Supplementary Materials

S.1. Additional statistics on patients in this study

Figure S.1. Distribution of A) age, B) weight, C) height and D) BMI at the time of scan grouped into male (orange) and female (blue)

Left Ventricle Ejection Fraction (LVEF)

Figure S.2. Distribution of LVEF in patients of the dataset

S.2. Standardized Environment for Radiomics Analysis (SERA)

S.2.1 Introduction

The Standardized Environment for Radiomics Analysis (SERA) is a Matlab[®]-based framework developed at Johns Hopkins University that calculates radiomic features based on guidelines from the Image Biomarker Standardization Initiative (IBSI) (https://arxiv.org/pdf/1612.07003.pdf). SERA is capable of processing images from various clinical imaging modalities such as CT, MRI, PET, and SPECT. Radiomic features calculated with SERA are standardized and in compliance with IBSI, which ensures their reproducibility.

S.2.2 Radiomic Features

SERA calculates 487 IBSI-standardized features (as outlined in Table below). These include 79 first-order features (morphology, statistical, histogram, and intensity-histogram features), 272 higher-order 2D features, and 136 3D features. Different subsets of features can be selected, such as the default of 215 features (first order + higher-order 3D).

Feature Family	Subtypes	Number of Features
Morphology	-	29
Local Intensity	-	2
Intensity-based Statistics	-	18
Intensity Histogram	-	23
Intensity-Volume Histogram	-	7
	2D Averaged	25
	2D Slice-Merged	25
Crawleyel Co. accurrance Matrix (CLCM)	2.5D Direction Merged	25
	2.5 D All Merged	25
	3D Averaged	25
	3D Merged	25
	2D Averaged	16
	2D Slice-Merged	16
	2.5D Direction Merged	16
Gray Level Run Length Matrix (GLRLIVI)	2.5 D All Merged	16
	3D Averaged	16
	3D Merged	16
	2D	16
Gray Level Size Zone Matrix (GLZSM)	2.5 D	16
	3D	16
	2D	16
Gray Level Distance Zone Matrix (GLDZM)	2.5 D	16
	3D	16
	2D	5
Neighborhood Grey Tone Difference Matrix (NGTDM)	2.5 D	5
	3D	5
Neighboring Grey Level Dependence Matrix	2D	17
(NGLDM)	2.5 D	17
	3D	17
Total		487

Table S.1. Radiomic features SERA calculates in each feature family. Different 2D, 2.5D, and 3D configurations are explained in detail in the IBSI guideline. Users can set to return only a selected subset of these features.

S.2.3 Feature Evaluation Settings

SERA has options to set and modify all parameters defined or used in the IBSI guideline. The following parameters can be set up in the image preparation setting of SERA (for detailed information please refer to IBSI documentation <u>[1]</u>):

- Resampling and interpolation:
 - resample to 2D and 3D isotropic voxel sizes; interpolation algorithm used in resampling image and ROI (nearest/linear/cubic); partial volume threshold (mostly used for CT HU).
- Discretization:
 - bin size, discretization type (fixed bin size/fixed bin numbers), discretization algorithm (uniform/Lloyd)
- Other:
 - grey-level rounding, image re-segmentation (range re-segmentation, outliers' resegmentation)

S.2.4 Radiomic feature values for IBSI benchmark datasets as calculated by SERA

IBSI shared two phantoms between all participating institutions in two phases ROI to facilitate the process of establishing reference values for features. In phase I, it was a small 80-voxel three-dimensional digital phantom with a 74-voxel ROI mask to facilitate the process of establishing reference values for features, without involving image processing. In phase II, a publicly available CT image in a patient with lung cancer with an accompanying gross tumor volume as the ROI [1, 2]. We have included a supplemental spreadsheet containing the features calculated by SERA on the IBSI benchmark CT phantom in the supplementary materials. Table S.2 contains the values of each feature computed by SERA in comparison to the IBSI reported benchmark values for Configuration D of the CT phantom as indicated in IBSI guideline [1], which is the closest configuration to the setup in the current study. The results in this spreadsheet demonstrate the compliance of SERA with IBSI radiomics guidelines.

Family	Image_Biomarker	Benchmark Value	Tolerance	SERA Result	Diff	Check
Morphology	Volume (mesh-based)	367000	6000	367453.66	0	match
Morphology	Volume (counting)	368000	6000	367880	0	match
Morphology	Surface area	34300	400	34306.254	0	match
Morphology	Surface to volume ratio	0.0934	0.0007	0.093	0	match
Morphology	Compactness 1	0.0326	0.0002	0.033	0	match
Morphology	Compactness 2	0.378	0.004	0.378	0	match
Morphology	Spherical disproportion	1.38	0.01	1.383	0	match
Morphology	Sphericity	0.723	0.003	0.723	0	match
Morphology	Asphericity	0.383	0.004	0.383	0	match
Morphology	Centre of mass shift	64.9	2.8	64.926	0	match
Morphology	Maximum 3D diameter	125	1	125.06	0	match
Morphology	Major axis length	93.3	0.5	93.27	0	match
Morphology	Minor axis length	82	0.5	82.005	0	match
Morphology	Least axis length	70.9	0.4	70.902	0	match
Morphology	Elongation	0.879	0.001	0.879	0	match
Morphology	Flatness	0.76	0.001	0.76	0	match

Table S.2. List of radiomics features calculated by SERA for Configuration D of IBSI CT phantom [1]. SERA shows great compliance with IBSI with 99.8% match in calculated results.

Morphology	Volume density (AABB)	0.478	0.003	0.478 0	match
Morphology	Area density (AABB)	0.678	0.003	0.678 0	match
Morphology	Volume density (OMBB)	N. A.	N. A.	0.526	N. A.
Morphology	Area density (OMBB)	N. A.	N. A.	0.723	N. A.
Morphology	Volume density (AEE)	1.29	0.01	1.294 0	match
Morphology	Area density (AEE)	1.62	0.01	1.605 0.01	match
Morphology	Volume density (MVEE)	N. A.	N. A.	0.615	N. A.
Morphology	Area density (MVEE)	N. A.	N. A.	1.121	N. A.
Morphology	Volume density (convex hull)	0.834	0.002	0.834 0	match
Morphology	Area density (convex hull)	1.13	0.01	1.13 0	match
Morphology	Integrated intensity	-8640000	1560000	-8641752 0	match
Morphology	Moran's Lindex	0.0622	0.0013	0.062 0	match
Morphology	Geary's C measure	0.851	0.001	0.851 0	match
Local intensity	Local intensity peak	201	10	200.821 0	match
Local intensity	Global intensity peak	N. A.	N. A.	200.821	N. A.
Statistics	Mean	-23.5	3.9	-23.518 0	match
Statistics	Variance	32800	2100	32786 871 0	match
Statistics	Skewness	-2.28	0.06	-2.28 0	match
Statistics	(Excess) kurtosis	4 35	0.32	4 351 0	match
Statistics	Median	42	0.52	42 0	match
Statistics	Minimum	-724	12	-724 0	match
Statistics	10th percentile	-724	20	-724 0	match
Statistics	90th percentile	-304	0.1	-304 0	match
Statistics	Maximum	50 571	20.1	521 0	match
Statistics	Interquartile range	521	ZZ	521 0	match
Statistics	Panga	1240	4.1	1245 0	match
Statistics	Mean absolute doviation	1240	40	1245 0	match
Statistics	Pobust mean absolute deviation	125	26	122.545 0	match
Statistics	Modian absolute deviation	40.0	2.0	40.627 0	match
Statistics		94.7	1.01	7 600 0	match
Statistics		-7.7	0.011	-7.099 0	match
Statistics		1 48-0	0.011	0.74 0	match
Statistics	Poet mean square	1.4869	1.469	1.4869 0	match
Statistics	Moon	105	<u> </u>	182.592 0	match
	Verience	18.5	0.5	18.503 0	match
Intensity histogram	Skownoss	21.7	0.4	21.69 0	match
Intensity histogram	Kurtasis	-2.27	0.06	-2.268 0	match
Intensity histogram	Kurtosis	4.31	0.32	4.308 0	match
Intensity histogram		20	0.5	20 0	match
Intensity histogram	Minimum 10th researchile	1	0	1 0	match
Intensity histogram		11	0.7	11 0	match
Intensity histogram	90th percentile	21	0.5	21 0	match
Intensity histogram	Maximum	32	0	32 0	match
Intensity histogram	Mode	20	0.4	20 0	match
Intensity histogram	Interquartile range	2	0.06	2 0	match
Intensity histogram	Kange	31	0	31 0	match
Intensity histogram	Mean absolute deviation	3.15	0.05	3.151 0	match
Intensity histogram	Robust mean absolute deviation	1.33	0.06	1.328 0	match
Intensity histogram	Median absolute deviation	2.41	0.04	2.407 0	match
Intensity histogram	Coefficient of variation	0.252	0.006	0.252 0	match
Intensity histogram	Quartile coefficient of dispersion	0.05	0.0021	0.05 0	match
Intensity histogram	Entropy	2.94	0.01	2.94 0	match
Intensity histogram	Uniformity	0.229	0.003	0.229 0	match
Intensity histogram	Maximum histogram gradient	7260	200	7263 0	match
Intensity histogram	Maximum gradient grey level	19	0.4	19 0	match
Intensity histogram	Minimum histogram gradient	-6670	230	-6674 0	match
Intensity histogram	Minimum gradient grey level	22	0.4	22 0	match
Intensity vol histogram	Volume fraction at 10% intensity	0.972	0.003	0.972 0	match
Intensity vol histogram	Volume fraction at 90% intensity	0.00009	0.000415	0 0	match
Intensity vol histogram	Intensity at 10% volume	87	0.1	87 0	match
Intensity vol histogram	Intensity at 90% volume	-303	20	-303 0	match
Intensity vol histogram	Volume fraction diff between 10% and 90% intensity	0.971	0.001	0.971 0	match
Intensity vol histogram	Intensity difference between 10% and 90% volume	390	20	390 0	match
Intensity vol histogram	Area under the IVH curve	0.563	0.012	0.563 0	match

GLCM (3D, averaged)	Joint maximum	0.232	0.007	0.232	0	match
GLCM (3D, averaged)	Joint average	18.9	0.5	18.852	0	match
GLCM (3D, averaged)	Joint variance	17.6	0.4	17.628	0	match
GLCM (3D, averaged)	Joint entropy	4.95	0.03	4.947	0	match
GLCM (3D, averaged)	Difference average	1.29	0.01	1.293	0	match
GLCM (3D, averaged)	Difference variance	5.37	0.11	5.369	0	match
GLCM (3D, averaged)	Difference entropy	2.13	0.01	2.134	0	match
GLCM (3D, averaged)	Sum average	37.7	0.8	37.705	0	match
GLCM (3D, averaged)	Sum variance	63.4	1.3	63.441	0	match
GLCM (3D, averaged)	Sum entropy	3.68	0.02	3.676	0	match
GLCM (3D, averaged)	Angular second moment	0.11	0.003	0.11	0	match
GLCM (3D, averaged)	Contrast	7.07	0.13	7.071	0	match
GLCM (3D, averaged)	Dissimilarity	1.29	0.01	1.293	0	match
GLCM (3D, averaged)	Inverse difference	0.682	0.003	0.682	0	match
GLCM (3D, averaged)	Inverse difference normalized	0.965	0.001	0.965	0	match
GLCM (3D, averaged)	Inverse difference moment	0.656	0.003	0.656	0	match
GLCM (3D, averaged)	Inverse difference moment normalized	0.994	0.001	0.994	0	match
GLCM (3D, averaged)	Inverse variance	0.341	0.005	0.341	0	match
GLCM (3D, averaged)	Correlation	0.798	0.005	0.798	0	match
GLCM (3D, averaged)	Autocorrelation	370	16	369.511	0	match
GLCM (3D, averaged)	Cluster tendency	63.4	1.3	63.441	0	match
GLCM (3D, averaged)	Cluster shade	-1270	40	-1272.93	0	match
GLCM (3D, averaged)	Cluster prominence	35700	1400	35664.719	0	match
GLCM (3D, averaged)	Information correlation 1	-0.231	0.003	-0.231	0	match
GLCM (3D. averaged)	Information correlation 2	0.845	0.003	0.845	0	match
GLCM (3D, merged)	Joint maximum	0.232	0.007	0.232	0	match
GLCM (3D, merged)	Joint average	18.9	0.5	18.852	0	match
GLCM (3D, merged)	loint variance	17.6	0.4	17.638	0	match
GLCM (3D, merged)	Joint entropy	4.96	0.03	4.965	0	match
GLCM (3D, merged)	Difference average	1.29	0.01	1.29	0	match
GLCM (3D, merged)	Difference variance	5 38	0.11	5 381	0	match
GLCM (3D, merged)	Difference entropy	2.14	0.01	2,139	0	match
GLCM (3D, merged)	Sum average	37.7	0.8	37 703	0	match
GLCM (3D, merged)	Sum variance	63.5	1.3	63,506	0	match
GLCM (3D, merged)	Sum entropy	3.68	0.02	3 679	0	match
GLCM (3D, merged)	Angular second moment	0 109	0.02	0 109	0	match
GLCM (3D, merged)	Contrast	7.05	0.13	7.045	0	match
GLCM (3D, merged)	Dissimilarity	1.29	0.01	1.29	0	match
GLCM (3D, merged)	Inverse difference	0.682	0.003	0.682	0	match
GLCM (3D, merged)	Inverse difference normalized	0.965	0.001	0.965	0	match
GLCM (3D, merged)	Inverse difference moment	0.657	0.003	0.657	0	match
GLCM (3D, merged)	Inverse difference moment normalized	0.994	0.001	0.994	0	match
GLCM (3D, merged)	Inverse variance	0.34	0.005	0.34	0	match
GLCM (3D, merged)	Correlation	0.8	0.005	0.8	0	match
GLCM (3D, merged)	Autocorrelation	370	16	369,503	0	match
GLCM (3D, merged)	Cluster tendency	63.5	13	63 506	0	match
GLCM (3D, merged)	Cluster shade	-1280	40	-1275 262	0	match
GLCM (3D, merged)	Cluster prominence	35700	1500	35742 844	0	match
GLCM (3D, merged)	Information correlation 1	_0 225	0.003	_0 225	0	match
GLCM (3D, merged)	Information correlation 2	0.225	0.003	0.225	0	match
GLRIM (3D, averaged)	Short runs emphasis	0.040	0.005	0.040	0	match
GLRIM (3D, averaged)		6.66	0.001	6 657	0	match
GLRIM (3D, averaged)	Low GL run emphasis	0.00	0.10	0.037	0	match
GLRLM (3D, averaged)	High GL run omphasis	226	0.0012	225 7/1	0	match
GLINEINI (SD, averaged)	Short run low GL emphasis	320	1/	525.741	0	match
GLRIM (3D, averaged)	Short run high GL emphasis	0.0232	12	210 622	0	match
GLINI (3D, averaged)		219	13	210.022	0	match
GLINI (SD, averaged)	Long run high CL omphasis	0.0484	0.0031	0.048	0	match
GLINLIVI (SD, averaged)		2070	30	2007.075	0	match
GLINI (3D, averaged)	GL non-uniformity normalized	3290	0.002	3293.049	0	match
GLINI (SD, averaged)		0.133	0.002	12251 102	0	match
		12400	200	12351.102	0	match
GLKLIVI (3D, averaged)	Run length non-uniformity normalized	0.5	0.001	0.5	0	match
GLKLIVI (3D, averaged)	kun percentage	0.554	0.005	0.554	U	match

GLRLM (3D, averaged)	GL variance	31.5	0.4	31.453 0	match
GLRLM (3D, averaged)	Run length variance	3.35	0.14	3.348 0	match
GLRLM (3D, averaged)	Run entropy	5.08	0.02	5.081 0	match
GLRLM (3D, merged)	Short runs emphasis	0.736	0.001	0.736 0	match
GLRLM (3D, merged)	Long runs emphasis	6.56	0.18	6.556 0	match
GLRLM (3D, merged)	Low GL run emphasis	0.0257	0.0012	0.026 0	match
GLRLM (3D, merged)	High GL run emphasis	326	17	326.073 0	match
GLRLM (3D, merged)	Short run low GL emphasis	0.0232	0.001	0.023 0	match
GLRLM (3D, merged)	Short run high GL emphasis	219	13	219.402 0	match
GLRLM (3D, merged)	Long run low GL emphasis	0.0478	0.0031	0.048 0	match
GLRLM (3D, merged)	Long run high GL emphasis	2630	30	2625.593 0	match
GLRLM (3D, merged)	GL non-uniformity	42800	200	42767.969 0	match
GLRLM (3D, merged)	GL non-uniformity normalized	0.134	0.002	0.134 0	match
GLRLM (3D, merged)	Run length non-uniformity	160000	3000	160418.5 0	match
GLRLM (3D, merged)	Run length non-uniformity normalized	0.501	0.001	0.501 0	match
		0 554	0.005	7 100	no
GLRLM (3D, merged)	Run percentage	0.554	0.005	6.6	6 match
GLRLM (3D, merged)	GL variance	31.4	0.4	31.425 0	match
GLRLM (3D, merged)	Run length variance	3.29	0.13	3.295 0	match
GLRLM (3D, merged)	Run entropy	5.08	0.02	5.083 0	match
GLZSM(3D)	Small zone emphasis	0.637	0.005	0.637 0	match
GLZSM(3D)	Large zone emphasis	99100	2800	99078.516 0	match
GLZSM(3D)	Low GL emphasis	0.0409	0.0005	0.041 0	match
GLZSM(3D)	High GL emphasis	188	10	188.183 0	match
GLZSM(3D)	Small zone low GL emphasis	0.0248	0.0004	0.025 0	match
GLZSM(3D)	Small zone high GL emphasis	117	7	116.553 0	match
GLZSM(3D)	Large zone low GL emphasis	241	14	240.778 0	match
GLZSM(3D)	Large zone high GL emphasis	41400000	300000	41404348 0	match
GLZSM(3D)	GL non-uniformity	212	6	212.134 0	match
GLZSM(3D)	GL non uniformity normalized	0.0491	0.0008	0.049 0	match
GLZSM(3D)	Zone size non-uniformity	1630	10	1629.113 0	match
GLZSM(3D)	Zone size non-uniformity normalized	0.377	0.006	0.377 0	match
GLZSM(3D)	Zone percentage	0.0972	0.0007	0.097 0	match
GLZSM(3D)	GL variance	32.7	1.6	32.718 0	match
GLZSM(3D)	Zone size variance	99000	2800	98972.773 0	match
GLZSM(3D)	Zone size entropy	6.52	0.01	6.515 0	match
GLDZM(3D)	Small distance emphasis	0.579	0.004	0.579 0	match
GLDZM(3D)	Large distance emphasis	10.3	0.1	10.258 0	match
GLDZM(3D)	Low GL emphasis	0.0409	0.0005	0.041 0	match
GLDZM(3D)	High GL emphasis	188	10	188.183 0	match
GLDZM(3D)	Small distance low GL emphasis	0.0302	0.0006	0.03 0	match
GLDZM(3D)	Small distance high GL emphasis	99.3	5.1	99.3 0	match
GLDZM(3D)	Large distance low GL emphasis	0.183	0.004	0.183 0	match
GLDZM(3D)	Large distance high GL emphasis	2620	110	2619.168 0	match
GLDZM(3D)	GL non-uniformity	212	6	212.134 0	match
GLDZM(3D)	GL non-uniformity normalized	0.0491	0.0008	0.049 0	match
GLDZM(3D)	Zone distance non-uniformity	1370	20	1369.445 0	match
GLDZM(3D)	Zone distance non-uniformity normalized	0.317	0.004	0.317 0	match
GLDZM(3D)	Zone percentage	0.0972	0.0007	0.097 0	match
GLDZM(3D)	GL variance	32.7	1.6	32,718 0	match
GLDZM(3D)	Zone distance variance	4.61	0.04	4,614 0	match
GLDZM(3D)	Zone distance entrony	6.61	0.03	6 614 0	match
NGTDM (3D)	Coarseness	0.00208	0.00004	0.01	match
NGTDM (3D)	Contrast	0.000200	0.00004	0.046_0	match
NGTDM (3D)	Busyness	5.0 -0	0.0005 0 1/	5 1 <i>44</i> 0	match
NGTDM (3D)	Complexity	<u></u> <u></u> <u></u> <u></u>	<u> </u>	300 604 0	match
NGTDM (3D)	Strength	400 0.162	0 000	0 162 0	match
	Low denendence emphasis	0.102	0.008	0.102 0	match
NGLDM(3D)	High dependence emphasis	0.0312	5.0007 E	222 2/2	match
	Low GL count emphasis	0.0160	0,000	0.017 0	match
	High GL count emphasis	0.0108	0.0009	264 040 0	match
	Low dependence low GL omphasis	504 0 00257	0.0000	0 004 0	match
	Low dependence high GL emphasis	10.00557	1 1	12 0/15 0	match
	Low dependence fight of emphasis	10.9	1.1	10.345 0	matth

NGLDM(3D)	High dependence low GL emphasis	0.798	0.072	0.798 0	match
NGLDM(3D)	High dependence high GL emphasis	92800	1300	92761.625 0	match
NGLDM(3D)	GL non-uniformity	10200	300	10172.049 0	match
NGLDM(3D)	GL non-uniformity normalized	0.229	0.003	0.229 0	match
NGLDM(3D)	Dependence count non-uniformity	1840	30	1836.865 C	match
NGLDM(3D)	Dependence count non-uniformity normalized	0.0413	0.0003	0.041 0	match
NGLDM(3D)	Dependence count percentage	1	0	1 0	match
NGLDM(3D)	GL variance	21.7	0.4	21.69 0	match
NGLDM(3D)	Dependence count variance	63.9	1.3	63.923 0	match
NGLDM(3D)	Dependence count entropy	6.98	0.01	6.981 C	match
NGLDM(3D)	Dependence count energy	0.0113	0.0002	0.011 0	match

S.3. Matlab code of the multivariate stepwise regression outcome prediction analysis

We used the following code in Matlab 2019a for the procedure explained in section **Error! Reference source not found.**:Statistical Analysis: Outcome Prediction. It follows the calculation of the AIC criterion and selecting the best along with chi-squared (Fisher's method) to determine significance.

88									=====
% %	Multivariate	Stepwise	Regression	with	Independent	Test	with	p-value	adjustment
88									

S.4. Radiomics Quality Factors

[3, 4]Table S.3 contains a cross-check list of radiomics quality factors, including details on how our study has implemented every factor [3].

	Radiomics Quality Factor	Considered	Comment
	Standardized imaging protocols	\checkmark	A standardized protocol was in place across all Johns Hopkins Hospital SPECT scanners
Imaging	Imaging quality insurance	\checkmark	Scanners were well-maintained and calibrated to produce high- quality clinical images
	Calibration	\checkmark	Image post-processing and standardized radiomics calculation with SERA
Experimental setup	Multi-institutional /external datasets	×	Left for future studies
	Prospective study	×	Left for future studies
Feature Selection	Feature robustness	✓	Feature robustness was studied against segmentation variations, discretization schemes, etc. It was performed independent-to- outcome.
	Feature complementarity	\checkmark	Extensively implemented, reducing 487 to 56 features.
	False-discovery correction	~	Implementing Benjamini- Hochberg for univariate, AIC, and Fisher's methods for multivariate.
	Estimation of model performance	\checkmark	The training model was further optimized on the validation set.
Model Assessment	Independent testing	\checkmark	The independent test set was blind to training/validation. Feature selection was blind to outcome.
Model Assessment	Performance results consistency	\checkmark	The consistency of results was demonstrated via 50 times randomly shuffling the {training- validation}/test sets.
	Comparison to conventional metrics	\checkmark	Radiomics results were compared against conventional (clinical) metrics
	Multivariable analysis with non-radiomic variables	\checkmark	Multivariate analysis of combined radiomics + clinical features were provided
Clinical implications	Biological correlate	\checkmark	We provide intuition explaining why specific radiomics features (e.g. GLSZM-small zone large GL

Table S.3. Radiomics quality factor implemented in the current study

			emphasis) appear in the multivariate model fit
	Potential clinical application	\checkmark	Potential clinical application is to predict/stratify patients' CAC score based on radiomics of MPSS
	Open data	×	Not available
	Open code	✓	Provided in the Supplementary Materials section
Material availability	Open models	✓	The result of our independent- to-outcome feature selection process has been provided for future studies in radiomics of MPSS.

References

- [1] A. Zwanenburg, M. Vallières, M. A. Abdalah, H. J. Aerts, V. Andrearczyk, A. Apte, S. Ashrafinia, S. Bakas, R. J. Beukinga, and R. Boellaard, "The Image Biomarker Standardization Initiative: standardized quantitative radiomics for high-throughput image-based phenotyping," *Radiology*, pp. 191145, 2020.
- [2] P. Lambin, "Radiomics digital phantom," *CancerData. org*, 2016.
- [3] M. Vallières, A. Zwanenburg, B. Badic, C. Cheze Le Rest, D. Visvikis, and M. Hatt, "Responsible Radiomics Research for Faster Clinical Translation," *Journal of Nuclear Medicine*, vol. 59, no. 2, pp. 189-193, February 1, 2018, 2018.
- [4] G. S. Collins, J. B. Reitsma, D. G. Altman, and K. G. M. Moons, "Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement," *BMJ* : *British Medical Journal*, vol. 350, pp. g7594, 2015.