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Abstract 
Background: Several biologic drugs for atopic dermatitis (AD) have demonstrated good 
efficacy in clinical trials, but with a substantial proportion of patients being identified as poor 
responders. This study aims to understand the pathophysiological backgrounds of patient 
variability in drug response, especially for dupilumab, and to identify promising drug targets 
in dupilumab poor responders.  

Methods: We conducted model-based meta-analysis of recent clinical trials of AD biologics 
and developed a mathematical model that reproduces reported clinical efficacies for nine 
biological drugs (dupilumab, lebrikizumab, tralokinumab, secukinumab, fezakinumab, 
nemolizumab, tezepelumab, GBR 830, and recombinant interferon-gamma) by describing 
systems-level AD pathogenesis. Using this model, we simulated the clinical efficacy of 
hypothetical therapies on virtual patients. 

Results: IL-13 in the skin was affirmed, by the global sensitivity analysis of our model, as a 
potential predictive biomarker to stratify dupilumab good responders. The model simulation 
identified simultaneous inhibition of IL-13 and IL-22 as a promising drug target for dupilumab 
poor responders, whereas inhibition of either IL-13 or IL-22 alone in these non-responders 
was ineffective.  

Conclusion: We present a mathematical model of AD pathogenesis developed by integration 
of clinical efficacy data of multiple drugs. This model will serve as a computational platform 
for model-informed drug development for precision medicine, as it allows evaluation of the 
effects of new potential drug targets, including combination therapeutics, at an individual 
patient level and the mechanisms behind patient variability in drug response. Similar 
mathematical models can be developed for other diseases and drugs, for patient stratification 
and identification of predictive biomarkers.  

 

KEYWORDS 
atopic dermatitis, dupilumab, model-based meta-analysis, poor responders, quantitative 
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1. INTRODUCTION                                                            
Atopic dermatitis (AD) is the most common inflammatory skin disease, whose incidence is 
increasing in many areas of the world, especially urbanized areas, with a current worldwide 
prevalence of 5%-25%1. Primary symptoms of AD are relapsing pruritus and skin pain, 
impairing patients’ quality of life, for example by sleep disturbance and decreased work 
productivity especially in moderate-to-severe cases2. The pathogenesis of AD involves 
epidermal barriers abnormalities, dysbiosis and heterogeneous immunological 
dysregulations3,4,5 characterized by a dominant Type 2 immune activation including the T 
helper (Th) 2 axis and, depending on the lesional stage and ethnicity, varying degrees of 
upregulation of the Th1, Th17, and Th22 axes. These Th cells produce inflammatory 
cytokines such as interleukin (IL)-4, IL-13, IL-17A, IL-22, and IL-31, all of which have been 
identified and investigated as therapeutic targets for AD4,5.  

Dupilumab, a monoclonal antibody that inhibits signaling from IL-4 and IL-13 by blocking their 
common IL-4 receptor subunit α (IL-4Rα), was approved as the first and, so far, the only AD-
specific biologic in 20176 for its promising efficacy demonstrated in clinical trials. The high 
efficacy of dupilumab confirmed the clinical validity of IL-4 and IL-13 as therapeutic targets 
for AD. However, dupilumab treatment was not effective for a sub-population of patients; the 
responder rates for dupilumab remain 44%-69% for Eczema Area and Severity Index (EASI)-
75 (75% reduction in the EASI score7, 8) and 36%-39% for achievement of clear or almost 
clear skin in Investigator’s Global Assessment, respectively9, 10.  

A significant percentage of poor responders was also observed for investigational drugs with 
other mechanisms of action (MoA), even if their clinical efficacy was confirmed for the study 
population average. It is thus of high clinical importance to identify underlying pathogenesis 
that causes the patients’ variability in responsiveness to each drug, and to investigate 
whether there are alternative drug targets for those poor responders. 
The clinical efficacy of investigational drugs for AD have been evaluated in many clinical trials. 
Reviewing the combined results from the clinical trials, for example by network meta-
analysis11, suggested hypothetical AD pathogenesis described as diagrammatic pathways12, 

13. However, such a qualitative framework does not account for patient stratification and for 
development of drugs that can be effective for poor responders to existing drugs, because 
underlying mechanisms for the variability in individual patients’ responsiveness cannot be 
evaluated. In addition, a simple correlation analysis between clinical efficacy and biological 
factors (e.g., transcriptome data) 14, 15, 16 is not suitable to identify appropriate biomarkers for 
patient stratification, as it may detect pseudo-correlations rather than the actual causal 
relationship. Instead, a quantitative model-based framework that describes AD pathogenesis 
is required to identify biomarkers for patient stratification and to evaluate the clinical efficacy 
of new hypothetical therapies such as the one that inhibits a combination of cytokines17.  

As a quantitative approach to elucidate disease pathogenesis, quantitative systems 
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pharmacology (QSP) has been successfully applied to enhance understanding of the 
pathogenesis of many inflammatory diseases in the context of translational drug 
development18, 19. QSP uses mathematical models to describe a systems-level 
understanding of pathogenesis and drug effects by integrating biological and 
pharmacological knowledge20. For example, the QSP approach has been applied to evaluate 
the efficacy of approved and experimental drugs in rheumatoid arthritis21, the effects of a 
hypothetical drug on cytokine behaviors in Crohn’s disease22, and the relationship between 
Th1/Th2 responses and exposure levels of lipopolysaccharide in asthma23. QSP modeling 
can be leveraged with model-based meta-analysis, which integrates data from different 
clinical trials with current understanding on disease pathogenesis, to make maximal use of 
clinical efficacy data of multiple therapies with different MoA24. 

In this study, we develop a QSP model that describes the relationship between cytokines and 
AD pathogenesis using clinical efficacy data of nine approved or investigational biologic 
drugs: dupilumab, lebrikizumab, tralokinumab, secukinumab, fezakinumab, nemolizumab, 
tezepelumab, GBR 830, and recombinant interferon-gamma (rIFNg). We use the model to 
reveal the pathophysiological backgrounds of dupilumab poor responders and to identify 
promising drug targets to treat the dupilumab poor responders.  

 

2. METHODS                                                                    
2.1. Data collection for QSP model to simulate clinical efficacies of AD biologics 
We collected reference data from published clinical trials where efficacy of biologic drugs for 
AD patients were evaluated (detailed in Supplementary Information (SI) Section 1, Figure 
S1). We considered only the drugs that showed a higher (not necessarily statistically 
significant) efficacy than placebo in a placebo-controlled double-blinded clinical study (Table 
1) and adopted only the highest dose of each drug. For example, we adopted the highest 
dose, 300 mg weekly, used in the Ph3 study for dupilumab. It allowed us to assess the 
maximal effects of the MoA and integrate the clinical data from different MoA, rather than 
investigating the relationship between pharmacokinetics and pharmacodynamics.  

We did not consider small molecules because they can affect many cytokines, making it 
difficult to associate clinical efficacy with a specific cytokine in our model. For example, a 
Janus kinase (JAK) inhibitor, abrocitinib, was excluded in this study, as JAK inhibitors block 
signaling of a considerable number of cytokines and growth factors. We used EASI-75 (and 
its related %improved EASI and mean EASI score) as an efficacy endpoint that was adopted 
as one of the most common primary endpoints in Ph3 studies10,25. EASI-75 was normalized 
to compare clinical efficacies of different clinical trials (detailed in SI Section 2). 

Reference data for the levels of biological factors, including cytokines, OX40 ligand (OX40L), 
and T cells in AD skin lesions, were obtained from human skin biopsy data in published 
observational studies (TABLE S2). We described protein levels of cytokines and OX40L and 
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count levels of T cells in AD lesion skin by fold change relative to those for healthy subjects 
or to non-lesional skin of the same AD patients. Our model described skin barrier integrity 
and infiltrated pathogens as latent state variables, which have no reference data to be 
compared with simulated values.  

 
2.2. Development of model structure 
We developed a mathematical model consisting of 14 ordinary differential equations with 51 
parameters to simulate the efficacy of the nine drugs (detailed in SI Section 3). The model 
structure is based on our previously published mathematical model of AD pathogenesis26. 
The main feature of the model in this study is its explicit description of the functions of 
cytokines and OX40L in the skin that have been specifically targeted by the drugs (TABLE 1). 
Our model also described their related subtypes of Th cells to explicitly represent feedforward 
and feedback mechanisms (e.g., Th2 secretes IL-4, which promotes T cell differentiation 
toward Th2). The functional relationships between biological factors in the model were 
described according to published experimental evidence based on human data.  

The model includes the EASI score as a model variable to represent an efficacy endpoint. 
Some biological factors such as dendritic cells and antimicrobial peptides (AMPs) were not 
described as model variables, but were taken into consideration as rationale for regulatory 
processes in our model (e.g., IL-17A decreases infiltrated pathogens via increasing AMPs), 
to make the model simpler yet interpretable. Our model excluded the targets of the excluded 
drugs because the contribution of those targets on AD pathogenesis has not been clinically 
confirmed (e.g., IgE was not considered because anti-IgE antibody omalizumab was 
excluded). 

The model was implemented in Python 3.7.6 (Python Software Foundation). 

 

2.3. Modelling drug effects 
All the drugs, except for rIFNg, inhibit signaling from biological factors by blocking their 
binding to the receptors by targeting the cytokine itself or its receptor. Effective concentration 
of the target biological factor in the skin at time t, 𝑐(𝑡), was modelled by 

 

𝑐(𝑡) = (1 − 𝑟!"#!$!%)𝑐∗(𝑡),       (1) 

 

where 𝑐∗(𝑡) is the actual concentration of the target biological factor in the skin at t and 
𝑟!"#!$!% is the inhibition rate of the target biological factor in the drug treatment. The value of 
𝑟!"#!$!% was determined using the published data on IC50 and the mean concentration of drugs 
in the skin27 that was estimated from their concentration in the serum measured in clinical 
trials (detailed in SI Section 3.4 and TABLE S3). 
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Administered rIFNg increases the effective amount of IFNg. Effective concentration of IFNg 
in the skin at t, 𝑐'()*(𝑡), is modelled by  

 
𝑐'()*(𝑡) = 𝑐'()*∗ (𝑡) + 𝑐+'()*,       (2) 

 
where 𝑐'()*∗ (𝑡) is the actual concentration of IFNg in the skin at t and 𝑐+'()* is the mean 
concentration of rIFNg in the skin after rIFNg administration. 𝑐+'()* was estimated as 210 
based on the pharmacokinetics data of rIFNg28 (detailed in SI Section 3.4). 

 

2.4. Modelling virtual patients and parameter tuning 
We represented each virtual patient by a set of values for the 51 model parameters, where 
each parameter value is taken from log-normal distribution29 (TABLE S4). The probability 
distribution function, 𝑓(𝑘,), for the n-th parameter, 𝑘,, is defined by 

 

𝑓(𝑘,) =
-

√/01!2!
exp /− (4" 2!56!)"

/1!"
0,      (3) 

 

where 𝜇, and 𝜎, are the distribution parameters that represent the mean and the standard 
deviation of ln 𝑘,, respectively. 

We tuned 102 parameters (𝜇, and 𝜎,) that define distributions of the 51 model parameters 
(detailed in SI Section 4). The 11 parameters,	𝜇, for elimination rates of the 11 biological 
factors, were determined using the half-lives measured in vivo (serum) in humans (TABLE 
S5). The remaining 91 parameters were tuned so that the model reproduces the following 
clinical data; 

- The mean and the coefficient of variation of levels of biological factors in observational 
studies (TABLE S2) and 

- The mean EASI scores and EASI-75 when the nine drugs were applied in clinical trials 
(FIGURE 1). 

 

2.5. Identification of pathophysiological backgrounds that influence %improved EASI 
of each drug 

To identify the pathophysiological backgrounds of virtual patients that influence %improved 
EASI of each drug most, we conducted a global sensitivity analysis of the model parameters 
with respect to %improved EASI. We produced 1000 virtual patients by varying the 51 
parameters that represent their pathophysiological backgrounds using Latin hypercube 
sampling (LHS) and computed partial rank correlation coefficient (PRCC)30 between each 
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parameter and %improved EASI of each drug. LHS is a sampling method to explore the entire 
space of multidimensional parameters efficiently, and PRCC represents a rank correlation 
coefficient that is controlled for confounding effects that could lead to detecting pseudo-
correlations. The evaluated ranges of ln 𝑘,  were [𝜇, − 𝜎, ,𝜇, + 𝜎, ]. The p-values for the 
PRCC were adjusted for multiple testing with the Bonferroni procedure, where a significance 
level of adjusted p < 0.05 was used.  

 

2.6. Simulation of clinical efficacy of hypothetical therapy for dupilumab poor 
responders 

We simulated EASI-75 of a hypothetical therapy for virtual dupilumab poor responders. Virtual 
dupilumab poor responders were the virtual patients who did not achieve the criterion of 
EASI-75 (more than 75% improvement of EASI score from week 0) at 24 weeks after dosing 
dupilumab in 1000 virtual patients. The virtual poor responders were treated with a single 
drug, combinations of two drugs, and a hypothetical therapy that inhibited combinations of 
two cytokines or all the cytokines considered in the model (inhibiting IL-4, IL-13, IL-17A, IL-
22, IL-31, IFNg, and thymic stromal lymphopoietin: TSLP by 99%). 
 

3. RESULTS                                                                  
3.1. Comparison of clinical efficacy based on normalized EASI 
We selected nine biologic drugs with different MoA that have shown clinical efficacy 
compared to placebo at least at the population average (TABLE 1) and compared the clinical 
efficacy of the drugs by mean EASI score, %improved EASI, and EASI-75 after normalization 
(FIGURE 1). Dupilumab and lebrikizumab showed the highest efficacy among the nine drugs, 
suggesting that their common target, IL-13, has the highest contribution on AD pathogenesis 
among the drug targets evaluated in this study. All other drugs also achieved a certain efficacy 
compared to placebo, confirming the clinical relevance of all the targets to AD pathogenesis.  

 

3.2. QSP model of biologics efficacy  
We developed a QSP model (FIGURE 2) that describes the MoA for the nine biologic drugs, 
i.e., regulatory mechanisms between the biological factors and drugs using the published 
efficacy data from clinical trials. 

Our model includes 15 biological factors that are targeted by the nine drugs or that are known 
to be related to AD pathogenesis (TABLE S2). They are seven cytokines (IL-4, IL-13, IL-17A, 
IL-22, IL-31, IFNg, and TSLP), OX40L, and four subsets of helper T cell (Th1, Th2, Th17, and 
Th22) that are the main source of the cytokines, except for TSLP which is secreted from 
keratinocytes. The model also includes “infiltrated pathogens” and “skin barrier integrity” as 
the main variables for a model of AD pathogenesis26, and the EASI score as an efficacy 
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endpoint of each virtual patient. The effects of the drugs were modelled by decreasing or 
increasing effective concentrations of their target cytokines or OX40L (TABLE S2).  

The model contains 51 parameters (e.g., the recovery rate of skin barrier via skin turnover, 
k1). We assumed the parameter values, corresponding to the strengths of the regulatory 
processes, vary between AD patients, so that virtual patients are defined by sets of 51 
parameter values. We tuned the distributions of the 51 parameters (TABLE S4) to reproduce 
the mean and the coefficient of variation of the biological factors in observational studies and 
mean EASI score and EASI-75 of the drugs (FIGURE 3). The root mean square errors of the 
mean EASI and EASI-75 between the simulated and reference data were 2.1 (out of 72 = the 
max EASI) and 7.4%, respectively. 

 

3.3. Influences of pathophysiological backgrounds of virtual patients on clinical 
efficacy of dupilumab 

The variation in the responsiveness to each drug among the patients is considered to be due 
to the heterogeneity in the pathophysiological backgrounds of the patients. The responder 
rates could be improved by patient stratification based on biomarkers that reflect 
pathophysiological backgrounds31. Using the QSP model, we can investigate which 
pathophysiological backgrounds have influence on clinical efficacy of each drug and which 
cytokines in the skin can be promising biomarkers for patient stratification. We performed a 
global sensitivity analysis of the model to investigate the influence of the 51 model parameters 
(that represent pathophysiological backgrounds of the virtual patients) on %improve EASI of 
each drug using the LHS-PRCC (FIGURE 4).  

Ten model parameters had a significant PRCC with the %improved EASI by dupilumab 
(FIGURE 4). Four out of the ten parameters are IL-13-related (k13, k14, b2, and d11), and the 
remaining six parameters are skin barrier-related parameters (k1, k3, b4, b6, d1, and d3) that 
correspond to placebo effects and baseline severity of skin barrier defects rather than each 
MoA (SI Section 5). The four IL-13 related parameters (k13, k14, b2, and d11) can characterize 
responders for dupilumab, as virtual patients with higher k13, k14, and b2 and a lower d11 were 
more responsive to treatment by dupilumab. The parameter, b2, describes the influence of IL-
13 on skin barrier damage. IL-4-related parameters (k11, k12, b1, b7, and d10) did not have a 
significant PRCC with %improved EASI by dupilumab, which inhibits both IL-4 and IL-13 
signaling, in consistent with the report that clinical efficacy of dupilumab were not correlated 
with the baseline level of IL-4 mRNA expression14.  

As three out of the four IL-13 related parameters, k13, k14, and d11, affect the IL-13 baseline 
level, we hypothesized that baseline levels of some cytokines in the skin could be used as 
predictive markers of good/poor responders for dupilumab and other drugs. To test this 
hypothesis, we stratified virtual patients based on their baseline cytokine levels for varying 
pre-defined threshold values. For the virtual patients whose baseline cytokine level is greater 
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than the threshold value, we simulated the %improved EASI at week 24 of each drug 
(FIGURE 5). For dupilumab, EASI-75 was improved for patients with a higher IL-13 baseline 
level. It is consistent with the results from actual clinical trials of dupilumab, where a higher 
efficacy was observed in the AD patients with higher baseline messenger RNA (mRNA) levels 
of IL-1314.  

 

3.4. Efficacy of existing or hypothetical therapy in dupilumab poor responders 
The proportion of poor responders to dupilumab; the actual and simulated percentages of 
patients who did not achieve EASI-75 at 24 weeks, was 31%10 and 35% [95% confidence 
interval (CI) 30.0%-41.9%] respectively (FIGURE 3). However, therapeutic options for the 
dupilumab poor responders are limited to increasing topical corticosteroids and adding 
systemic immunosuppressive agents, although the dupilumab poor responders are often 
resistant to these treatments and require monitoring for adverse effects32.  

We hypothesized that the dupilumab poor responders could be responsive to other targeted 
biologic drugs with different MoA, considering the heterogeneity of AD pathogenesis, and 
evaluated the potential efficacy of all nine drugs (FIGURE 6a). Every one of the nine drugs 
failed to show clinical responses in virtual dupilumab poor responders where maximal 
calculated responder rates, based on EASI-75 at 24 weeks, were only 1.9% [95%CI 0.6%-
3.4%] in fezakinumab. These low efficacies imply an upper efficacy ceiling for drugs that 
target single cytokines to treat dupilumab poor responders.  

We then evaluated the potential efficacy of hypothetical therapies that inhibit two cytokines, 
mimicking a bispecific antibody, for the virtual dupilumab poor responders. Our simulation 
demonstrated that dosing one additional drug to dupilumab achieved a better efficacy for 
virtual dupilumab poor responders (FIGURE 6b). The maximal EASI-75 in the virtual 
dupilumab poor responders (0% achieving EASI-75 at 24 weeks with dupilumab therapy) at 
24 weeks was 23.0% [95%CI 18.4%-27.3%] in dupilumab + fezakinumab, implying that 
inhibition of both IL-13 and IL-22 would be a promising combination for treatment of 
dupilumab poor responders. Indeed, inhibition of both IL-13 and IL-22 showed the highest 
clinical responses among all the combinations of two cytokines (FIGURE 6c), with EASI-75 
at 24 weeks being 21.6% [95%CI 17.4%-25.5%]. These results are in concordance with a 
clinically observed negative correlation between the clinical efficacy of dupilumab and the 
baseline level of IL-22 mRNA expression (not significant, rank correlation coefficient -0.208 
with p-value of 0.422) 14. The simulation results, in combination with the clinical observation14, 
suggest that inhibition of IL-22 in addition to the dupilumab treatment is effective for 
dupilumab poor responders.  

We also confirmed that blocking all targeted cytokines (inhibiting IL-4, IL-13, IL-17A, IL-22, 
IL-31, IFNg, and TSLP by 99%) achieved a higher EASI-75 (33.8% [95%CI 28.8%-38.7%], 
FIGURE 6c). The responder rate did not reach 100% even when all the cytokines were 
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blocked because some cytokines have not only detrimental but also beneficial effects. For 
example, IL-17A and IL-22 damage the skin barrier by inhibiting epidermal differentiation 
(detrimental effects) while they decrease infiltrated pathogens via increasing AMP (beneficial 
effects). Hence, inhibition of cytokines can partly exacerbate the AD symptoms, suggesting 
that finding optimal combinations of drugs requires a systems-level investigation. 

 

4. DISCUSSION 
4.1. QSP model to simulate biologics efficacy 
Several biologic drugs targeting AD pathogenic cytokines have been developed and shown 
clinical efficacy to some extent in AD patients. Although only one biologic drug, dupilumab, 
has been currently approved, it is useful to conduct model-based meta-analysis by integrating 
the results from clinical trials of other biologic drugs, including those that failed to show 
clinically significant efficacy and those under development, to enhance the understanding of 
AD pathogenesis and clinical efficacy of drugs with different MoA. In this study, we conducted 
model-based meta-analysis of clinical trials on the nine biologic drugs for AD (dupilumab, 
lebrikizumab, tralokinumab, secukinumab, fezakinumab, nemolizumab, and tezepelumab, 
GBR830, and rIFNg) that were published by Dec 2020 (FIGURE S1), and developed a QSP 
model of biologics efficacy in AD patients (FIGURE 2). This QSP model describes dynamic 
relationships between biological factors and clinical efficacies by integrating knowledge 
obtained from experiments using human samples and clinical trials of multiple drugs. The 
model reproduced the clinical efficacies of the biologic drugs observed in clinical trials and 
baseline levels of biological factors (e.g., cytokines) in the skin from published studies 
(FIGURE 3).  

 
4.2. Comparison of clinical efficacies of biologics 
Comparison of clinical efficacies (FIGURE 1) demonstrated that dupilumab and lebrikizumab 
showed the highest efficacy among the nine drugs investigated in this study, suggesting that 
their common target, IL-13, is the most crucial target to improve AD severity scores. The 
comparable efficacy between dupilumab (inhibiting both IL-4 and IL-13) and lebrikizumab 
(inhibiting IL-13 only) may suggest inhibition of IL-4 signaling has a minor contribution on the 
efficacy of dupilumab. Another anti-IL-13 antibody, tralokinumab, showed a significantly lower 
clinical efficacy than lebrikizumab. Lebrikizumab inhibits binding of IL-13 to IL-13Rα1 only, 
while tralokinumab inhibits binding to both IL-13Rα1 and IL-13Rα2. IL-13Rα1 forms a 
heterodimeric receptor with IL-4Rα and is related to the effects of IL-13 signaling in AD 
pathogenesis while IL-13Rα2 is a decoy receptor to decrease IL-13 signaling via IL-13Rα1. 
Hence, tralokinumab not only inhibits IL-13 signaling via IL-13Rα1 but also enhances IL-13 
signaling via inhibition of IL-13 binding to IL-13Rα233. In our simulation, effective inhibition of 
IL-13 signaling by tralokinumab was estimated 44% of lebrikizumab ( 𝑒8/ = 0.44 ). The 
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difference in the efficacy between lebrikizumab and tralokinumab may come from different 
mechanisms for IL-13 inhibition, dosing regimens, or trial design. 

4.3. Pathophysiological backgrounds of dupilumab poor responders 
This study presents a QSP-based approach to identify potential predictive biomarkers of 
clinical efficacy through mechanistic model-based simulation. We used the developed model 
to explore pathophysiological backgrounds of dupilumab poor responders. Our simulation 
demonstrated that the higher responder rates for dupilumab are expected in patients with the 
higher baseline level of IL-13 in the skin (FIGURES 4 and 5). Although it also showed baseline 
levels of other cytokines (e.g., IFNg) in the skin influence responder rates, these influences 
may be due to a pseudo-correlation of the cytokines with clinical efficacy because the 
parameters related to those cytokines were not detected as important in the global sensitivity 
analysis, which evaluates the “causative” influence of the parameters on efficacy. The 
cytokines detected due to the pseudo-correlation should not be used as predictive biomarkers 
for patient stratification, because such pseudo-correlations may have low reproducibility. 
Hence, our simulations suggest that the baseline level of IL-13 in the skin would be more 
suitable than other cytokines to be used as a biomarker for patient stratification in dupilumab 
treatment.  

 

4.4. Simulated efficacy of hypothetical therapy in dupilumab poor responders 
We also used the model to investigate alternative therapeutic options for virtual dupilumab 
poor responders. Our simulation results suggested inhibition of a single cytokine would be 
insufficient to achieve clinical response in virtual dupilumab poor responders, whereas 
inhibition of multiple cytokines could achieve clinical response (FIGURE 6a,b). Especially, IL-
13 and IL-22 were identified to be the best combination to treat virtual dupilumab poor 
responders (FIGURE 6c). Inhibition of two cytokines can be realized by a bispecific antibody 
as well as combination of two antibodies.  

Our simulated hypothetical therapy that inhibits all the cytokines in this model (IL-4, IL-13, IL-
17A, IL-22, IL-31, IFNg, and TSLP) showed higher clinical efficacy than inhibiting single and 
a combination of two cytokines (FIGURE 6c). These results suggest that inhibiting multiple 
cytokines can exert higher efficacy than biologic drugs targeting only one or two cytokines. 
In fact, the approach to inhibit signaling of multiple cytokines has been already realized by 
JAK inhibitors. For instance, abrocitinib blocks JAK1, which is an intracellular tyrosine kinase 
linked to intracellular domains of many cytokine receptors, including IL-4, IL-13, IL-22, IL-31, 
IFNg, and TSLP. Abrocitinib showed comparable efficacy with dupilumab11, but there were 
still a significant percentage of poor responders. One of the reasons why even multiple 
cytokine inhibition cannot achieve clinical response in all AD patients is that inhibition of 
cytokines can deteriorate AD symptoms because some cytokines have both detrimental and 
beneficial effects in AD pathogenesis and the contributions of each cytokine on AD 
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pathogenesis would vary among the AD patients. Hence, appropriate drugs would vary 
according to the pathophysiological backgrounds of the patients. Patient stratification may be 
beneficial not only for biologic drugs but also for the drugs that target multiple cytokines. 

 

4.5. Limitation of this study using the model 
We used clinical efficacy results of the biologic drugs as the reference data to tune the model 
parameters. We adopted Ph2 as well as Ph3 studies to make a maximal use of available 
clinical data (TABLE 1). However, the results from Ph2 studies with a rather small number of 
patients need to be confirmed with those from Ph3 studies with a larger number of patients. 
Our model assumptions include that virtual patients were generated from single modal 
distributions of the model parameters. There could be a multimodal distribution due to the 
genetic backgrounds or other demographic variances in a real population of AD patients. For 
the practical purposes of generating this model we assumed the %improved EASI was 
comparable across clinical trials. We know that outcome measures may be influenced by the 
concomitant use of topical corticosteroids and the statistical methods used to adjust for or 
censor topical corticosteroid use and to impute missing data. The model will need to be 
updated according to availability of the reference data and assumptions if these are changed 
as new data emerge. 

 

4.6. Prospects for model-informed drug development 
The proposed model could be further expanded for future development of new drugs for AD, 
by including new drug targets and pharmacokinetics and pharmacodynamics profiles of new 
drugs. The expanded model will be a useful tool to computationally evaluate potential clinical 
efficacies of new drug candidates, to identify biomarkers for patient stratification, to clarify the 
difference from existing drugs (e.g., showing significant efficacy in dupilumab poor 
responders), and to design optimal doses with considering variations in pathophysiological 
backgrounds. The model contributes to a systems-level understanding of AD pathogenesis 
and the drug effects and to evaluate the effects of new potential drug targets by computational 
simulation. This could serve as model-informed drug development34 for precision medicine. 
The code of the QSP model is available at https://github.com/Tanaka-Group/AD_QSP_model. 
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TABLE 1 Drugs considered in this study 
Drugs Targets Dose regimen 

(highest dose) 

Available efficacy 

endpoints 

#patients in 

placebo/drug 

arm (Phase) 

Dupilumab10 

(anti-IL-4 receptor subunit α 

antibody) 

IL-4 and IL-13 300 mg qw, s.c. 

+TCS 

EASI-75, 

%improved EASI 

%improved SCORAD 

264/270 

(Ph3) 

Lebrikizumab40 

(anti-IL-13 antibody) 

IL-13 250 mg q2w, s.c. 

+TCS 

EASI-75, 

%improved EASI 

52/75 (Ph2) 

Tralokinumab39 

(anti-IL-13 antibody) 

IL-13 300 mg q2w, s.c. 

+TCS 

EASI-75 

%improved EASI 

126/252 

(Ph3) 

Secukinumab16 

(anti-IL-17A antibody) 

IL-17A 300 mg qw for 4 weeks, 

followed by 300 mg q4w 

%improved EASI 

%improved SCORAD 

14/27 (Ph2) 

Fezakinumab36 

(anti-IL-22 antibody) 

IL-22 600 mg at day 0, 

followed by 300 mg q2w, i.v. 

%improved SCORAD† 20/40 (Ph2) 

Nemolizumab35 

(anti-IL-31 receptor subunit α 

antibody) 

IL-31 60 mg q4w, s.c. EASI-75, 

%improved EASI 

72/143 (Ph3) 

Tezepelumab37 

(anti-TSLP antibody) 

TSLP 280 mg q2w, s.c. 

+TCS 

EASI-75, 

%improved EASI 

%improved SCORAD 

56/55 (Ph2) 

GBR 83038 

(anti-OX40L antibody) 

OX40L 10 mg/kg q4w, i.v. %improved EASI 16/46 (Ph2) 

rIFNg41 IFNg 50 ug/m2 qd, s.c. 

+TCS 

% improved AD scores‡ 43/40 (Ph2) 

†: %improved EASI was estimated from %improved SCORAD using a regression curve (FIGURE S2), ‡: the 

mean value of the %improved AD scores were regarded as %improved EASI because the evaluated signs were 

same as those for EASI (erythema, induration, excoriations, and lichenification). When there were multiple 

clinical studies per drug, we adopted the clinical study of combination therapy with topical corticosteroids, which 

is more reflective of the likely clinical use compared with monotherapy, and studies with the largest number of 

patients. 

Abbreviations: qw, every week; q2w, every 2 weeks; q4w, every 4 weeks; qd, every day; s.c., subcutaneous 

administration; i.v., intravenous administration; +TCS, concomitant use of topical corticosteroids.  
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FIGURE 1 Reference data collected from published clinical trials. Normalized mean EASI 
score, %improved EASI, and EASI-75 obtained by results of clinical trials for nine drugs (dupilumab, 
lebrikizumab, tralokinumab, GBR 830, fezakinumab, rIFNg, tezepelumab, nemolizumab, 
secukinumab) and placebo. 
 
 

 
FIGURE 2 Overview of the proposed mathematical model. Details of the model, including 
ordinary differential equations for dynamics of biological factors and rationale for the functional 
relationships between biological factors, are described in SI Section 3. 
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FIGURE 3 Simulated and reference data of (a) baseline levels of biological factors, (b) 
mean EASI score, and (c) EASI-75. (a) Reference data (striped bars) are the measured values 
of the biological factors in the observational studies. Simulated data (filled bars) are the simulated 
values of the biological factors at the steady-state (after 1000 weeks) using 1000 virtual patients. Error 
bars are standard deviations. (b and c) Reference data (unfilled circles) are mean EASI scores (b) 
and EASI-75 (c) after treatment of each investigational drug. Simulated data (lines and 95% CI) 
describe mean EASI score (b) and EASI-75 (c) of 1000 simulations for the same number of virtual 
patients as for the clinical trials.   
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FIGURE 4 Effects of model parameters on %improved EASI by drug treatment. Values 
are PRCC (partial rank correlation coefficient) between each parameter and %improved EASI at 24 
weeks after drug treatment in 1000 virtual patients generated by independently sampling 51 parameter 
values according to LHS (Latin hypercube sampling). Open and crossed cells are statistically significant 
and not significant PRCC (absolute value >0.1 with adjusted p-values <0.05), respectively. Positive PRCC 
means that virtual patients with a higher value of the parameter achieve a higher %improve EASI by the 
drug treatment (e.g., k3). Negative PRCC means that virtual patients with a lower value of the parameter 
achieve a higher %improve EASI by the drug treatment (e.g., k1). 
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Recovery rate of skin barrier integrity via skin turnover k1 -0.5 -0.6 -0.6 -0.5 -0.5 -0.6 -0.5 -0.5 -0.5 -0.6
Recovery rate of skin barrier integrity via IL-22 k2 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1
Recovery rate of skin barrier integrity via placebo effects k3 0.7 0.6 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7
Rate of pathogen infiltration k4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Rate of differentiation of naïve T cells to Th1 k5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Rate of differentiation of naïve T cells to Th2 k6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Rate of differentiation of naïve T cells to Th17 k7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Rate of differentiation of naïve T cells to Th22 k8 -0.1 0.0 0.0 0.0 -0.1 0.1 -0.1 0.0 0.0 0.0
Strength of polarization for Th1 differentiation k9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2
Strength of polarization for Th2 differentiation k10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
IL-4 secretion rate via Th2 k11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
IL-4 secretion rate via other pathways k12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
IL-13 secretion rate via Th2 k13 0.0 0.2 0.2 0.1 0.0 0.1 0.1 0.1 0.1 0.1
IL-13 secretion rate via other pathways k14 -0.1 0.3 0.3 0.0 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1
IL-17A secretion rate via Th17 k15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
IL-17A secretion rate via other factors k16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
IL-22 secretion rate via Th22 k17 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
IL-22 secretion rate via other factors k18 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
IL-31 secretion rate via Th2 k19 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1
IL-31 secretion rate via other factors k20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
IFNg secretion rate via Th1 k21 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
IFNg secretion rate via other factors k22 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
TSLP secretion rate via infiltrated pathogens k23 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
TSLP secretion rate via other factors k24 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.0
OX40L expression rates via TSLP k25 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
OX40L expression rates via other factors k26 0.0 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1
Inhibitory strength for recovery of skin barrier via IL-4 b1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Inhibitory strength for recovery of skin barrier via IL-13 b2 0.0 0.6 0.6 0.3 0.1 0.2 0.1 0.1 0.1 0.2
Inhibitory strength for recovery of skin barrier via IL-17 b3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Inhibitory strength for recovery of skin barrier via IL-22 b4 0.0 0.2 0.2 0.1 0.1 0.3 0.1 0.1 0.1 0.2
Inhibitory strength for recovery of skin barrier via IL-31 b5 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.0 0.0
inhibitory strength for pathogens infiltration via skin barrier b6 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Inhibitory strength for elimination of infiltrated pathogens via IL-4 b7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Inhibitory strength for elimination of infiltrated pathogens via IL-13 b8 -0.1 0.0 0.0 0.0 -0.1 0.0 -0.1 0.0 0.0 0.0
Inhibitory strength for T cells elimination by OX40L b9 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Degradation rate of skin barrier via skin turnover d1 0.0 0.3 0.3 0.1 0.1 0.3 0.0 0.1 0.1 0.2
Degradation rate of skin barrier via IL-31 d2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Degradation rate of skin barrier via infiltrated pathogens d3 0.0 0.3 0.3 0.1 0.0 0.2 0.0 0.1 0.1 0.2
Elimination rate of infiltrated pathogens via infiltrated pathogens themselves d4 0.0 -0.1 -0.1 0.0 0.0 -0.1 0.0 0.0 0.0 0.0
Elimination rate of infiltrated pathogens via IL-17A d5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Elimination rate of infiltrated pathogens via IL-22 d6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Elimination rate of infiltrated pathogens via IFNg d7 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 0.0
Elimination rate of infiltrated pathogens via skin turnover d8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
T cell elimination rate d9 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1
Elimination rates for IL-4 d10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Elimination rates for IL-13 d11 -0.1 -0.2 -0.2 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1
Elimination rates for IL-17A d12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Elimination rates for IL-22 d13 0.0 -0.1 -0.1 0.0 0.0 -0.2 0.0 0.0 -0.1 -0.1
Elimination rates for IL-31 d14 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Elimination rates for IFNg d15 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Elimination rates for TSLP d16 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Elimination rates for OX40L d17 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0

Parameters

%improved EASI at week 24
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FIGURE 5 Simulated EASI-75 at 24 weeks in dupilumab treatment after patient 
stratification with different thresholds of cytokine baseline levels. The y-axis displays 
EASI-75 (responder rates) at 24 weeks in dupilumab treatment in the stratified virtual patients whose 
baseline level of each cytokine in the skin (before dupilumab treatment) was greater than the threshold 
(x-axis). The number of stratified virtual patients decreases with an increasing threshold, while the 
threshold of zero includes all the virtual patients and the maximum threshold investigated includes at 
least 10% of 1000 virtual patients. Line and shaded area are the mean value and 95% CI of 1000 
simulations, respectively. The higher EASI-75 achieved with patient stratification (compared to without 
stratification with the threshold zero: dashed line) suggests a success in stratifying good responders. 
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FIGURE 6 Simulated EASI-75 in virtual dupilumab poor-responders. The virtual dupilumab 
poor-responders were treated with (a) a single drug, (b) a combination of two drugs, and (c) blocking 
a combination of two cytokines or all the cytokines (inhibiting IL-4, IL-13, IL-17A, IL-22, IL-31, IFNg, 
and TSLP by 99%). Virtual dupilumab poor responders were 356 (with 95% CI 300-419) virtual 
patients who did not achieve the criterion of EASI-75 at 24 weeks after dosing dupilumab in 1000 
virtual patients. Lines and shaded areas are the mean values and 95% CI of 1000 simulations, 
respectively. 
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