we  removed  outliers  in  two                  

369 stages.  Before  the  MR  analyses,  we  used  principal  components  analysis  (PCA),  Mahalanobis              

370 distance,  and  multi-trait  extreme  outlier  identification  to  remove  5  WGS  samples  and  15  imputed                
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371 array  samples  based  on  quantitative  trait  data.  We  also  removed  high  leverage,  high  residual  outliers                 

372 from  the  causality  test  regression  (see  below)   post  hoc  and  recomputed  the  instrument  effect  sizes  to                  

373 ensure  that  there  was  no  significant  change  in  the  results.  In  each  of  the  1,000  multiple  imputation                   

374 runs,  among  the  samples  with  standardized  residual  greater  than  1,  the  top  10  samples  by  leverage                  

375 were  recorded.  Any  sample  that  was  recorded  in  this  way  in  at  least  one  run  was  then  excluded  from                     

376 the  re-analysis  as  a   post  hoc  outlier.  The  results  of  this  additional  analysis  showed  only  very  small                   

377 differences  in  effect  estimates,  and  their  interpretation  remained  the  same  ( Table  S9 ).  Thus,  we                

378 concluded   that   our   causal   inference   results   were   not   driven   by   outlier   samples.   

379 One  caveat  of  this  method  is  that,  as  mentioned  above,  exclusion  of  sets  A  and  B  from  the                    

380 regression  penalty  did  not  perfectly  orthogonalize  the  resulting  instrument  from  these  variables  in               

381 practice  ( Figure  S7 ).  Reasons  for  this  may  include  relatively  low  levels  of  shrinkage  in  the                 

382 instrument-building  regression  or  higher  order  associations  between  MT-CN  and  the  confounding             

383 variables.  However,  our  method  still  represents  an  improvement  over  the  current  standard,  which  is                

384 not  to  adjust  for  these  covariates  at  all.  Another  caveat  is  that  it  is  impossible  to  determine  the  perfect                     

385 set  of  covariates  for  which  adjustment  is  appropriate.  Lack  of  adjustment  for  truly  confounding                

386 variables  can  result  in  an  instrument  which  does  not  satisfy  MR  assumptions  2  and/or  3,  yielding  a                   

387 biased  effect  estimate.  Conversely,  unnecessary  adjustment  for  certain  variables  can  also  result  in               

388 biases.  For  example,  adjusting  for  an  intermediate  phenotype  that  truly  lies  along  the  path  from   Z  to   X                    

389 to   Y  can  cause  a  false  negative  signal,  making  the  causality  test  overly  conservative.  Alternatively,                 

390 adjusting  for  some  variables  can  result  in  collider  biases 59 .  That  is,  if  both   Z  and   Y  are  causal  for  a                      

391 confounder   U ,  then  adjusting  for   U  can  induce  a  dependency  between   Z  and   Y  ( Figure  S8 )  that  did                    

392 not   previously   exist.   

393 We  note  that  a  known  source  of  bias  in  MR  studies  is  the  selection  of  samples  based  on                    

394 case-control  status  for  a  related  disease 60 .  While  METSIM  is  a  population-based  study,  samples  were                
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395 selected  for  WGS  based  on  cardiovascular  disease  case-control  status  so  as  to  enrich  the  sequenced                 

396 samples  for  cases.  This  has  the  potential  to  bias  a  MR  experiment  if  both  the  exposure  and  the                    

397 outcome  are  associated  with  the  disease,  which  is  certainly  possible.  However,  in  our  design,  all  of                  

398 the  METSIM  samples  not  chosen  for  WGS  were  tested  in  the  imputed  array  experiment.  The                 

399 consistency  of  effect  estimates  between  the  WGS  and  imputed  array  samples  both  in  the  L1  and  L2                   

400 penalty  cases  ( Figure  4d )  suggests  that  there  is  little  to  no  bias  arising  from  sample  selection  in  this                    

401 experiment.   

402   

403 Calculation   and   testing   of   polygenic   risk   score   in   the   UK   Biobank   

404 To  search  for  associations  between  MT-CN  and  other  phenotypes,  the  genetic  instrument  calculated               

405 in  Finnish  imputed  array  data  was  computed  and  treated  as  a  polygenic  risk  score  (PRS)  in  a                   

406 relatively  homogenous  subset  of  357,656  UK  Biobank  samples  identified  by  a  previous  study 61 .  We                

407 calculated  ,  the  average  of  the  five  values  of   β G 
(-j)  across  all  1000  multiple  imputation  runs  using  an   βG                  

408 L2  penalty  and  imputed  array  data  –  the  L2  penalty  was  chosen  because  it  performed  better  than  the                   

409 L1  on  both  METSIM  data  types,  and  the  imputed  array  data  set  was  chosen  due  to  its  larger  sample                     

410 size  than  the  WGS  set  ( Figure  4d ).  Next,  to  keep  the  procedure  as  consistent  as  possible  with  the                    

411 imputation  protocol  used  for  METSIM  – which  used  haploid  dosage  values  to  call  imputed               

412 genotypes 36  –  we  called  imputed  genotypes  using  the  expected  alternate  allele  dosage  from  the  UK                 

413 Biobank  by  setting  thresholds  of  0.5  and  1.5.  Using  the  resulting  imputed  variant  calls,  we  calculated                  

414 our  PRS  as  ,  where  is  the  UK  Biobank  genotype  dosage  matrix  constructed  in  the      Z̃ = βG G̃    G̃           

415 same   way   as    G    in   METSIM.   

416 To  test  for  associations  with  MT-CN  PRS  in  the  UK  Biobank,  we  employed  two  approaches:  a                  

417 hypothesis-driven  analysis  targeted  to  the  phenotypes  associated  with  MT-CN  in  the  Finnish  data  as                

418 well   as   a   hypothesis-free   screen   of   all   the   phenotypes   available   to   us.   
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419 In  the  targeted  analysis,  we  used  our  genetic  instrument  from  the  MR  experiment  as  a  PRS  for                   

420 MT-CN  in  our  chosen  subset  of  the  UK  Biobank  and  tested  for  associations  with  several  blood  cell                   

421 count  and  metabolic  syndrome  traits.  Given  the  association  of  MT-CN  with  rs9389268  (see  Results),                

422 we  selected  as  cell  count  traits  total  leukocyte  count  as  well  as  lymphocyte,  neutrophil,  monocyte,                 

423 and  platelet  counts  for  testing  (because  lymphocyte  count  was  not  readily  available,  it  was  calculated                 

424 as  the  product  of  leukocyte  count  and  lymphocyte  percentage).  We  did  not  include  basophils  and                 

425 eosinophils  in  this  analysis  considering  that  they  comprise  a  small  minority  of  white  blood  cells  and                  

426 are  unlikely  to  affect  MT-CN  measured  from  whole  blood.  All  cell  count  traits  were  log-transformed                 

427 and   standardized   separately   by   sex.   

428 We  took  several  steps  to  eliminate  outlier  samples  in  the  dataset.  Through  three  iterations  of                 

429 PCA  on  the  cell  count  matrix  and  subsequent  outlier  removal,  we  removed  1,637  outlier  samples.  We                  

430 then  fit  null  linear  models  of  the  form   (the  first          ell count ∼ age ge ex ge ex ge ex Cs  c + a 2 + s + a : s + a 2 : s + P    

431 20  PCs  were  included)  for  each  cell  count  trait  and  subsequently  removed  samples  with  either  large                  

432 residuals  or  high  leverage  and  moderate  residuals  in  at  least  one  model  (following  the  example  of   61 ).                   

433 Through  two  iterations  of  null  model  fitting  and  outlier  removal,  we  removed  7  additional  samples                 

434 based  on  null  model  fit.  Tests  of  association  between  cell  counts  and  MT-CN  PRS  were  based  on  the                    

435 PRS  regression  coefficient  in  linear  models  of  the  form           

436 .  ell count ∼ PRS ge ge ex ge ex ge ex Cs  c + a + a 2 + s + a : s + a 2 : s + P  

437 We  repeated  this  process  for  those  cardiometabolic  traits  found  to  be  suggestively  associated               

438 with  MT-CN  in  the  Finnish  dataset  (P  <  10 -6 )  that  were  also  readily  available  in  the  UK  Biobank                    

439 ( Figure  1a ,   Table  S1 );  these  phenotypes  were  body  mass  index  (BMI),  fat  mass,  C-reactive  protein,                 

440 high-density  lipoprotein,  total  triglycerides,  and  weight.  We  also  chose  to  include  T2D  status  because                

441 of  the  lack  of  insulin  measurement  in  the  UK  Biobank.  Except  for  T2D,  a  binary  trait,  all  traits  were                     

442 log-transformed  before  further  analysis  (after  removing  817  samples  with  negative  values  for  T2D,               
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443 representing  missing  information).  The  above  outlier  removal  steps  were  repeated  for  the              

444 cardiometabolic  traits  after  excluding  the  outliers  already  identified  from  the  cell  count  data,  with  the                 

445 only  major  modification  being  the  use  of  logistic  regression  for  the  T2D  models.  This  process  resulted                  

446 in   the   removal   of   42   and   53   samples   from   PCA   and   null   model   fitting,   respectively.   

447 SKAT-O  tests  of  association  between   TMBIM1  and  the  cell  count  traits  identified  above  were                

448 also  performed.  Similarly  to  the  RVAS  in  Finnish  data,  variants  within  5kb  of   TMBIM1  with  MAF  <  1%                    

449 and  CADD  v1.6  score  >  20  were  selected  for  inclusion  in  this  analysis.  Rather  than  the  mixed-model                   

450 version  of  SKAT-O  used  in  the  Finnish  data,  standard  SKAT-O  was  used  due  to  the  lower  expected                   

451 level   of   cryptic   relatedness   in   the   UK   Biobank   population.   

452 We  also  performed  a  hypothesis-free,  phenome-wide  screen  of  UK  Biobank  traits  to  which  we                

453 had  access  ( Table  S10 ),  to  search  for  other  associations  with  MT-CN  PRS.  The  statistical  models                 

454 used  in  this  screen  were  of  the  same  form  as  those  described  above,  both  with  and  without                   

455 adjustment  for  neutrophil  and  platelet  counts.  To  curate  and  transform  phenotypes,  we  used  an                

456 adapted  version  of  PHESANT 61,62 .  A  few  further  modifications  were  made  to  the  pipeline,  the  most                 

457 significant  being  the  direct  use  of  logistic  regression  for  testing  categorical  unordered  variables,  the                

458 inclusion  of  cancer  phenotypes,  and  the  exclusion  of  sex-specific  (or  nearly  sex-specific)  categorical               

459 traits.  The  PHESANT  pipeline  we  used 61  outputs  continuous  variables  both  in  their  raw  form  and  after                  

460 applying  an  inverse  rank  normal  transformation.  For  the  sake  of  being  conservative  and  robust  to                 

461 outliers,  we  chose  to  interpret  the  results  from  the  normalized  continuous  variables.  To  control  false                 

462 discovery  rate,  we  performed  a  Benjamini-Hochberg  procedure  with  Storey  correction  as             

463 implemented  in  the  R  package  qvalue 63  v2.18.0  on  the  categorical  and  normalized  continuous               

464 variables  together.  As  a  secondary  analysis,  this  same  correction  was  applied  to  the  categorical  and                 

465 raw   continuous   variables   together.   

466   
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467 Results   

468 Association   of   MT-CN   with   metabolic   traits   

469 We  estimated  MT-CN  in  4,163  individuals  from  the  METSIM  and  FINRISK  studies  based  on  deep                 

470 (>20x  coverage)  WGS  data.  We  did  so  by  measuring  the  mean  coverage  depth  of  reads  mapped  to                   

471 the  mitochondrial  genome  in  each  sample,  and  normalizing  it  to  the  mean  autosomal  coverage  (see                

472 Material  and  Methods).  We  performed  batch  normalization  separately  for  METSIM  and  for  two               

473 FINRISK  batches  separated  by  survey  years  (see  Material  and  Methods).  Each  measurement  was               

474 adjusted  for  age,  age 2 ,  and  sex,  then  inverse  rank  normalized  separately  before  combining  across                

475 batches.  We  tested  the  resulting  MT-CN  estimates  for  association  with  137  quantitative  traits  that                

476 were  collected  and  normalized  according  to  the  procedures  described  previously 36 .  MT-CN  was              

477 strongly  associated  with  fat  mass  (P  =  4.48  x  10 -16 )  and  fasting  serum  insulin  (P  =  2.02  x  10 -21 ),  as                      

478 well  as  numerous  additional  quantitative  traits,  many  related  to  metabolic  syndrome  (Figure  1a ,               

479 Table  S1 ).  Notably,  BMI  was  significantly  associated  with  MT-CN,  although  Ding   et  al .  did  not  find                  

480 evidence  of  this  association 11 .  Since  population  structure  was  a  potential  confounder  in  this  analysis                

481 considering  the  presence  of  mtDNA  polymorphisms  that  might  adversely  affect  short-read  alignment,              

482 we  included  SNP-inferred  mitochondrial  haplogroup  as  a  covariate  and  reran  the  tests  ( Figure  1b ).                

483 The   association   signals   retained   significance   even   after   this   adjustment.   

484 To  understand  the  connection  between  MT-CN  and  more  clinically  relevant  phenotypes,  we              

485 tested  our  MT-CN  estimate  against  Matsuda  ISI  and  disposition  index  ( Table  1 ),  which  measure                

486 insulin  sensitivity  and  secretion,  respectively,  and  were  not  included  in  the  initial  screen.  MT-CN  was                 

487 strongly  associated  with  both  insulin  phenotypes.  Notably,  the  Matsuda  ISI  signals  survived              

488 adjustment  for  fat  mass  percentage  after  excluding  diabetic  individuals,  which  indicates  that  the               

489 association   of   peripheral   blood   MT-CN   with   insulin   sensitivity   was   independent   of   fat   mass.   

20   

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 12, 2021. ; https://doi.org/10.1101/2020.10.23.20218586doi: medRxiv preprint 

https://paperpile.com/c/43POvq/r0FlA
https://paperpile.com/c/43POvq/Vydq4
https://doi.org/10.1101/2020.10.23.20218586
http://creativecommons.org/licenses/by-nc-nd/4.0/


  
490 To  test  for  this  association  signal  in  a  larger  cohort,  we  developed  a  method  to  estimate                  

491 mitochondrial  genome  copy  number  using  19,034  samples  with  whole  exome  sequencing  (WES)  data               

492 from  the  METSIM  and  FINRISK  studies  that  included  most  of  the  WGS  samples 36  (see  Material  and                  

493 Methods).  R 2  between  WGS-based  and  WES-based  estimates  was  0.445  ( Figure  S6 ).  Consistent              

494 with  the  WGS-based  analysis,  WES-estimated  MT-CN  was  significantly  associated  with  both  fat  mass              

495 and  fasting  serum  insulin  levels,  even  after  removing  the  samples  with  WGS  data,  with  identical                 

496 directions   of   effect   ( Table   S2 ).   

497 Anecdotally,  it  is  interesting  to  note  that  these  MT  association  signals  can  also  be  detected                 

498 using  read-depth  analysis  of  the  nuclear  genome  ( Figure  S1;  manuscript  under  review 64  -  preprint                

499 doi:  10.1101/2020.12.13.422502),  where  reads  derived  from  mtDNA  align  erroneously  to  several             

500 nuclear  loci  based  on  homology  between  the  MT  genome  and  ancient  nuclear  mitochondrial               

501 insertions.  This  result  provides  additional  evidence  for  the  reported  trait  associations  using  an               

502 independent  MT-CN  estimation  method,  and  indicates  that  these  homology-based  signals  need  to  be               

503 taken   into   account   in   future   CNV   association   studies.   

504   

505 Heritability   analysis   

506 To  assess  the  extent  to  which  MT-CN  is  genetically  determined,  we  estimated  the  heritability  of                 

507 mitochondrial  genome  copy  number  using  GREML  ( Table  2 ).  We  explored  two  different  approaches               

508 available:  (1)  analysis  of  the  4,149  samples  with  WGS  data  that  passed  quality  control  measures,                 

509 where  both  nuclear  genotypes  and  MT-CN  are  measured  directly  from  the  WGS  data,  and  (2)                 

510 analysis  of  the  set  of  17,718  samples  with  imputed  genotype  array  data,  where  MT-CN  is  estimated                  

511 from  WES  data.  Of  these,  (1)  benefited  from  more  accurate  measurement  of  genotype  and                

512 phenotype,  whereas  (2)  had  noisier  measurements  but  benefited  from  larger  sample  size.  We               
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513 focused  primarily  on  the  METSIM  cohort,  both  because  of  the  homogeneity  of  this  cohort  (see                 

514 Material   and   Methods)   and   because   the   number   of   FINRISK   samples   with   WGS   data   was   small.   

515 In  the  WGS  analysis,  the  GREML-estimated  heritability  of  MT-CN  in  METSIM  was  31%  -                

516 somewhat  less  than  the  54%  value  reported  in  the  only  prior  large-scale  study  of  peripheral  blood                  

517 MT-CN  heritability,  which  was  based  on  low-coverage  WGS 11 .  For  comparison,  we  used  this  same                

518 approach  to  estimate  heritability  of  LDL  in  METSIM  WGS  data,  which  yielded  an  estimate  of  34%  with                   

519 a  standard  error  of  7.9%  ( Table  3 ).  This  is  broadly  consistent  with  prior  work 65,66 ,  including  analysis  of                   

520 the  same  Finnish  sample  set  using  distinct  methods 36  (20.2%  heritability).  These  results  show  that                

521 mitochondrial  genome  copy  number  is  a  genetically  determined  trait  with  significant  heritability,              

522 comparable   to   that   of   LDL   and   other   quantitative   cardiometabolic   traits 36 .   

523 The  analysis  of  imputed  METSIM  genotypes  using  WES-estimated  MT-CN  yielded  an             

524 estimated  heritability  of  11%,  which  is  much  lower  than  the  WGS-based  estimate  ( Table  2 ).  To                 

525 understand  this  discrepancy,  we  repeated  the  GREML  analysis  with  the  other  two  combinations  of                

526 phenotype  source  (WGS  vs.  WES  estimation)  and  genotype  source  (WGS  vs.  imputed  array).  When                

527 using  the  WGS-measured  phenotype,  the  estimated  heritability  decreased  only  slightly  (31%  to  27%)               

528 when  switching  from  the  WGS  to  imputed  genotypes.  This  suggests  that  the  difference  in  genotyping                 

529 method  was  not  the  main  driver  of  the  observed  heritability  disparity  between  the  WGS  and  imputed                  

530 array  datasets.  Conversely,  when  analyzing  the  imputed  METSIM  genotypes,  switching  from             

531 WGS-measured  to  WES-measured  MT-CN  resulted  in  a  large  drop  (27%  to  11%)  in  estimated                

532 heritability.  This  suggests  that  the  extra  noise  inherent  in  WES-based  MT-CN  estimates  was               

533 responsible  for  the  reduction  in  the  GREML-estimated  heritability  despite  the  increased  sample  size               

534 of   the   imputed   array   dataset.   

535   

536 Identification   of   genetic   factors   associated   with   MT-CN   
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537 Previous  studies  have  identified  three  autosomal  quantitative  trait  loci  (QTL)  reaching  genome-wide              

538 significance  for  MT-CN  in  other  populations 25,26 .  Another  recent  study  identified  two  putative  QTLs               

539 with  suggestive  P  values 27 .  We  conducted  single  variant  GWAS  for  MT-CN  (see  Material  and               

540 Methods).  Analysis  of  WGS  (N  =  4,149)  and  WES  (N  =  19,034)  genotypes  yielded  no  variants                  

541 exceeding  the  respective  significance  thresholds  of  5×10 -8  and  5×10 -7  ( Figure  S2 ).  However,  despite               

542 the  increased  noise  in  the  WES-measured  phenotype,  GWAS  of  imputed  array  genotypes  from               

543 METSIM  (N  =  9,791)  yielded  two  loci  with  genome-wide  significant  associations,  identified  by  lead                

544 markers  rs2288464  and  rs9389268  ( Figure  2 ,   Table  4 ).  Of  the  previously-reported  MT-CN  QTLs 25–27 ,               

545 we  observed  an  inconclusive  signal  at  rs445  (P  =  0.048)  and  a  significant  signal  at  rs709591  (P  =                    

546 1.61×10 -4 ),  a  locus  associated  with  neutrophil  count 67,68  ( Table  S11 ).  No  significant  signal  was               

547 observed  at  the  other  two  single-variant  QTLs  ( Table  S11 )  or  the  linkage  peak  identified  by  Curran   et                   

548 al .   ( Figure   S3 ).   

549 rs9389268  was  the  only  marker  that  was  strongly  associated  with  MT-CN  in  the  METSIM                

550 analyses  of  both  WGS  and  imputed  array  data  (P  =  3.24×10 -8  and  P  =  1.26×10 -10 ,  respectively).                  

551 Although  this  variant  was  not  significantly  associated  with  MT-CN  in  FINRISK  (P  =  0.788  and  P  =                   

552 0.189  in  WGS  and  imputed  array  data,  respectively)  or  in  a  separate  random-effects  meta-analysis  of                 

553 both  cohorts  (P  =  0.115),  the  lack  of  signal  in  FINRISK  is  likely  the  product  of  lower-quality  MT-CN                    

554 measurements  in  FINRISK,  which  displayed  heterogeneity  across  survey  years  ( Figure  S4 ).  This              

555 variant  is  located  in  an  intergenic  region  between  the   MYB  and   HBS1L  genes,  is  common  across                  

556 many  populations,  and  is  slightly  more  frequent  in  Finns  compared  to  non-Finnish  Europeans               

557 (gnomAD  v3  MAF  34.4%  vs.  26.0%).   MYB  and   HBS1L  are  hematopoietic  regulators 69,70 ,  and  the                

558 region  between  them  is  known  to  be  associated  with  many  hematological  parameters  including  fetal                

559 hemoglobin  levels,  hematocrit,  and  erythrocyte,  platelet,  and  monocyte  counts 71–74 .  It  has  been              

560 suggested  that  these  intergenic  variants  function  by  disrupting   MYB  transcription  factor  binding  and               
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561 disrupting  enhancer-promoter  looping 75 .  Conditioning  the  METSIM-only  imputed  array  GWAS  on            

562 rs9399137  –  a  tag  SNP  shown  to  be  associated  with  many  of  these  hematological  parameters 73  –                  

563 resulted  in  elimination  of  the  rs9389268  signal  entirely  (P  =  0.408),  suggesting  that  the  haplotype                 

564 responsible  for  the  association  of  rs9389268  with  MT-CN  in  our  data  is  the  same  one  previously                  

565 known   to   be   associated   with   numerous   hematological   phenotypes.   

566 This  result  is  not  surprising  considering  our  approach  for  normalizing  MT-CN.  Because  our               

567 MT-CN  estimate  was  based  on  the  ratio  of  mtDNA  coverage  to  nuclear  DNA  coverage,  changes  in                  

568 the  cell  type  composition  of  blood  could  result  in  changes  in  our  normalized  measurement  if  the                  

569 underlying  cell  types  have  different  average  numbers  of  mitochondria.  This  is  especially  true  of                

570 platelets,  which  can  contain  mitochondria  but  not  nuclei,  and  whose  counts  are  known  to  be                 

571 associated   with   rs9399137.   

572 rs2288464  seemed  to  be  a  good  candidate  due  to  its  location  in  the  3’  untranslated  region  of                   

573 MRPL34 ,  which  codes  for  a  large  subunit  protein  of  the  mitochondrial  ribosome.  While  the  association                

574 signal  at  this  marker  was  not  observed  in  the  WGS  data  (P  =  0.0655),  based  on  the  observed  effect                     

575 size  of  this  variant  in  WES  and  imputed  data  as  well  as  the  number  of  WGS  datasets  available,  there                     

576 was   insufficient   power   (~0.5%   at   α   =   5×10 -7 )   to   robustly   detect   this   association   in   the   WGS   data 76 .   

577 We  next  performed  rare  variant  association  (RVAS)  analyses  using  a  mixed-model  version  of               

578 SKAT-O 48  to  test  for  genes  in  which  the  presence  of  high-impact  rare  variants  might  be  associated                  

579 with  MT-CN  levels  (see  Material  and  Methods;   Figure  3 ,   Table  5 ).  Using  WES  data,  the  only  gene                   

580 passing  the  Bonferroni-adjusted  P  value  threshold  of  2.16×10 -6  was   TMBIM1  (P  =  2.96×10 -8 ),  a                

581 member  of  a  gene  family  thought  to  regulate  cell  death  pathways 77 .   TMBIM1  has  been  shown  to  be                   

582 protective  against  non-alcoholic  fatty  liver  disease  (NAFLD),  progression  to  non-alcoholic            

583 steatohepatitis,  and  insulin  resistance  in  mice  and  macaques 78 .  Interestingly,  in  our  analysis  -  in  which                 

584 a  burden  test  was  determined  to  be  optimal  by  SKAT-O  -  rare,  putatively  high-impact  variants  in                  
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585 TMBIM1  were  associated  with  a  higher  MT-CN  ( Figure  3c ).  Higher  MT-CN  was,  in  turn,  associated                 

586 with  less  severe  metabolic  syndrome,  suggesting  that   TMBIM1  is  actually  a  risk  gene,  not  a  protective                  

587 one.  Thus,  the  published  function  of   TMBIM1  makes  it  a  strong  candidate,  although  the  direction  of                  

588 effect   in   our   data   disagreed   with   the   direction   suggested   by   prior   work   in   model   organisms 78 .   

589   

590 Inference   of   causality   in   the   association   between   MT-CN   and   insulin   

591 To  further  understand  the  association  between  MT-CN  and  fasting  serum  insulin,  we  employed  a                

592 Mendelian  randomization  (MR)  approach  with  MT-CN  as  the  exposure  and  insulin  as  the  outcome.                

593 Using  penalized  regression,  we  leveraged  our  extensive  phenotype  data  to  build  a  genetic  instrument                

594 from  a  large  number  of  genetic  variants  and  adjust  for  possible  confounders  via  a  novel  approach                  

595 (see  Material  and  Methods;   Figure  4 ).  We  believe  this  approach  to  be  more  robust  to  violations  of                   

596 key  MR  assumptions  than  other  methods  in  situations  where  limited  data  are  available  and  few  robust                  

597 genotype-exposure  associations  are  known.  We  restricted  our  analysis  to  METSIM  samples  due  to               

598 batch  effects  and  inconsistencies  in  available  quantitative  trait  data  observed  across  FINRISK  survey               

599 years  ( Figure  S4 ).  The  effect  sizes  of  the  instrument  in  the  causality  test  for  insulin  levels  are  shown                    

600 in   Figure  4d .  We  calculated  our  instrument  using  either  L1  or  L2  regularization.  In  both  cases,  the                   

601 MT-CN  instrument  was  not  a  significant  predictor  (α  =  0.05)  of  insulin  when  we  constructed  our                  

602 instrument  from  WGS  variants,  but  was  significant  when  the  instrument  was  constructed  from               

603 imputed  array  variants.  This  was  likely  due  to  the  larger  sample  size  of  the  imputed  array  data  set.                    

604 However,  the  effect  estimates  were  remarkably  similar  across  all  four  cases.  As  a  result,                

605 inverse-variance  weighted  meta-analysis  across  datasets  yielded  highly  significant  P  values  for  both              

606 penalties.  In  summary,  our  analysis  provided  evidence  for  a  significant  causal  role  for  MT-CN  in                 

607 determining  fasting  serum  insulin  levels  that  was  robust  to  the  choice  of  regression  penalty  when                 
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608 building  the  genetic  instrument.  We  note  that  this  evidence  for  causality  comes  with  some  caveats                 

609 (see   Material   and   Methods).   

610   

611 Replication   and   biological   interpretation   

612 In  principle,  changes  in  MT-CN  can  be  caused  by  changes  in  the  number  of  mitochondrial  genome                  

613 copies  within  cells  or  by  changes  in  the  blood  cell  type  composition.   Based  on  the  association  with                   

614 rs9389268  and  the  nuances  of  the  normalization  procedure  described  above,  we  sought  to  test  the                 

615 hypothesis  that  our  MT-CN  measurement  primarily  reflects  the  cell  type  composition  of  the  blood                

616 rather  than  the  number  of  mitochondria  per  cell.  We  used  imputed  array  genotype  and  phenotype                 

617 data   from   the   UK   Biobank   (N   =   357,656)   for   this   purpose 79 .     

618 We  first  tested  cell  counts  from  the  UK  Biobank  (UKBB)  against  a  polygenic  risk  score  (PRS)                  

619 for  MT-CN  built  using  the  genetic  instrument  from  the  Finnish  data.  Leukocyte,  neutrophil,  and  platelet                

620 counts  were  all  significantly  associated  with  MT-CN  PRS  conditional  on  age,  age 2 ,  and  sex  (see                 

621 Material  and  Methods,   Table  6 ).  However,  adjusting  for  neutrophil  counts  in  the  leukocyte  regression                

622 eliminated  the  signal  (PRS  regression  coefficient  P  =  0.839),  suggesting  that  the  leukocyte  count                

623 signal  was  driven  by  the  effect  of  neutrophil  count.  We  removed  any  high  leverage,  large  residual                  

624 samples  and  repeated  the  neutrophil  and  platelet  count  regressions  to  ensure  that  this  result  was                 

625 robust  to  outliers  and  found  no  appreciable  change  in  significance  ( Table  6 ).  As  a  result,  we                  

626 concluded  that  our  MT-CN  measurement  was  significantly  associated  with  neutrophil  and  platelet              

627 counts.  Subsequent  analyses  were  performed  both  with  and  without  adjustment  for  these  variables,               

628 as   described   below.   

629 We  note  that  the  effect  directions  of  the  associations  of  platelet  counts  with  metS  and  MT-CN                  

630 PRS  seem  inconsistent  at  first  glance,  as  platelet  counts  were  positively  correlated  with  MT-CN  PRS                 

631 ( Table  6 )  and  metS  ( Table  S3 )  while  MT-CN  and  insulin  (a  proxy  for  metS)  were  negatively  correlated                   
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632 ( Figure  1b ).  However,  the  FinMetSeq  regression  model  in   Figure  1b  was  not  conditional  on  any                 

633 other  covariates  (although  age,  age 2 ,  and  sex  were  regressed  out  of  the  MT-CN  measurement  prior  to                  

634 this  analysis),  while  the  UKBB  models  that  gave  rise  to   Table  6  and   Table  S3  adjusted  for  many                    

635 additional  covariates,  including  20  PCs  and  age-sex  interaction  terms.  As  a  result,  the  effect                

636 directions   for   the   analyses   in   the   two   datasets   are   not   directly   comparable.   

637 We  next  tested  for  associations  between  MT-CN  PRS  and  several  cardiometabolic  phenotypes              

638 from  the  test  in   Figure  1a  (see  Material  and  Methods).  With  the  exception  of  C-reactive  protein,  which                   

639 showed  no  significant  association,  all  tested  phenotypes  showed  nominal  association  with  MT-CN              

640 PRS  at  α  =  0.05,  with  total  triglycerides  and  HDL  being  the  only  traits  surviving  Bonferroni  correction                   

641 ( Table  7 ).  We  interpret  this  as  replication  of  the  link  between  mitochondrial  genome  copy  number  and                  

642 metabolic   syndrome   in   a   large,   independent   data   set.   

643 To  determine  whether  there  was  any  association  between  MT-CN  and  metabolic  syndrome  not               

644 mediated  through  cell  counts,  we  repeated  the  tests  of  cardiometabolic  trait  association  with  MT-CN                

645 PRS  with  adjustment  for  platelet  and  neutrophil  counts.  HDL  was  the  only  trait  with  a  nominal  (α  =                    

646 0.05)  association  with  PRS  under  this  adjustment,  but  this  signal  was  not  strong  enough  to  survive                  

647 Bonferroni  correction  ( Table  7 ).  This  suggests  that  the  associations  we  observed  between  MT-CN               

648 and  metabolic  traits  arose  simply  because  MT-CN  is  a  proxy  for  platelet  and  neutrophil  count.  This                  

649 was  supported  by  the  fact  that  direct  testing  of  platelets  and  neutrophils  against  triglycerides,  fat                 

650 mass,  and  HDL  yielded  remarkably  significant  associations,  which  survived   post-hoc  removal  of              

651 high-leverage,  high-residual  outlier  samples  ( Table  S3 ).  This  evidence  for  MT-CN  as  a  proxy  for                

652 platelet  and  neutrophil  counts  strongly  suggests  that  the  causal  relationship  observed  in  the               

653 Mendelian  randomization  experiment  (see  above)  in  fact  represents  a  causative  role  for  neutrophils               

654 and   platelet   counts   in   setting   serum   insulin   levels.   
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655 Given  the  strong  observed  associations  between  blood  cell  count  phenotypes  and  MT-CN              

656 PRS,  we  used  these  blood  phenotypes  to  seek  replication  of  the  genetic  associations  detected  in                 

657 Finnish  data.  Using  imputed  UKBB  genotype  data,  we  tested  the  expected  alternate  allele  dosage  of                 

658 both  rs2288464  and  rs9389268  against  the  same  blood  cell  traits  mentioned  above,  using  linear                

659 regression  ( Table  S4 ;  expected  alternate  allele  dosage  was  calculated  from  genotype  call              

660 probabilities  as  ).  As  expected  given  its  known  associations  with  multiple    S (0 1) P (1 1)  D = P / + 2 /          

661 hematological  parameters  (see  above),  rs9389268  showed  strong  associations  with  all  tested  blood             

662 cell  phenotypes.  rs2288464  was  not  significantly  associated  with  any  of  the  five  phenotypes  after                

663 correction  for  multiple  testing,  although  a  nominal  association  was  detected  with  total  leukocyte  count.                

664 This  further  strengthens  our  belief  that  rs9389268  is  truly  associated  with  MT-CN  through  blood  cell                 

665 composition.  We  also  tested   TMBIM1  against  the  same  blood  cell  traits  in  UKBB  using  SKAT-O 48 ,  and                  

666 found  no  significant  associations  ( Table  S4 ).  This  may  mean  that   TMBIM1  affects  MT-CN  through  a                 

667 mechanism   other   than   altering   blood   cell   type   composition.   

668 As  further  evidence  that  MT-CN  is  a  proxy  for  blood  cell  composition,  we  looked  up  MT-CN                  

669 association  P  values  in  METSIM  for  the  top  five  neutrophil  and  platelet  count  QTLs  from  the                  

670 NHGRI-EBI  GWAS  Catalog.  Out  of  ten  variants  tested,  five  had  P  <  0.05  in  METSIM  ( Table  S11 ).  We                    

671 note  that  three  of  these  five  were  either  near  or  identical  to  known  MT-CN  loci  (including  rs9389268,                   

672 the  marker  identified  in  this  study).  rs25645,  a  variant  reported  to  be  highly  associated  with  neutrophil                  

673 count 68 ,  is  only  2.5  kb  away  from  rs709591,  a  SNP  with  a  reported  suggestive  association  with                  

674 MT-CN 27  and  a  P  value  of  1.61×10 -4  in  our  METSIM  study.  Moreover,  rs11759553,  a                

675 platelet-associated  variant 68 ,  is  324  kb  away  from  rs9389268,  the  lead  marker  for  MT-CN  in  METSIM                 

676 (rs11759553  P  =  2.15×10 -10  in  METSIM).  Finally,  rs445  was  reported  as  a  lead  marker  for  both                  

677 MT-CN  association 25  and  platelet  count 68 .  rs445  has  P  =  0.048  for  association  with  MT-CN  in                 

678 METSIM.  While  none  of  the  10  known  cell  count-associated  markers  tested  achieved  significance               
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679 beyond  a  Bonferroni  threshold,  the  overlap  between  these  variants  and  independently-measured             

680 MT-CN   QTLs   was   suggestive   of   a   relationship   between   cell   counts   and   whole   blood-derived   MT-CN.   

681 Using  UKBB  data,  we  further  sought  to  generate  hypotheses  for  other  phenotypic  associations               

682 with  MT-CN.  To  this  end,  we  performed  a  phenome-wide  screen  of  MT-CN  PRS  against  all  of  the                   

683 UKBB  phenotypes  available  to  us.  To  curate  and  transform  these  phenotypes,  we  used  a  modified                 

684 version  of  PHESANT 61,62 ,  which  outputs  all  continuous  variables  in  both  raw  and  inverse               

685 rank-normalized  form.  We  chose  to  interpret  the  results  from  the  normalized  continuous  variables               

686 ( Table  S5 )  to  be  conservative  and  robust  to  outliers,  although  the  results  of  the  raw  continuous                  

687 variable  analyses  were  similar  ( Table  S6 ).  No  metabolic  syndrome  traits  appeared  among  the  tested                

688 traits  with   q  <  0.05.  However,  the  tests  for  HDL  cholesterol,  self-reported  heart  attack,  and                 

689 doctor-diagnosed  heart  attack  did  yield  somewhat  suggestive  results  ( q  =  0.123,  0.176,  and  0.176,                

690 respectively).  We  also  repeated  this  screen  with  adjustment  for  neutrophil  and  platelet  counts  ( Table                

691 S7  and   Table  S8 ),  resulting  again  in  no  metabolic  syndrome  phenotypes  achieving  <  0.05.  The              q    

692 addition  of  neutrophil  and  platelet  counts  as  covariates  attenuated  the  suggestive  signals  for  HDL                

693 cholesterol,  self-reported  heart  attack,  and  doctor-diagnosed  heart  attack  ( q  =  0.284,  0.391,  and               

694 0.402,   respectively).   

695   

696 Discussion   

697 We  have  described  one  of  the  most  well-powered  studies  to  date  of  the  genetic  relationship                 

698 between  MT-CN  measurements  in  blood  and  cardiometabolic  phenotypes.  Our  study  is  one  of  very                

699 few  of  which  we  are  aware  to  utilize  WGS  data,  found  to  be  the  most  reliable  method  for  estimating                     

700 MT-CN  in  a  recent  study 18 ,  for  this  purpose.  Our  data  show  highly  significant  associations  between                 

701 blood-derived  MT-CN  measurements  and  several  cardiometabolic  traits,  particularly  insulin  and  fat             

702 mass.  We  observed  strong  heritability  of  MT-CN  (31%),  on  par  with  other  widely  studied                
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703 cardiometabolic  traits  such  as  LDL,  and  identified  one  single  marker  association  on  a  haplotype                

704 previously  associated  with  several  hematological  parameters 71–74 .  A  previous  study  using  qPCR  to              

705 quantify  MT-CN  reported  two  sub-threshold  QTLs 27 ;  of  these  markers,  only  rs709591  replicated  in  our                

706 study  (P  =  1.61×10 -4 ).  We  also  report  one  gene  with  a  rare-variant  association  with  MT-CN,   TMBIM1 ,                  

707 that  has  a  known  link  to  non-alcoholic  fatty  liver  disease 78 .  More  work  is  needed  to  replicate  this                   

708 genetic   association.   

709 Using  a  novel  multiple-variant  instrument-building  method,  we  report  evidence  from  Mendelian             

710 randomization  supporting  a  causal  role  for  MT-CN  in  metabolic  syndrome.  Further,  we  used  UK                

711 Biobank  data  to  show  that  not  only  does  the  link  between  MT-CN  and  metabolic  syndrome  replicate  in                  

712 an  independent  data  set  using  a  polygenic  risk  score  approach.  Contrary  to  previous  claims  that                 

713 variability  in  the  number  of  mitochondria  per  cell  is  responsible  for  CHD  risk 12 ,  this  association  is                  

714 mediated   by   neutrophil   and   platelet   counts.     

715 One  important  question  that  our  study  cannot  definitively  resolve  is  the  relative  contribution  of                

716 intracellular  mitochondrial  abundance  versus  cell-type  composition  differences  in  determining  the            

717 measured  MT-CN  value.  We  identified  a  MT-CN  association  result  at  a  known  QTL  for  cell  type                  

718 composition  of  blood 71–74  (HBS1L-MYB),  and  we  further  replicated  a  prior  sub-threshold  association  at               

719 a  different  neutrophil-associated  locus 67,68  (rs709591).  Together,  these  results  argue  that  cell  type              

720 composition  is  an  important  component  of  this  measurement.  On  the  other  hand,  two  other  significant                 

721 associations  from  the  Finnish  dataset  (rs2288464,   TMBIM1 )  showed  no  effect  on  cell  type               

722 composition  in  the  UK  Biobank.  Future  work  in  large  cohorts  with  both  WGS  and  cell  count  data  –                    

723 which  were  not  simultaneously  measured  in  any  samples  in  this  study  –  will  be  required  to  rigorously                   

724 determine  what  blood-derived  MT-CN  primarily  measures.  However,  the  results  of  our  MR  and  UK                

725 Biobank  analyses  together  suggest  that  MT-CN  is  causally  related  to  metabolic  syndrome  traits,  and                

726 that   this   relationship   is   mediated   by   cell-type   composition   differences.     
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727 There  is  prior  evidence  to  support  the  role  of  inflammation  –  specifically  via  innate  immune                 

728 cells  such  as  neutrophils  –  in  the  etiology  of  type  2  diabetes  (T2D)  and  insulin  resistance 80–82 ,  which                   

729 suggests  a  plausible  model  by  which  peripheral  blood  neutrophil  count  could  influence  metabolic               

730 syndrome.  Nutrient  excess  and  high  fat  diets  are  known  to  recruit  neutrophils  into  tissues,  which  then                  

731 cause  insulin  resistance  both  by  releasing  TNF-⍺  and  IL-6  and  by  upregulating  cyclooxygenase 80 .               

732 This  leads  to  increased  LTB4  and  subsequent  upregulation  of  NF-𝜅B,  a  central  regulator  of                

733 inflammation.  Moreover,  free  fatty  acids  also  cause  neutrophils  to  stay  in  tissues  longer,  resulting  in                 

734 persistent  inflammation  and  leading  to  insulin  resistance 80 .  While  it  is  known  that  inflammation,  and                

735 particularly  neutrophils,  play  a  role  in  metabolic  syndrome,  our  results  strongly  suggest  that  peripheral                

736 blood  neutrophil  count  causally  contributes  to  this  process  and  is  associated  with  heritable  genetic                

737 variation  in  the  human  population.  Overall,  our  work  provides  further  insight  into  the  role  that                 

738 inflammation  plays  in  metabolic  syndrome  and  supports  the  idea  that  targeting  inflammation  may  be  a                 

739 fruitful   avenue   of   investigation   in   developing   future   therapeutics.   
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769 Data   and   Code   Availability   

770 METSIM  WGS,  METSIM  WES,  and  FINRISK  WES  sequence  data  are  available  through  dbGaP              

771 (accession  numbers  phs001579,  phs000752,  and  phs000756).  METSIM  callsets  from  WGS  and             

772 imputed  array  data  as  well  as  MT-CN  phenotype  values  will  soon  be  available  through  AnVIL.                 
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773 Imputed  array  GWAS  summary  statistics  from  METSIM  and  and  WES  SKAT-O  summary  statistics               

774 from  the  joint  dataset  are  freely  available  at          

775 https://wustl.box.com/s/7xfbmxq2r4kg8p8bfc7vpqlrmqvhm0lx .   Genomic  and  phenotypic  data  for  the         

776 FINRISK  cohort  are  obtainable  through  THL  Biobank,  the  Finnish  Institute  for  Health  and  Welfare,                

777 Finland   ( https://thl.fi/en/web/thl-biobank ).   
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990 Figure   Titles   and   Legends   

991 Figure  1.   Cardiometabolic  trait  associations  with  MT-CN  in  WGS  data.  (A)  Phenome-wide              

992 association  study  of  normalized  MT-CN  against  137  cardiometabolic  traits  in  the  4,163  sample  data                

993 set.  Traits  are  grouped  into  17  categories,  represented  by  the  color  of  each  bar.  The  top  three  most                    

994 significant  traits  are,  in  order:  fasting  serum  insulin,  C-reactive  protein,  and  fat  mass.  Exact  P  values                  
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995 and  effect  estimates,  as  calculated  by  EMMAX,  are  listed  in   Table  S1 .   (B)  Association  tests  between                  

996 normalized  MT-CN  and  both  fat  mass  and  fasting  serum  insulin  using  WGS  data  (N  =  4,163).  Results                   

997 are  shown  for  the  EMMAX  test  and  a  permutation  test  in  which  mitochondrial  haplogroups  were                 

998 adjusted   for.   

999   

1000 Figure  2.   Single-marker  genetic  associations  with  MT-CN  in  imputed  array  data.  (A)   Manhattan               

1001 plot  for  a  genome-wide  association  test  of  normalized,  WES-measured  MT-CN  using  imputed  array               

1002 genotype  data  from  METSIM  (N  =  9,791).  Two  loci  markers  reached  the  genome-wide  significance  of                 

1003 5×10 -8 ,  identified  by  lead  markers  rs2288464  and  rs9389268.  (B)  Quantile-quantile  (QQ)  plot  for  the                

1004 association  test  shown  in  (A).  This  plot  is  separated  by  minor  allele  frequency  bin,  as  indicated  by  the                    

1005 colors  and  shapes  of  the  points.  (C)  Boxplot  showing  the  distributions  of  normalized  WES-measured                

1006 MT-CN  in  METSIM  separated  by  the  number  of  rs9389268  alternate  alleles  as  detected  by  imputed                 

1007 array   genotyping   (N   =   9,791).   The   EMMAX   P   value   for   this   variant   was   1.62×10 -8    in   imputed   data.   

1008   

1009 Figure  3.  Gene-based  associations  with  MT-CN  in  WES  data.  (A)   Manhattan  plot  and               

1010 quantile-quantile  (QQ)  plot  for  a  gene-based  rare  variant  association  test  of  normalized,              

1011 WES-measured  MT-CN  using  WES  data  from  both  METSIM  and  FINRISK  (N  =  19,034).  The  red  line                  

1012 represents  a  Bonferroni  significance  level  of  2.164×10 -6 ,  as  23,105  genes  were  included  in  this  test.                 

1013 TMBIM1  is  the  only  gene  to  reach  significance  at  this  level.  (B)   QQ  plot  for  the  test  shown  in  (A).  This                       

1014 plot  is  separated  by  minor  allele  frequency  bin,  as  indicated  by  the  colors  and  shapes  of  the  points.                    

1015 (C)  Boxplot  showing  the  distributions  of  normalized  WES-measured  MT-CN,  separated  by  the  number               

1016 of   WES-detected   alternate   alleles   in    TMBIM1    with   MAF   <   0.01   and   CADD   score   >   20   (N   =   19,034).   

1017   
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1018 Figure  4.  Mendelian  randomization  approach  and  results.  (A)  Formulation  of  the  Mendelian              

1019 Randomization  causality  test.   G  represents  genotypes,   Z  is  a  genetic  instrument  value  constructed              

1020 from   G ,   X  represents  ln(MT-CN),   Y  represents  ln(Insulin),  and   U  represents  any  confounders  of  the                 

1021 association  between   X  and   Y .  The  arrow  from   X  to   Y  is  dashed  to  indicate  that  although  an  association                     

1022 is  known,  the  relationship  is  not  known  to  be  causal.  In  this  formulation,  a  significant  association                  

1023 between   Z  and   Y  would  provide  evidence  that   X  is  casual  for   Y .  (B)  Strategy  for  choosing  variables  to                     

1024 adjust  for  when  building   Z  in  order  to  enforce  MR  assumptions.   A  represents  those  columns  of                  

1025 covariate  matrix   W  that  are  associated  with   Y  (represented  by  the  solid  line  between   A  and   Y )  and   B                     

1026 represents  those  columns  of  matrix   W  that  are  associated  with   X  conditional  on   A  (represented  by  the                   

1027 solid  line  between   B  and   X ).  Dashed  lines  represent  possible,  but  unproven  associations.  The                

1028 penalized  regression  of   X  on   G  used  to  build   Z  is  adjusted  for   A  and   B  (with  no  penalty)  in  an  attempt                        

1029 to  prevent  any  associations  between   Z  and  either   A  or   B  (represented  by  the  blue  X’s).  While  an                    

1030 association  between   B  and   Y  is  unlikely  (represented  by  the  dashed  line  between   B  and   Y )  because   B                    

1031 is  not  contained  in   A ,   B  is  still  adjusted  for  in  the  penalized  regression  to  be  as  conservative  as                     

1032 possible.  (C)  Strategy  for  choosing  covariates  to  adjust  for  in  the  causality  test  of   Y  against   Z  in                    

1033 another  attempt  to  reduce  the  impact  of  any  remaining  associations  between   Z  and               

1034 assumption-violating  variables.  Covariate  sets   I ,   II ,   III ,  and   IV  are  defined  by  the  presence  of  known                  

1035 first-order  associations  (represented  by  black  lines)  with   Z  and   Y  (see  Material  and  Methods).  Yellow                 

1036 lines  represent  relationships  where  a  first-order  association  is  not  known,  but  a  higher-order               

1037 association  is  possible.  Covariate  sets   II ,   III ,  and   IV  (colored  blue)  are  adjusted  for  in  the  causality                   

1038 test  because  there  is  at  least  one  first  order  association  linking  them  to   Z  and   Y ,  so  they  risk  violating                      

1039 MR  assumptions  2  or  3.  (D)  Results  of  Mendelian  randomization  test  for  causality  of  MT-CN  on                  

1040 fasting   serum   insulin.     

40   

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 12, 2021. ; https://doi.org/10.1101/2020.10.23.20218586doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.23.20218586
http://creativecommons.org/licenses/by-nc-nd/4.0/


  
1041 Tables   

1042 Table   1.   Associations   of   normalized   MT-CN   with   disposition   index   and   Matsuda   ISI   in   METSIM.   

1043 Testing   was   done   by   linear   regression   using   disposition   and   Matsuda   ISI,   respectively,   as   the   dependent   variable.   
1044 a P*   columns   represent   the   P   value   from   linear   regression   with   additional   adjustment   for   fat   mass.   
1045 b Follow-up   measurements   were   taken   at   a   later   time   point.   

1046   

1047    

41   

    

Disposition   index   

Baseline   Follow-up b   

N   β   SE   P   P* a   N   β   SE   P   P* a   

All   subjects   2975   0.094   0.004   3.0×10 -7   0.0004   2492   0.062   0.004   0.002   0.068   

Excludes   diabetic   
subjects   at   baseline    2842   0.091   0.003   1.3×10 -6   0.0007   2452   0.067   0.004   0.0009   0.041   

Excludes   diabetic   
subjects   at   baseline   
and   during   follow-up    

2453   0.069   0.003   0.0007   0.023   2449   0.067   0.004   0.0009   0.042   

    

Matsuda   ISI   

Baseline   Follow-up b   

N   β   SE   P   P* a   N   β   SE   P   P* a   

All   subjects   2975   0.192   0.005   4.3×10 -26  7.3×10 -17  2492   0.157   0.006   3.7×10 -15  8.7×10 -10  

Excludes   diabetic   
subjects   at   baseline    2842   0.191   0.005   1.0×10 -24  2.4×10 -16  2452   0.161   0.006   1.3×10 -15  3.0×10 -10  

Excludes   diabetic   
subjects   at   baseline   
and   during   follow-up    

2453   0.173   0.005   7.2×10 -18  5.3×10 -12  2449   0.16   0.006   1.7×10 -15  3.8×10 -10  
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1048 Table   2.   GREML   heritability   estimates   in   each   cohort   separately   and   in   joint   analysis.   

1049 a All  analyses  in  this  table  were  limited  to  sample  sets  with  available  imputed  genotype  data,  yielding  slightly  lower  sample                     

1050 sizes   than   in   other   tables.   

1051   

1052 Table  3.  GREML  and  GREML-LDMS  heritability  estimates  for  normalized  MT-CN  and             

1053 low-density   lipoprotein   (LDL).   

1054 a All   analyses   are   limited   to   METSIM   data   
1055 b GREML-LDMS   heritability   estimates   are   calculated   using   PCs   1-10   as   fixed-effect   covariates.   
1056 c Analyses   of   imputed   array   data   exclude   samples   with   WGS   data     

42   

    
WGS-measured   MT-CN   WES-measured   MT-CN   

N a   h 2  SE   N a   h 2  SE   

Joint   
Analysis   

WGS   
genotypes  4149   0.17   0.06   3916   0.11   0.06   

Imputed   
genotypes  3916   0.16   0.06   17718   0.09   0.02   

METSIM   

WGS   
genotypes  3065   0.31   0.07   2974   0.20   0.08   

Imputed   
genotypes  2974   0.27   0.08   9791   0.11   0.03   

FINRISK   

WGS   
genotypes  1084   0.20   0.22   942   0.24   0.27   

Imputed   
genotypes  942   0.35   0.27   7927   0.08   0.03   

Trait   
Genotype   source   

(phenotype   source)   N a   
GREML   GREML-LDMS b   

h 2  SE   h 2  SE   

Normalized   
MT-CN   

WGS   (WGS-measured   
MT-CN)   3065   0.31   0.07   0.31   0.09   

Imputed   array c   
(WES-measured   

MT-CN)   
6789   0.11   0.04   0.14   0.05   

LDL  
WGS   3062   0.34   0.08   0.38   0.10   

Imputed   array c   6787   0.25   0.04   0.32   0.05   
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1057 Table   4.   Single   marker   association   results   for   rs2288464   and   rs9389268   

1058 a Analyses   of   imputed   FINRISK   array   data   were   performed   with   covariates   for   FINRISK   genotyping   batch.   
1059 b Italicized   results   are   significant   at   the   appropriate   threshold   for   the   given   test   (see   Material   and   Methods).   

1060   

1061 Table   5.   Gene-based   rare   variant   association   results   for    TMBIM1   

1062 TMBIM1  was  the  only  genome-wide  significant  gene  in  the  WES  rare-variant  association  tests  of  METSIM  and  the  whole                    

1063 dataset.   
1064 a Italicized   results   are   significant   at   the   appropriate   threshold   for   the   given   test   (see   Material   and   Methods).   

1065   

1066    

43   

    
FINRISK a   METSIM   Joint   Analysis   

N   MAF   P b   Beta   N   MAF   P b   Beta   N   MAF   P b   Beta   

rs2288464  

Imputed  7927  0.148   0.613   0.0113  9791   0.165   2.55×10 -9   0.119  17718   0.158   9.77×10 -7   0.075   

WES   9221  0.150   0.376   0.0186  9813   0.166   6.75×10 -9   0.118  19034   0.158   9.34×10 -7   0.0734  

WGS   1084  0.142   0.383   0.0532  3065   0.161   0.113   0.0561  4149   0.156   0.0655   0.0562  

rs9389268  
Imputed  7927  0.354   0.189   0.0216  9791   0.347   1.26×10 -10   0.0973  17718   0.35   1.62×10 -8   0.0634  

WGS   1084  0.351   0.788   0.0121  3065   0.347   3.24×10 -8   0.150  4149   0.348   7.87×10 -7   0.115   

    

FINRISK   METSIM   Joint   Analysis   

N   
Fraction   
with   rare   

allele   
P   N   

Fraction   
with   rare   

allele   
P a   N   

Fraction   
with   rare   

allele   
P a   

WES   9221   0.016   1.57×10 -3  9813   0.013   1.44×10 -6  19034   0.014   2.96×10 -8  

WGS   1084   0.028   0.489   3065   0.014   0.01   4149   0.013   0.01   
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1067 Table  6.  Association  results  between  blood  cell  count  traits  and  MT-CN  polygenic  risk  score  in                 

1068 357,656   UK   Biobank   samples.   

1069 a β  refers  to  the  regression  coefficient  of  MT-CN  in  a  linear  regression  of  cell  type  onto  MT-CN  PRS  and  other  covariates                       

1070 (see   Material   and   Methods)   
1071 b P   values   below   a   nominal   α   =   0.05   are   shown   in   italics   

1072   

1073 Table  7.  Association  results  between  metabolic  syndrome  traits  and  MT-CN  polygenic  risk              

1074 score   in   357,656   UK   Biobank   samples.   

1075 a The   weight   phenotype   tested   was   that   which   was   measured   at   the   time   of   impedance   measurement.   
1076 b β  refers  to  the  regression  coefficient  of  MT-CN  in  a  linear  regression  of  cell  type  onto  MT-CN  PRS  and  other  covariates                       

1077 (see   Material   and   Methods)   
1078 c P   values   below   a   nominal   α   =   0.05   are   shown   in   italics   

44   

Cell   Type   
All   samples   No    post   hoc    high   leverage   outliers   

β a   SE   P b   β a   SE   P b   

Leukocyte   -0.00856   0.00170   4.42×10 -7   -   -   -   

Monocyte   -0.00119   0.00170   0.482   -   -   -   

Lymphocyte  -0.00250   0.00170   0.142   -   -   -   

Neutrophil   -0.00954   0.00169   1.80×10 -8   -0.00948   0.00169   2.17×10 -8   

Platelet   0.00548   0.00170   1.24×10 -3   0.00548   0.00170   1.25×10 -3   

Trait  
Without   platelet   and   neutrophil   

adjustment   
With   platelet   and   neutrophil   

adjustment   

β b   SE   P c   β b   SE   P c   

Type   2   Diabetes   -0.1681   0.0826   0.0419   -0.1467   0.0844   0.0823   

BMI   -0.0372   0.0175   0.0331   -0.0233   0.0175   0.1836   

Fat   Mass   -0.0452   0.0176   0.0100   -0.0318   0.0177   0.0716   

C-Reactive   Protein   -0.0015   0.0178   0.9305   0.0206   0.0171   0.2291   

HDL   0.0573   0.0187   0.0021   0.0416   0.0187   0.0262   

Total   Triglycerides   -0.0500   0.0176   0.0046   -0.0330   0.0175   0.0603   

Weight a   -0.0359   0.0176   0.0414   -0.0218   0.0178   0.2189   
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Trait
EMMAX model

Conditional on 
mitochondrial 

haplogroup

P Beta P Beta

Fat mass 4.48x10-16 -0.137 < 2x10-16 -0.171

ln(Fasting 
insulin) 2.02x10-21 -0.182 < 2x10-16 -0.226
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