
Supplementary Materials for ‘Design and Estimation for the
Population Prevalence of Infectious Diseases’

Eric J. Oh, Alyssa Mikytuck, Vicki Lancaster, Joshua Goldstein, Sallie Keller

Social and Decision Analytics Division, Biocomplexity Institute and Initiative, University of Virginia

Appendix A: Simulation study details

0.1 Stratified random sampling
For the stratified random sampling setting, a population size of 20000 was considered. 10 geographic units were
simulated and assigned to the population with probabilities

{
0.3− 0.2×g

10−1 ; g = 0, . . . , 9
}

. A geographic unit level
covariate was generated as N(50, 20) and standardized. In addition, gender and race were generated with two gender
levels of 10000 subjects and four race levels of 10000, 6000, 2000, and 2000 subjects. The true prevalence was
generated as

p = logit−1(β0 + bgeo + brace + β1xgender + β2xgeo)

where bgender ∼ N(0, σgender), brace ∼ N(0, σrace), xgender is a binary variable that takes the value 1 for male and
0 for female, and xgeo is the geographic unit level covariate described above. We set σgender = 0.5, σrace = 0.5,
β1 = 0.25, and β2 = 0.5. β0 was varied between {−6.2,−5.5,−4.5,−3.8} to set the true mean prevalence to be
{0.005, 0.01, 0.025, 0.05}, respectively. For the no pooling setting, we varied the number of tests run to be n =
{200, 400, 600}, resulting in m = {200, 400, 600} subjects sampled. For the pooling setting, we set the number of
tests run to be n = 200 and considered pool sizes of c = {5, 10} samples, resulting in m = {1000, 2000} subjects
sampled respectively. Samples were selected via proportional stratified sampling on the 10 geographic units for both
no pooling and pooling. For the settings involving pooling, pools were constructed post-sampling within strata; that
is, if 50 subjects were sampled within a stratum, those 50 would be pooled into 10 pools of 5 samples for example.

The prior distributions for β0, β1, and β2 were set to be N(β0, 1), N(0, 1), and N(0, 1), respectively. For the purposes
of sensitivity analysis, the prior for β0 is shifted away from the true β0 in further simulations. The hyperparameters
σgeo and σrace were assigned N+(0, 0.5) priors.

0.2 Multistage cluster sampling
For the multistage cluster sampling setting, a population size of 200000 was considered. 80 geographic units, or clus-
ters, were simulated and assigned to the population with equal probabilities. A cluster level covariate was generated
as N(50000, 20000) and standardized. In addition, gender, race, and age were generated with two gender levels of
100000 subjects, four race levels of 100000, 60000, 20000, and 20000 subjects, and four age levels of 20000, 40000,
120000, and 20000 subjects. The true prevalence was generated as

p = logit−1(β0 + bcluster + brace + bage + β1xgender + β2xcluster)

where bgender ∼ N(0, σgender), brace ∼ N(0, σrace), bage ∼ N(0, σage), xgender is a binary variable that takes the
value 1 for male and 0 for female, and xcluster is the cluster level covariate described above. We set σgender = 0.5,
σrace = 0.5, β1 = 0.5, and β2 = 0.3. β0 was varied between {−5.18,−4.5,−3.58,−2.85} to set the true mean
prevalence to be {0.005, 0.01, 0.025, 0.05}, respectively. For the no pooling setting, we varied the number of tests run
to be n = {400, 800, 1200}, resulting in m = {400, 800, 1200} subjects sampled. For the pooling setting, we set the
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number of tests run to be n = 400 and considered pool sizes of c = {5, 10} samples, resulting in m = {2000, 4000}
subjects sampled respectively. Samples were selected by first sampling 10 clusters at random without replacement.
Within the sampled clusters, subjects were sampled using balanced sampling (Breslow and Chatterjee, 1999) stratified
on the age group. This approach ensured that an equal number of subjects in each age group was sampled in each
cluster. For the settings involving pooling, pools were constructed post-sampling within (cluster, strata) combinations;
that is, if 50 subjects were sampled within each sampled cluster and age group, those 50 would be pooled into 10 pools
of 5 samples for example.

The prior distributions for β0, β1, and β2 were set to be N(β0, 1), N(0, 1), and N(0, 1), respectively. For the purposes
of sensitivity analysis, the prior for β0 is shifted away from the true β0 in further simulations. The hyperparameters
σcluster, σrace, and σage were assigned N+(0, 0.5) priors.

0.3 Simple random sampling
For the simple random sampling setting, a population size of 1000 was considered. In addition, race and age were
generated with four race levels of 500, 300, 100, and 100 subjects and four age levels of 100, 200, 600, and 100
subjects. The true prevalence was generated as

p = logit−1(β0 + brace + bage)

where brace ∼ N(0, σrace), bage ∼ N(0, σage). We set σrace = 0.5, σage = 0.5, and β0 was varied between
{logit(0.005), logit(0.01), logit(0.025), logit(0.05)} to set the true mean prevalence to be {0.005, 0.01, 0.025, 0.05},
respectively. For the no pooling setting, we varied the number of tests run to be n = {25, 50}, resulting in m =
{25, 50} subjects sampled. For the pooling setting, we set the number of tests run to be n = 25 and considered pool
sizes of c = {2, 5} samples, resulting in m = {50, 125} subjects sampled respectively. Samples were selected via
simple random sampling from the population of 1000. For the settings involving pooling, pools were constructed
randomly post-sampling within strata; that is, if 50 total subjects were sampled, those 50 would be randomly pooled
into 25 pools of 2 samples for example.

The prior distribution for β0 was set to be N(β0, 1). For the purposes of sensitivity analysis, the prior for β0 is shifted
away from the true β0 in further simulations. The hyperparameters σrace and σage were assigned N+(0, 0.5) priors.
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Appendix B: Posterior predictive checks

Figure 1: Posterior predictive checks for one sample in the stratified random sampling setting. The dark blue lines
represent the observed prevalence in the sample. The light blue histograms represent the predicted prevalence from
4000 draws from the posterior predictive distribution.
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Figure 2: Posterior predictive checks for one sample in the multistage cluster random sampling setting. The dark blue
lines represent the observed prevalence in the sample. The light blue histograms represent the predicted prevalence
from 4000 draws from the posterior predictive distribution.
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Figure 3: Posterior predictive checks for one sample in the simple random sampling setting. The dark blue lines
represent the observed prevalence in the sample. The light blue histograms represent the predicted prevalence from
4000 draws from the posterior predictive distribution.
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Appendix C: Full simulation results

Table 1: Average posterior medians, median absolute deviations, and 95% posterior intervals across 500 random
samples from the stratified random sampling setting with varying number of tests, pool size, and average prevalence
p.

p # of tests Pool size Median MAD 95% PI

0.005 200 1 0.004 0.003 (0.000, 0.014)
5 0.004 0.002 (0.001, 0.009)

10 0.004 0.002 (0.002, 0.008)
400 1 0.004 0.003 (0.000, 0.011)
600 1 0.004 0.003 (0.000, 0.010)

0.01 200 1 0.008 0.005 (0.001, 0.022)
5 0.009 0.003 (0.004, 0.016)

10 0.009 0.002 (0.005, 0.014)
400 1 0.008 0.004 (0.001, 0.018)
600 1 0.008 0.004 (0.001, 0.017)

0.025 200 1 0.022 0.01 (0.006, 0.045)
5 0.025 0.005 (0.015, 0.036)

10 0.025 0.004 (0.018, 0.034)
400 1 0.023 0.008 (0.009, 0.040)
600 1 0.024 0.007 (0.012, 0.038)

0.05 200 1 0.046 0.015 (0.020, 0.077)
5 0.049 0.008 (0.035, 0.065)

10 0.05 0.006 (0.038, 0.063)
400 1 0.047 0.011 (0.027, 0.069)
600 1 0.047 0.009 (0.031, 0.066)
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Table 2: Average posterior medians, median absolute deviations, and 95% posterior intervals across 500 random
samples from the multistage cluster random sampling setting with varying number of tests, pool size, and average
prevalence p.

p # of tests Pool size Median MAD 95% PI

0.005 400 1 0.006 0.004 (0.000, 0.015)
5 0.005 0.002 (0.002, 0.009)

10 0.005 0.002 (0.002, 0.009)
800 1 0.005 0.003 (0.001, 0.012)

1200 1 0.005 0.003 (0.001, 0.011)

0.01 400 1 0.01 0.005 (0.002, 0.023)
5 0.009 0.003 (0.004, 0.016)

10 0.009 0.002 (0.005, 0.015)
800 1 0.009 0.004 (0.002, 0.019)

1200 1 0.009 0.004 (0.003, 0.018)

0.025 400 1 0.024 0.009 (0.008, 0.045)
5 0.022 0.005 (0.013, 0.034)

10 0.021 0.004 (0.014, 0.031)
800 1 0.022 0.007 (0.010, 0.038)

1200 1 0.022 0.006 (0.011, 0.037)

0.05 400 1 0.046 0.013 (0.022, 0.076)
5 0.043 0.008 (0.028, 0.061)

10 0.047 0.007 (0.034, 0.063)
800 1 0.043 0.01 (0.024, 0.067)

1200 1 0.043 0.009 (0.026, 0.065)

Table 3: Average posterior medians, median absolute deviations, and 95% posterior intervals across 500 random
samples from the simple random sampling setting with varying number of tests, pool size, and average prevalence p.

p # of tests Pool size Median MAD 95% PI

0.005 25 1 0.006 0.005 (0.000, 0.029)
2 0.006 0.005 (0.000, 0.023)
5 0.005 0.004 (0.000, 0.018)

50 1 0.006 0.005 (0.000, 0.024)

0.01 25 1 0.012 0.01 (0.000, 0.047)
2 0.011 0.008 (0.000, 0.037)
5 0.01 0.007 (0.001, 0.028)

50 1 0.011 0.009 (0.000, 0.038)

0.025 25 1 0.028 0.02 (0.002, 0.086)
2 0.026 0.017 (0.003, 0.070)
5 0.026 0.013 (0.006, 0.055)

50 1 0.026 0.017 (0.002, 0.070)

0.05 25 1 0.053 0.033 (0.007, 0.136)
2 0.05 0.026 (0.010, 0.111)
5 0.051 0.019 (0.018, 0.094)
1 0.051 0.026 (0.010, 0.113)
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