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Abstract  36 

Maintaining high levels of daily activity and physical capability have been proposed as 37 

important constituents to promote healthy brain and cognitive aging. Studies investigating the 38 

associations between brain health and physical activity in late life have, however, mainly been 39 

based on self-reported data or measures designed for clinical populations. In the current study, 40 

we examined cross-sectional associations between physical activity, recorded by an ankle-41 

positioned accelerometer for seven days, physical capability (grip strength, postural control, 42 

and walking speed), and neuroimaging based surrogate markers of brain health in 122 healthy 43 

older adults aged 65-88 years. We used a multimodal brain imaging approach offering two 44 

complementary structural MRI based indicators of brain health: white matter diffusivity and 45 

coherence based on diffusion tensor imaging and subcortical and global brain age based on 46 

brain morphology inferred from T1-weighted MRI data. The analyses revealed a significant 47 

association between global white matter fractional anisotropy (FA) and walking speed, 48 

indicating higher white matter coherence in people with higher pace. We also found a 49 

significant interaction between sex and brain age on number of daily steps, indicating 50 

younger-appearing brains in more physically active women, with no significant associations 51 

among men. These results provide insight into the intricate associations between different 52 

measures of brain and physical health in old age, and corroborate established public health 53 

advice promoting physical activity. 54 

 55 

    56 
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1. Introduction  67 

Magnetic resonance imaging (MRI) studies have revealed substantial age-related changes in 68 

the human brain, including cortical and subcortical atrophy, ventricular enlargement, and 69 

white matter alterations (Fjell et al., 2009; Garde et al., 2000; Westlye et al., 2010; Ylikoski et 70 

al., 1995). While group analysis suggests robust effects, studies have revealed considerable 71 

heterogeneity across individuals and brain structures (Allen et al., 2005; Fjell et al., 2013; Raz 72 

et al., 2010; Sexton et al., 2014; Tucker & Stern, 2011). As further understanding of the 73 

complexity and biological basis of brain and cognitive aging evolves, more targeted 74 

preventive measures and innovative models of geriatric care is expected to be developed as 75 

part of public health programs.  76 

Physical health indicators, such as daily activity level, balance, walking speed, and 77 

hand-grip strength, are associated with healthy aging (Kuh, 2007; Vermeulen et al., 2011), 78 

and represent a putative malleable moderator of brain aging. A number of studies have 79 

reported positive associations between these indicators and the volume and integrity of brain 80 

white and gray matter structures (Bherer et al., 2013; Erickson et al., 2014), including the 81 

subcortical areas hippocampus (Erickson et al., 2014; Hamer et al., 2018) and the cerebellum 82 

(Chen et al., 2015; Surgent et al., 2019). However, most previous studies are limited by the 83 

use of self-report measures of physical activity, including mainly clinical populations or 84 

assessment tools primarily designed for clinical populations (Demnitz et al., 2018), which 85 

may not be sensitive to detect relevant individual differences among healthy adults. Among 86 

the exceptions, a study of healthy adults aged >80 years reported an association between high 87 

levels of accelerometer-measured daily steps and global fractional anisotropy (FA) (Tian et 88 

al., 2015), which is an indicator of overall white matter coherence based on diffusion tensor 89 

imaging (DTI). An association has also been found between temporal and parahippocampal 90 

white matter FA and accelerometer-measured daily steps in low-active adults aged 60-78 91 

years reporting less than 150 minutes of moderate physical activity per week (Burzynska et 92 

al., 2014). Sex differences in beneficial effects of physical activity on brain health have also 93 

been reported. For example, higher number of accelerometer-measured daily walking steps 94 

was related to larger surface area in subregions of the hippocampus in women but not in men 95 

(Varma et al., 2016). 96 

Recent advances in MRI analysis and machine learning have shown that complex, 97 

multidimensional brain imaging data can be aggregated into a sensitive, unitary estimate of 98 

brain aging (Cole & Franke, 2017; Franke et al., 2010). Estimated high brain age compared to 99 

chronological age (brain age gap; BAG) in older adults has been suggested to indicate 100 
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incipient neurodegeneration (Franke & Gaser, 2019) and increased risk of dementia (Wang et 101 

al., 2019). Brain age prediction and similar data-driven approaches provide innovative 102 

imaging based surrogate markers of brain health, with promising potential to translate 103 

complex neuroscience data to more comprehendible public health guidelines, thus bridging 104 

the gap between public health and science. The World Health Organization describes 105 

improved understanding of analytical approaches for healthy aging a priority of action, 106 

including development of biomarkers related to healthy aging (World Health Organization, 107 

2015). To our knowledge, only a few prior studies have investigated the link between BAG 108 

and physical activity and capabilities (Cole et al., 2018; Steffener et al., 2016), and only one 109 

included objective measures like hand-grip strength and walking speed (Cole & Franke, 110 

2017). Overall, the evidence linking objective measures of physical health and indicators of 111 

brain health is conflicting or lacking, both with regard to white matter microstructure (Kilgour 112 

et al., 2014; Wassenaar et al., 2019) and BAG based on gray matter morphology. In addition, 113 

it is not clear to which degree T1-weighted structural MRI measures and DTI-based markers 114 

of white matter coherence show differential sensitivity to physical health in ageing men and 115 

women. 116 

The purpose of the current study was to examine the association between objective 117 

measures of physical activity level and capability, and two complementary structural MRI 118 

based indicators of brain health: white matter coherence based on DTI and BAG based on 119 

brain morphology. We included 122 (62% women) community-dwelling healthy middle-aged 120 

and older adults aged 65-88 years. Physical activity was measured using ankle-worn 121 

accelerometer across on average 7 days (range 3 to 9) and physical capabilities were 122 

operationalized through grip strength, walking speed, and postural control as a measure of 123 

balance. Based on recent implementations and the use of an independent training set, we 124 

estimated individual brain age using global and subcortical gray matter from T1-weighted 125 

MRI (de Lange & Cole, 2020; de Lange et al., 2019; Kaufmann et al., 2019). We used an 126 

independent training set comprising MRI data from 2407 healthy individuals for brain age 127 

prediction, and applied the cross-validated models in our unseen test set. In addition, to 128 

complement the brain age approach we included DTI-based global fractional anisotropy (FA) 129 

and mean diffusivity (MD). 130 

Based on the putative close link between brain and physical health, we hypothesized 131 

that level of physical activity, hand-grip strength, walking speed, and postural control, would 132 

be associated with BAG, both estimated using global and subcortical measures, and global FA 133 

and MD. Moreover, based on previous evidence we tested for sex differences in the 134 
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associations between physical health indicators and brain MRI measures, as well as 135 

differences in the sensitivity to the physical health indicators between the brain gray and 136 

white matter measures. 137 

 138 

2. Materials and methods  139 

2.1. Participants  140 

Data collection was performed as an integrated part of the prospective StrokeMRI study 141 

aiming at identifying predictors of brain and cognitive health, aging and stroke rehabilitation 142 

(Dørum et al., 2016; Dørum et al., 2017; Richard et al., 2018). Briefly, healthy adults were 143 

recruited from the Oslo area in Norway through advertisements in local papers and by word of 144 

mouth, and screened for eligibility through a standardized phone interview before inclusion. 145 

Participants reporting counter-indication for MRI, history of severe psychiatric or 146 

neurological conditions, for example epilepsy, brain tumour or head trauma with loss of 147 

consciousness for more than two minutes, and/or alcohol/drug abuse, were excluded. 148 

All participants (n=341, 18-94 years) completed demographic information, 149 

standardized questionnaires, including for example mood, personality, and sleep habits, a 150 

comprehensive cognitive test battery (Richard et al., 2018), clinical and medical assessments, 151 

and multimodal structural and functional MRI. In the current study we included participants 152 

aged 65 years or older who additionally completed standardized physical tests and 153 

accelerometer assessment.  154 

Among a total of 131 eligible participants, nine were excluded due to poor quality on 155 

T1-weighted data (n=5), not completing the MRI protocol (n=3), or not completing the tests 156 

of physical capability and physical activity (n=1), reducing the number of participants to 157 

n=122, with an average age of 71.4 years (SD=4.61, 64-88 years, 62% women). No 158 

participants scored below 24 on the Mini-Mental State Examination (MMS-E) (Folstein et al., 159 

1975). For the current sample, the median interval between MRI and the neuropsychological 160 

and physical tests was 11 days (IQR= 14.75 days).  161 

The study was completed in accordance with the Helsinki Declaration and approved 162 

by the Regional Committees for Medical and Health Research Ethics for the South-Eastern 163 

Norway (REK approvals 2014/694, 2015/1282). All participants provided written informed 164 

consent. The participants received compensation for participation in the study.  165 

 166 

2.2. Cohort used for training set in brain age prediction  167 
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The training sample consisted of data from 2407 healthy individuals aged 18-94 years from 168 

six different samples (Supplementary Table 1, Supplementary Fig. 1). The participants had 169 

been recruited and screened in line with local procedures (Supplementary Table 2), in general 170 

ensuring that the participants did not have any contraindications for MRI, or a previous or 171 

current serious neurological or psychiatric condition, drug abuse, or head trauma. 172 

 173 

2.3. Measures of physical activity and capability  174 

Four measures of physical activity and capability were considered, including daily step count, 175 

postural control, walking speed, and hand-grip strength. 176 

A calibrated StepWatch Activity Monitor (The Modus StepWatchTM3 Activity 177 

Monitor) assessed physical activity level. The StepWatch was placed above the ankle and 178 

calibrated according to the participant’s height and weight. The instructions for use included 179 

wearing the monitor for seven consecutive days, all waking hours, while conducting regular 180 

daily activities. Exceptions included bathing or showering. The StepWatch records number of 181 

steps taken per one-minute sampling period from one leg. Results were doubled to capture the 182 

number of steps taken by each participant (Doherty et al., 2017). According to regular 183 

procedures for calculation of activity level, a day was considered valid if consisting of 184 

minimum 600 minutes recordings (Mâsse et al., 2005). Non-wear time was defined as >90 185 

consecutive minutes of zero counts. A deviation from this rule was if there was a period of 186 

maximum two minutes with more than zero counts within a 90 minutes period with non-wear. 187 

The 30 minutes before and after this interruption needed to be consistently zero counts. A 188 

minimum of three valid days of data per participant were required for the analysis (Jefferis et 189 

al., 2014; Mudge et al., 2010). Valid StepWatch data was available from all 122 participants, 190 

who in average wore the StepWatch for 859 minutes per day (Standard Deviation [SD] = 191 

66.4), ranging between 3 and 9 days, with a median of 7 days. 192 

Postural control, registered through measurement of centre of pressure, was assessed 193 

using a force plate (BTrackS Balance Tracking System Inc. San Diego, CA, USA, 25 Hz). 194 

The protocol for measuring centre of pressure was based on recommendations from Low and 195 

colleagues (2017), with double leg stance and 60 second durations of each trial. The balance 196 

board was turned towards and 20 cm away from a wall to prevent the participant from turning 197 

his or her head or eyes during testing. The participants were asked not to voluntarily move, to 198 

keep their hands on their hips, and to position their feet with shoulder-width separation. The 199 

data were filtered with a dual-order low pass Butterworth filter with a cut-off frequency of 4 200 
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Hz. The average of three trials with eyes closed were used to calculate the mean velocity in 201 

cm per second. 202 

 Comfortable gait speed was assessed using Timed 10-Meter Walk Test (10 MWT) 203 

(Bohannon et al., 1996; Studenski et al., 2011; Wolf et al., 1999). The middle six metres were 204 

timed, excluding the effect of acceleration and deceleration, and converted to meter per 205 

second. Dominant hand grip strength, expressed in kilograms (kg), was measured with a 206 

Jamar hand dynamometer (Sammons Preston Inc., Bolingbrook, IL) with the use of the 207 

second handle position for optimal performance. Standard procedure for hand-grip strength 208 

test was followed, with the participants in a seated position and elbow-joint fixed in a 90 209 

degrees flection (Mathiowetz et al., 1984). For both walking speed and hand-grip strength, the 210 

average of three trials were considered. 211 

 212 

2.4. MRI acquisition, processing and analysis 213 

Participants were scanned with a 3T General Electric (GE) 750 Discovery MRI scanner using 214 

identical sequences and a 32-channel head coil at Oslo University Hospital, Norway. 215 

Cushioning was used to minimize head motion. 216 

T1-weighted images were obtained using an inversion recovery-fast spoiled gradient 217 

echo (BRAVO) sequence with echo time (TE) = 3.18 ms, repetition time (TR) = 8.16 ms, 218 

field of view (FOV) = 256 mm x 256 mm, flip angle (FA) = 12ο, and voxel size (VS) = 1x1x1 219 

mm. The images were acquired in sagittal plane, and it took 4.43 minutes to acquire 188 220 

slices. A detailed description of image acquisition for the training samples is provided in 221 

Supplementary material Table 3.   222 

DTI data were obtained using an echo planar imaging (EPI) sequence with 60 unique 223 

directions, b-value of 1000 s/mm2, TE= 83.1 ms, TR = 8150 ms, FA= 90°, FOV = 128 x 128 224 

mm, 2 mm isotropic voxels, and 5 b=0 volumes. Scan time was 8:58 minutes. 7 b=0 volumes 225 

with reversed phase-encoding direction were also obtained.   226 

FreeSurfer 5.3 (http://surfer.nmr.mgh.harvard.edu/) was used for automated surface-227 

based morphometry and subcortical segmentation of the T1-weighted images, providing 228 

measures of cortical thickness, area, and volume, as well as the volumes of subcortical 229 

structures. Technical details of the procedures are described in prior publications (Dale et al., 230 

1999; Fischl et al., 2002). A visual quality-check of reconstructions and subsequent 231 

correction, if required, was performed for the StrokeMRI data. The training samples, 232 
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consisting of data from multiple sites, were all quality checked using FreeSurfer’s Euler 233 

number as a proxy (Rosen et al., 2018).  234 

DTI data were processed using Oxford Centre for Functional Magnetic Resonance 235 

Imaging of the Brain (FMRIB) Software Library (FSL) (https://fsl.fmrib.ox.ac.uk/fsl). Using 236 

topup (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/topup) and eddy 237 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/eddy), we corrected for motion, eddy currents, and 238 

geometrical distortions (based on the b=0 volumes collected with a reversed phase-encoding 239 

direction) in an integrated stream (Andersson & Sotiropoulos, 2016) which also includes 240 

identification and replacement of outlier slices (Andersson et al., 2016). The resulting 241 

corrected datasets were used to estimate FA and MD using dtifit in FSL. 242 

Further processing was performed using Tract-Based Spatial Statistics (TBSS) (Smith 243 

et al., 2006). Here, a skeletonized map was generated by thinning the mean FA map across 244 

participants. The mean FA skeleton was thresholded at FA > 0.2 and then projected onto the 245 

normalized FA maps. The same transformation was applied for MD, resulting in voxel-wise 246 

FA and MD skeletons for each participant. Using these maps, representing the core of major 247 

white matter pathways, we computed mean global FA and MD for each individual. 248 

 249 

2.5. Brain age prediction  250 

In line with a recent implementation (Kaufmann et al., 2019), age prediction models were 251 

trained using XGBoost (extreme gradient boosting) in R (Chen and Guestrin 2016; Chen et 252 

al., 2017) based on cortical volume, thickness, and area (Glasser et al., 2016), as well as 253 

subcortical volumes (Fischl et al., 2002) as features, totalling 1118 features for each 254 

individual (Kaufmann et al., 2019). We trained the models separately for each sex, ensuring 255 

that possible sex-related differences in brain aging did not influence the results. Parameters 256 

were tuned in a nested cross-validation that estimated the optimal number of model training 257 

iterations (settings: nround = 1500, early stopping rounds = 20). The learning rate was set to 258 

eta = 0.01 while all other parameters were left as default. To comply with the notion of 259 

heterogeneous brain aging we trained two different brain age models, one for the full brain, 260 

including all features, and one for cerebellar/ subcortical features alone (Kaufmann et al., 261 

2019). The models were validated with 10-fold cross validation. Finally, the two models were 262 

applied to calculate brain age for each individual in the unseen test sample (n=122).  263 

To account for a well-known bias in age prediction we used a described procedure (de 264 

Lange & Cole, 2020). First, we calculated the difference between estimated brain age and 265 
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chronological age. Next, we estimated the association between BAG and age using linear 266 

models including age and sex in the models. The beta representing this bias was then 267 

subtracted from the estimated age, yielding a corrected brain age for each individual. 268 

Chronological age was subtracted from this corrected brain age, and the resulting BAG was 269 

used to test for associations with measures of physical activity and capability. 270 

 271 

2.6. Statistical analysis  272 

Statistical analyses were performed using R, version 3.6.2 (R Core Team, 2019). Data from 273 

the StepWatches were analysed with an in-house script, calculating mean (SD) daily activity. 274 

Descriptive data are presented as mean (SD) or median (IQR), as appropriate. Due to the use 275 

of multidimensional measures of physical activity and capability, and to examine to which 276 

degree the measures reflect differentiable components, bivariate associations between 277 

measures were examined using Kendall’s tau. The same test of correlation was also used to 278 

test for various associations between physical activity, physical capability, sample 279 

characteristics, age, and body mass index (BMI). Sex differences in the physical measures 280 

were examined using Wilcoxon Rank Sum Test or two-sample t test, as appropriate. To test 281 

for interactions between age and sex on the physical measures, Bayes Factor was computed as 282 

implemented in the BayesFactor package in R (Richard & Rouder, 2018) and used to compare 283 

models with and without the interaction term. To validate the estimation of brain age in the 284 

training set, a 10-fold cross validation was used for men and women separately. Further, 285 

correlation between estimated and chronological age for the test-set was assessed divided by 286 

sex, and finally the association between the BAGS, global FA and MD and age were assessed. 287 

Multiple linear regression analyses were performed using lm in R to test for 288 

associations between physical activity and physical capability and BAGs and white matter 289 

integrity. For each MRI variable (global and subcortical BAG, global MD and global FA) 290 

each of the physical activity and capability variables (daily number steps, grip strength, 10 291 

MWT, and postural control) were included as dependent variables in different linear models, 292 

with the MRI measure and age and sex as independent variables. Regression diagnosis for 293 

influential cases on the models were performed using Cook’s distance. The results indicated 294 

that no cases were overly influential on the results. To explore the association between 295 

physical activity and capability and structural brain health further, we ran the regression 296 

analysis adding an interaction term between each MRI variable and sex, testing for interaction 297 

effect between sex and structural brain health on the physical measures. 298 
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Using Fisher z-transformation of the standardized coefficient from the different 299 

models, we tested if BAG and DTI measures showed differential associations with the 300 

physical health indicators (daily steps, walking speed, hand-grip strength, and postural 301 

control). For transparency, we report both uncorrected and corrected p-values. The 302 

significance threshold was set at p < .05, and for corrected p-values, we employed a 303 

Bonferroni correction method. Bayes Factor was also reported alongside p-values for all 304 

models in order to quantify the evidence for the null hypothesis, in line with recent 305 

recommendations (Keysers et al., 2020). 306 

 307 

3. Results  308 

3.1. Sample characteristics  309 

Table 1 summarizes demographic and clinical characteristics. Average years of education was 310 

15.7 (SD=3.45), ranging from 8 to 27 years. Mean BMI was 24.9 (SD=3.38), ranging from 311 

17.2 to 38.1. Median MMSE score was 29 (IQR= 2), ranging from 24 to 30. 312 

 313 

Table 1. Characteristics of the StrokeMRI sample. 

 All Women Men r with age 
(p) [all]  
 

r with age (p) 
[women]  
 

r with age 
(p) [men] 
 

N  122  75 47    
Age 71.35 (4.61) 70.17 

(3.75) 
73.24 
(5.23) 

   

Education, years  15.71 (3. 45) 15.55 
(3.15) 

15.98 
(3.91) 

0.07 (.302) 0.00 (.963) 0.09 (.388) 

MMS-E (median, 
IQR) 

29 (2) 29 (2) 29 (1.5) -0.08 (.224) -0.05 (.534) -0.25 (.028) 
* 

BMI, kg/m2 24.94 (3.38) 24.72 
(3.69) 

25.30 
(2.82) 

-0.02 (.733) -0.05 (.522) -0.06 (.557) 

Global FA  0.47 (0.02) 0.46 
(0.02) 

0.47 (0.02) -0.17 (.006)* -0.23 (.003)* -0.07 (.474) 

Global MD  742.32 
(25.35) 

742.25 
(23.18) 

742.43 
(28.74) 

0.20 (.001)* 0.29 (<.001)* 0.08 (.409) 

Wear time SAM 
(minutes) 

853.50 
(68.27) 

858.35 
(65.36) 

845.60 
(72.80) 

-0.10 (.104) -0.08 (.325) -0.09 (.394) 

Total steps/day  12088.76 
(3666.72) 

12549.58 
(3696.94) 

11337.43 
(3527.98) 

-0.13 (.041)* -0.08 (.301) -0.09 (.384) 

Hand-grip 
strength, kg  

32.63 (9.92) 26.35 
(4.72) 

42.51 
(7.64) 

0.10 (.116) -0.06 (.425) -0.12(.226) 

Postural control, 
cm/sec (median, 
IQR) 

1.49 (0.85) 1.32 
(0.59) 

1.87 (1.31) 0.08 (.189) 0.00 (.993) -0.07 (.521) 

Walking speed, 
m/s  

1.41 (0.19) 1.44 
(0.18) 

1.36 (0.19) -0.12 (.048) 
* 

-0.10 (.188) -0.10 (.336) 
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Note. If not specified, data is reported as mean (SD), r: Kendall tau correlation coefficient, IQR: inter-quartile range, BMI: Body Mass 
Index, SAM: Step Activity Measure, FA: fractional anisotropy, MD: mean diffusivity. MD was multiplied with 10^6 to increase precision 
in the reporting.  
*Significant associations with p<.05. 
 

 314 

3.2. Physical capability and physical activity level 315 

Table 1 summarizes the physical capability and activity measures. Mean hand-grip strength 316 

was 32.6 kg (SD=9.92). Men had a significantly greater hand-grip strength (mean 42.5 (SD = 317 

7.64) kg) compared to women (mean 26.3 (SD = 4.7) kg; t = -13.0, p = < .001). Median 318 

postural control was 1.32 (IQR = 0.59) cm/sec. Women (median 1.41 (IQR = 0.53) cm/s) 319 

exhibited significant less postural control than men (median 1.87 (IQR = 1.31) cm/s; W = 320 

807; p = < .001, r = -.455). Average walking speed was 1.41 (SD = 0.19) m/s, with women 321 

(1.44 (SD = 0.18) m/s) having a significantly higher average speed than men (1.35 (0.19) 322 

m/s.; t = 2.48, p = .015). The participants had an average of 12088.8 (SD = 3666.72) steps per 323 

day, with no significant sex differences (t = 1.8, p = 0.08). 324 

Bivariate correlation analysis revealed weak relationships between the various 325 

physical test performances, age, and BMI (Fig. 1). In addition, Bayes Factor suggested no 326 

evidence of interactions between age and sex on walking speed (BF=0.21, ± 4.34%), daily 327 

steps (BF = 0.40, ± 1.9%), hand-grip strength (BF = 0.64, ± 2.13%), or postural control (BF = 328 

0.11, ± 6.82%). 329 

 330 

 331 

 332 
Fig. 1. Correlations (Kendall tau) between the physical measurements. Heatmaps showing the associations 333 

between the measures of physical capability and activity for the full sample (N = 122), among women (N = 75) 334 

and among men (N= 47). 335 

 336 

 337 

 338 
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3.3. Brain age prediction 339 

In the training set, 10-fold cross validation revealed a correlation of r = 0.90 for both men and 340 

women (p < .001) between estimated brain age from the full brain model and chronological 341 

age (men: MAE = 6.82, RMSE = 8.49, women: MAE = 6.64, RMSE = 8.47). The subcortical 342 

model yielded a correlation of r = 0.87 for both men and women (p < .001, Men: MAE = 7.49, 343 

RMSE = 9.62, Women: MAE = 7.45, RMSE = 9.54). In the test set, the correlation between 344 

estimated and chronological age for the full model for men was r = 0.32 (p = .002, MAE = 345 

6.44, RMSE = 7.59) and r = 0.34 (p < .001, MAE = 6.93, RMSE = 8.53) for women. The 346 

subcortical model yielded a correlation of r = 0.28 (p= .005, MAE = 7.90, RMSE = 9.39) for 347 

men, and r = 0.26 (p < .001, MAE = 6.94, RMSE = 8.54) for women.   348 

 Fig. 2 shows the association between the BAGs and DTI measures. 349 

 350 

 351 
Fig. 2. Correlation matrix of the brain imaging measures (Kendall tau) indicating their shared variance. 352 

 353 

3.4. Association between physical activity, physical capability and BAG  354 

Table 2 summarizes the results from the linear models testing for associations between BAG 355 

and measures of physical activity and capability. No significant associations were found after 356 

correcting for multiple comparisons, with Bayes Factors generally suggesting equivocal to 357 

low evidence for the models not including BAGs compared to the models including BAGs.  358 

Models including subcortical BAG by sex interactions revealed a significant main 359 

effect of daily steps (β = -0.35, p = .003), indicating lower subcortical BAG in people with a 360 

higher number of daily steps, and a significant interaction between subcortical BAG and sex 361 

(β = 0.34, p = .003), with Bayes Factor suggesting strong evidence for the model including the 362 

interaction term (BF = 16.51, ± 1.63%) (Supplementary Table 4). Follow-up analyses 363 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted January 29, 2021. ; https://doi.org/10.1101/2021.01.28.21250529doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.28.21250529


13 
 

revealed a significant association between subcortical BAG and number of steps among 364 

women (β = -0.34, p = .003), but not among men (β = 0.20, p = 0.172) (Fig. 3). For the 365 

remaining models, including the interaction term did not change the results, with Bayes Factor 366 

in general suggesting equivocal to low evidence for the models not including interaction 367 

effects. 368 

 369 
 370 

 371 
 372 
 373 
Fig. 3. Associations between daily steps and subcortical BAG among men and women.  374 

 375 

3.5. Association between physical activity, physical capability and DTI measures 376 

Supplementary Fig. 2 shows the association between age and DTI measures. Global FA (rτ = -377 

0.17, p < .006, BF = 7.85, ± 0%) and MD (rτ = 0.20, p < .001, BF = 29.45, ± 0%) were 378 

significantly associate with age. 379 

Table 3 summarizes the results from the linear models testing for associations between 380 

the DTI measures and the various measures of physical activity and capability. After 381 

correction for multiple comparisons, linear models revealed a significant positive association 382 

between global FA and walking speed (β = 0.25, p = .006, BF = 7.5, ± 2.72%), with the model 383 

including FA being preferred by Bayes Factor. The results are indicating higher average pace 384 

with higher FA. For walking speed, Bayes Factor also suggested moderate evidence for the 385 

model including global MD compared to the model including only age and sex, indicating 386 

higher walking speed with lower MD. This association did not remain significant after 387 

correction for multiple comparisons (β = -0.24, p = .01, BF = 5.05 ± 2.73%). No other 388 

significant associations were found, with Bayes Factors generally suggesting equivocal to low 389 
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evidence for the models not including DTI-measures compared to the models including DTI-390 

measures, and with similar results when adding the interactions with sex (Supplementary 391 

Table 5). 392 

 393 
 394 
3.6. Differences in sensitivity between the various imaging results 395 

Fisher z-transformation indicated differences in the associations between walking speed and 396 

FA compared to global BAG (t = 3.35, p = .001), subcortical BAG (t = 3.48, p = .001), and 397 

MD (t = 3.8, p < .001). No other robust differences were found in the associations between 398 

physical activity or physical capability between the different imaging modalities 399 

(Supplementary Table 6).400 
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Table 2. Results of linear models examining the association between physical activity and capability and brain age. 401 

 Daily steps Walking speed Hand-grip strength Postural control 
 

 β p BF (error %) β p BF (error %) β p BF (error %) β p BF (error %) 

Age -0.19 .041* - -0.15 .103 - -0.13 .021 - -0.08 .360 - 
Sex [Male] -0.11 .254 - -0.19 .039* - 0.82 <.001** - 0.44 <.001** - 
Global BAG -0.07 .468 0.33 ±1.84 -0.17 .053 1.42 ±2.7  

 
-0.12 .033* 2.20 ±2.95 -0.13 .120 0.85±1.82 

R2 0.08 
2.68 (p=.05) 

 0.10 
4.34 (p=.006)** 

 0.66 
76.90 (p<.001)** 

 0.23 
10.38 (p<.001)** 

 
F      

Age -0.2 .037* - -0.15 .101 - -0.13 .024* - -0.08 .361 - 
Sex [Male] -0.12 .195 - -0.2 .030* - 0.83 <.001** - 0.44 <.001** - 
Subcortical BAG -0.13 .141 0.34 ±1.83 -0.19 .033* 2.05 ±2.06 -0.08 .156 0.72 ±2.62 -0.12 .161 0.71 ±1.41% 
R2 0.15 

3.27 (p=.024)* 
 0.11 

4.64 (p=.004)** 
 0.66 

74.41 (p<.001)** 
 0.21 

10.19 (p<.001)** 
 

F      
Note: β = standardized coefficients. Bayes Factor (BF) was estimated using BayesFactor package in R, and represent the evidence of the full model against null model. Null model: dependent 402 
variable ~ age + sex.    403 
*Significant associations with p<.05 404 
**Significant associations after Bonferroni correction. 405 
 406 
 407 
 408 
 409 
 410 
 411 
 412 
 413 
 414 
 415 
 416 
 417 
 418 
 419 
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Table 3. Results of linear models examining the association between physical activity and capability and DTI measures. 420 

 Daily steps Walking speed Hand-grip strength Postural control 
 

 β P BF 
(error %) 

β p BF 
(error %) 

β p BF 
(error %) 

β p BF 
(error %) 

Age -0.17 .080 - -0.08 .373 - -0.11 .067 - -0.11 .218 - 
Sex [Male] -0.11 .244 - -0.19 .036* - 0.83 <.001** - 0.47 <.001** - 
FA 0.1 .270 0.48±1.80 0.25 .006** 7.70 ±2.02% 0.08 .166 0.66 ±2.81 -0.12 .176 0.62 ±1.56 
R2 0.07 

2.93 (p=.037) 
 0.13 

5.73  
(p= <.001) 

 0.66 
74.53(p=<.001) 

 0.20 
10.13 (p=<.001) 

 
F      

Age -0.16 .094 - -0.08 .427 - -0.12 .046* - -0.12 .178 - 
Sex [Male] -0.11 .235 - -0.2 .034* - 0.84 <.001** - 0.47 <.001** - 
MD -0.1 .266 0.48 ±1.82 -0.24 .010* 5.23 ±2.03 -0.03 .654 0.31 ±2.85 0.14 .117 0.81 ±1.53 
R2 0.07 

2.94 (p=.036) 
 0.12 

5.40 (p=.002) 
 0.65 

72.66 (p=<.001) 
 0.21 

10.4 (p=.001) 
 

F      
Note: β = standardized coefficients. Bayes Factor (BF) was estimated using BayesFactor package in R, and represent the evidence of the full model against null model. Null model: dependent 421 
variable ~ age + sex.    422 
*Significant associations with p<.05 423 
**Significant associations after Bonferroni correction. 424 
 425 
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4. Discussion  426 

The purpose of the current study was to examine the association between objective measures 427 

of physical activity level and capability, and two complementary structural MRI based 428 

indicators of brain health in healthy older adults. The study focuses on identifying lifestyle-429 

factors with potential dissimilar protecting effect against gray and white matter changes in the 430 

aging brain. Our study indicates a positive association between daily steps and a younger 431 

appearing brain based on the subcortical model in women, but not in men, with Bayesian 432 

analyses strongly supporting an association. Moreover, our results indicate that a higher 433 

walking speed is associated with more coherent white matter structure as indicated by global 434 

FA, with Bayesian analysis suggesting moderate evidence for the association.  435 

 436 

4.1. Daily activity level and brain health  437 

Based on the assumption that physical activity promotes brain health in older adults, we 438 

hypothesized that people with higher levels of physical activity would show less evident brain 439 

aging than their peers who are less physically active. In line with this, our analyses revealed 440 

higher subcortical BAG in participants with fewer daily steps. These results support and 441 

extend previous studies (Erickson et al., 2014; Hamer et al., 2018) by demonstrating that the 442 

relationship persists when using brain age prediction and a sensor-based measure of activity 443 

level. The latter is also considered to provide a more valid proxy of activity level than 444 

questionnaires. One explanation for this is that older adults get more daily physical activity 445 

from low-intensity activity (Dyrstad et al., 2014), which may be more difficult to recall than 446 

hours at the gym or other specific events (Guo et al., 2019). 447 

Our findings of younger appearing brains in people with higher physical activity levels 448 

could reflect various biological mechanisms. Physical activity has been reported to influence 449 

the levels of neurotropic factors (brain-derived neurotrophic factor (BDNF), Insulin-like 450 

Growth Factor 1 (IGF-1), and Vascular Endothelial Growth Factor (VEGF) (Lee et al., 2014), 451 

which are central for preventing deterioration of neurons. Physical activity also has beneficial 452 

effects for the neurovascular system, as measured using cerebral blood flow and perfusion 453 

(Klenk et al., 2013). Supporting the link between cardiovascular and brain health, higher brain 454 

age in middle-aged and elderly people with cardiovascular risk factors such as high blood 455 

pressure, alcohol intake, and stroke risk score were recently reported, with blood pressure 456 

showing a stronger association with white matter compared to gray matter (de Lange et al., 457 

2020a). 458 
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In contrast to previously reported associations between white matter measures and 459 

sensor-measured physical activity (Burzynska et al., 2014; Tian et al., 2015), our analysis 460 

revealed no significant associations between physical activity and global BAG or white matter 461 

DTI. Sample characteristics such as the average and variance in physical activity may partly 462 

explain the discrepancies in results between studies. Our participants had an average of 463 

12,088 steps per day, which is high compared to normative data for adults (mean 2000-9000 464 

steps per day) (Tudor-Locke et al., 2009). In addition, while previous studies assessed 465 

regional effects, our results are based on more global measures of BAG and white matter DTI. 466 

Finally, we used total daily steps as a proxy of overall physical activity, and did not include 467 

intensity or temporal aspects of daily physical activity, which are likely relevant factors. 468 

The association between subcortical BAG and daily activity level was only present in 469 

women. This is in line with a former study suggesting an association between total daily 470 

walking with larger hippocampal volume, but only in women (Varma et al., 2015). The results 471 

might be related to the postmenopausal hormonal changes (Dalal & Agarwal, 2015). A recent 472 

study demonstrated that higher estimated levels of sex-hormone exposure was associated with 473 

higher brain age in women (de Lange et al., 2020b). In addition, an interaction between 474 

hormone replacement therapy and fitness on age related decline in gray matter volume has 475 

been demonstrated (Erickson et al., 2007), indicating increased neuroprotective effect of 476 

fitness in combination with hormone replacement treatment for post-menopausal women. Our 477 

current results might also be related to the population studied, but there was no sex difference 478 

in activity level or any other obvious sex differences present. The results, though in line with 479 

previous publications (Barha et al., 2017; Liu-Ambrose et al., 2018; Varma et al., 2016), must 480 

be interpreted carefully and warrant replication in future studies. 481 

 482 

4.2. Physical capability and brain health 483 

In the present study we hypothesized that indicators of physical capability such as grip 484 

strength, walking speed, and postural control would associate with structural MRI based 485 

indicators of brain health in healthy older adults. In contrast to a previous study on 486 

participants aged 73 years (Cole & Franke, 2017), we found no significant associations 487 

between walking speed and global or subcortical BAG. However, supporting the hypothesis, 488 

the results demonstrated a positive association between white matter FA and walking speed. 489 

These results are in line with a previously reported association between white matter measures 490 

and a latent variable for physical fitness created from grip strength, forced respiratory volume, 491 
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and 6-metre walk time, in participants aged 76 years (Ritchie et al., 2017). The association 492 

between coherence of white matter and walking speed could be of importance because of the 493 

possibility that structural brain changes may represent a mediator between physical capability 494 

and cognitive function in senescence. By facilitating swift and synchronised information flow, 495 

brain white matter microstructure has been demonstrated to provide critical support for 496 

cognitive functions (Strömmer et al., 2020). Moreover, maintaining white matter integrity has 497 

formerly been identified as an important predictor for successful cognitive aging (Kennedy & 498 

Raz, 2009). The current study design does not allow for causal inference, and our results do 499 

not necessarily imply that improving walking speed in older age will contribute to a better 500 

brain health, or vice versa. Supporting a possible causal association, a recent large-scale study 501 

utilizing data from UK Biobank identified 70 independent genetic loci with significant 502 

associations with self-reported walking speed. Approximately 10% of the variance in self-503 

reported walking speed was attributed to individual differences in common genetic variants, 504 

and significant genetic correlations were reported between self-reported walking speed and 505 

cardiometabolic, respiratory and psychiatric traits, educational attainment and mortality. 506 

Further, follow-up Mendelian randomization analyses, which allows for causal inference, 507 

suggested that increasing walking pace decreases cardiometabolic risk, in line with current 508 

public health advice (Timmins et al., 2020). Moreover, a number of studies have reported that 509 

walking speed is a strong predictor of mortality (Cooper et al., 2010; Ganna & Ingelsson, 510 

2015) and a relevant index of “vital aging” (Vermeulen et al., 2011). The results of the present 511 

study substantiate the possible importance of walking speed as a target in public health 512 

interventions, and as a possible index of white matter brain health in older adults.  513 

In addition to walking speed, hand-grip strength and postural control has been 514 

suggested as markers of healthy aging due to multiple associations with measures of health  515 

(Bohannon, 2019; Vermeulen et al., 2011). Both strength and postural control dependent on 516 

mechanical contributions from both the muscles-, skeletal, and joint systems (Granacher et al., 517 

2008), but also visual, vestibular, haptic and proprioceptive information are critical in specific 518 

for maintaining postural control (Alcock et al., 2018). Integration of this information has been 519 

suggested to be partly related to the structure and function of the brain, and potentially be 520 

affected by the aging process in the brain with following reduction of function (Sullivan et al., 521 

2009). In contrast to this and other previous work (Cole et al., 2018), our analyses revealed no 522 

significant associations between brain MRI and hand-grip strength in a presumably healthy 523 

sample. Former publications including mainly clinical populations have characterized postural 524 

control as a “whole brain phenomenon”, but also highlighted cerebellum as an important 525 
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region (Surgent et al., 2019). Our results indicated no significant associations between 526 

subcortical or global BAG or DTI measures of brain integrity and postural control. For FA 527 

and MD, this was in line with a previous study reporting weak associations in the postural 528 

control association with regional FA, and a lack of association with MD (Massa et al., 2019). 529 

We are not aware of previous studies testing for associations between subcortical BAG, 530 

including the cerebellum, or global BAG and postural control measured with a forced 531 

pressure platform. However, in relation to former studies highlighting cerebellum as 532 

important structure for postural control, this is also suggested to be a region more implicated 533 

in clinical populations than in healthy ones (Surgent et al., 2019), and this might substantiate 534 

the findings in the present study. The neurobiological underpinning in the brain of variation in 535 

postural control in healthy older adults remains uncertain.  536 

 537 

4.3. Methodological considerations 538 

The strengths of our study include objectively measured physical activity, several objective 539 

and sensitive tests of physical capability, and the advanced multimodal imaging approach.  540 

Some limitations should also be emphasized. The study sample was relatively 541 

homogenous and high functioning in terms of level of education and physical activity, which 542 

may have limited the sensitivity. With increasing age, it is conceivable that a more selective 543 

and less representative part of the population volunteers for a study including an extensive 544 

protocol including both multimodal MRI and physical and neuropsychological tests. Further 545 

studies are needed to test the generalisability to other populations.  546 

The cross-sectional design does not permit inference about brain changes. 547 

Longitudinal studies covering a larger part of the lifespan are required to explore the 548 

dynamics of the associations, for example to which degree the effects of physical activity vary 549 

across the lifespan, and to which degree early intervention may protect against age-related 550 

decline years or decades later. 551 

 552 

4.4. Conclusions 553 

In conclusion, we have demonstrated that different markers of brain white matter structure 554 

and brain aging are associated with objectively measured daily activity and physical 555 

capability. The strongest associations were found between subcortical BAG and daily 556 

physical activity, but only for women, and between global white matter FA and walking 557 

speed. While larger longitudinal studies are needed to explore potential causal and long-term 558 
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effects of physical activity on brain aging, our results suggest that combining multimodal 559 

measures of brain structure provides complementary information and show dissociable 560 

associations with physical activity and capability in elderly healthy adults. 561 
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