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Abstract
We systematically investigated an ongoing debate about the possible correlation 

between  SARS-CoV-2  (COVID-19)  epidemiological  outcomes and  solar  exposure  in 
European countries,  in the  period  of  March – August  2020.  For each country,  we 
correlated its mortality data with solar insolation (watt/square metre) and objective sky 
cloudiness (as cloud fraction) derived from satellite weather data. We found a positive 
correlation between the monthly mortality rate and the overall cloudiness in that month 
(Pearson's r(35)=.779, P<.001; linear model fitting the data, adjusted R2 =0.59). In 
Europe, in colder months, approximately 34% to 58% of the variance in COVID-19 
mortality/million appears to be predicted by the cloudiness fraction of the sky, except in 
August  in which only ~15% of  the variance was explained.  The data show a low, 
negative correlation between the mortality rate with the overall insolation received by 
the country area in that entire month (Pearson's r(35)=-0.622, P<.001). Additionally, 
we did not find any statistically significant correlation between the mortality and the 
latitude of the countries when the “latitude of a country” was precisely defined as the 
average landmass location (country centroid). The unexpected correlation found between 
cloudiness  and  mortality  could  perhaps  be  explained  by  the  following:  1)  heavy 
cloudiness is linked with colder outdoor surfaces, which might aid virus survival; 2) 
reduced evaporation rate; 3) moderate pollution may be linked to both cloudiness and 
mortality;  and 4) large-scale  behavioural  changes  due to  cloudiness (which  perhaps 
drives people to spend more time indoors and thus facilitates indoor contamination).
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Introduction
This  study  explores  the  influence  of  previously  ignored  climatological  factors  (objective 
cloudiness and solar irradiation) on SARS-CoV-2 (COVID-19) mortality in Europe.

The factors  that  might influence the  spread and impact of  COVID-19  have recently  been 
extensively  discussed  in  the  media  and  in  research  articles.  Coronaviruses  spread  in  the 
population due to a combination of medical, biological and socio-economic factors. It has also 
been  suggested  that  latitude  [1,2] and  climate  (temperature,  humidity  [3,4])  significantly 
contribute to COVID-19 spread.

A copious amount of (mainly local) studies (some not yet peer-reviewed) on climatic influence 
on  COVID-19  has  been  released,  with  mixed  or  contradictory  results.  The  World 
Meteorological Organization even hosted an international virtual symposium on the issue to 
deal with these uncertainties (“Climatological, Meteorological and Environmental factors on 
COVID-19 pandemic”, 4-6 August 2020).

Initially, (March – April 2020), the transmission of COVID-19  seemed to be associated with 
the  30-  to  50-degree  North  longitude  corridor  and  weather  patterns  and  low specific  and 
absolute humidity [2]; however this could just as plausibly reflect trade and human movement 
patterns in the Northern hemisphere.  Late  in the spring of  2020,  tropical  and subtropical 
countries began to see an increase of pandemic transmission, and the latitude dependency thus 
appears to be unsure at this point.

It  has also been previously noted that COVID-19 had a higher impact in countries where 
epidemiological data had shown a degree of vitamin D deficiency in the population [1]. Vitamin 
D has a wide range of immunomodulatory, anti-inflammatory and antioxidant properties, and 
it  thus  seems  (presumably)  protective.  In  vivo  vitamin  D  synthesis  is  photochemically 
dependent in humans, and its concentration levels drop without sufficient sunlight exposure. As 
the latitude increases, the amount of locally received sunlight generally decreases. These two 
facts were combined by other researchers in a range of compelling clinical hypotheses linking 
susceptibility  to  COVID-19  to  vitamin  D  and  indirectly  to  lack  of  sunlight  exposure  or 
increased latitude (see for example [5] or [6] for a more thorough perspective on these issues 
and [7] for a biochemical study).

In sharp contrast  to the above hypotheses, other biochemical studies  have not to found a 
correlation  between  vitamin D and COVID-19 epidemiological  data (see  [8] or  [9]).  These 
studies concluded that other unknown factors might be at play.

We tried to address these contradictions from an analytical, biophysical point of view: the 
amount of UV radiation that reaches the ground (and is thus presumably protective) is  a 
fraction of total sunlight (which also contains visible light and infrared radiation).  The total 
sunlight (known also as “solar insolation” or “solar irradiance at ground level”) is defined as 
the flux of solar radiation per unit of horizontal area for a given location. It depends on several 
factors:  primarily  on  solar  zenith  angle  (which  depends  on  latitude),  secondarily  on 
atmospheric composition (via absorption and scattering), and thirdly on seasonal change (due 
to the Earth's axial tilt). These are well known and researched topics; see for example [10] for 
an extensive review. Solar irradiance is one of the main factors that determine the temperature 
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at ground level (with an almost linear dependence  [11]), along with humidity (by inducing 
water  evaporation  and  soil  dryness)  and  the  climate  in  general  [12]).  Solar  irradiance  is 
expressed in watts/square metre.

Solar irradiance at ground level is heavily influenced by atmospheric composition, primarily by 
clouds [13] and secondarily by other factors such as dust, pollutants, and humidity [14]. Clouds 
exert a complex influence:  by reflection of  the  sunlight  (back into  space) they reduce the 
amount of total energy that reaches the earth but by scattering they can counterintuitively 
direct some of the energy back to land, especially in the UV portion of the spectrum, thus 
modulating the biologically effective radiation dose received by living things [15].

In this study, we present detailed research on the direct influence on COVID-19 mortality in 
European countries of the above-discussed factors: a) sky cloudiness, b) solar irradiance and c) 
latitude.  Our  results  show that  there  is  a  sizeable  influence  due  to  cloudiness,  a  smaller 
influence due to absolute amount of sunlight, and basically no influence due to latitude.

Methods

1. Datasets
Epidemiological data

Different  epidemiological  variables  about  COVID-19  epidemics  are  collected  and  reported 
around the world.  We used the “Coronavirus update”,  a publicly available epidemiological 
database summarized by Worldometers [16]; monthly data snapshots of it were retrieved from 
the Internet Archive Organization [17]. From this database we extracted the mortality, defined 
as the number of deaths per 1 million inhabitants in a given country in a particular month. 
There are two issues with this approach that might impact our study. First, there are legal and 
practical  differences  among  countries  regarding  death  recording  and  reporting  [18].  The 
COVID-19 database we used records the deaths as reported by local authorities; we could not 
quantitatively assess the differences between the countries, which could impact comparison of 
different countries. Second, the time lag between the actual death and the reported time could 
be  different  for  each  case;  the  monthly  intervals  analysed  probably  average  most  of  the 
differences.

Atmospheric cloudiness data

Cloudiness (also known as cloud fraction, cloud cover, cloud amount or sky cover) refers to the 
fraction of the sky obscured by clouds (in a particular location). It can be reported in various 
units. In this study, we used the cloud fraction (as tenths of the entire sky); 0.0 thus indicates 
a clear sky and 1.0 (or 10/10) indicates a completely covered sky.

We used a publicly available dataset of global cloudiness as measured from space by NASA's 
Terra  and  Aqua  satellites  using  the  MODIS  instrument  (Moderate  Resolution  Imaging 
Spectroradiometer)  [19].  This  dataset  is  collected  continuously  and  presented  as  values 
averaged daily, weekly and monthly for the entire globe; for this study we chose the monthly 
averaged values.
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In this dataset the entire Earth surface is divided into a rectangular grid. Each rectangle of the 
grid contains the average cloud fraction of the sky covering that area. The data are available at 
different resolutions (sizes of the rectangular grid that covers the Earth). We chose a fairly 
detailed resolution of the grid, 0.25° latitude x 0.25° longitude. We ensured that the other 
geographical datasets that we used in this study matched the same spatial resolution.

Solar data

The average solar insolation (also known as solar irradiance, solar exposure, incoming sunlight) 
in watts/square  metre at  the Earth's  surface  was  used in this  study.  We used a publicly 
available dataset inferred from measurements taken by Clouds and Earth's Radiant Energy 
System (CERES) instrument flying aboard NASA's Terra and Aqua satellites [20]. We used the 
same temporal and spatial sampling as presented above, i.e., monthly averaged values over a 
0.25° latitude x 0.25° longitude grid.

Geographical data

For a single point on the Earth, the geographical coordinates are straightforward (latitude and 
longitude). However,  for a country (or large region)  the  coordinates can be represented in 
several distinct ways, each with pros and cons,  such as the location of the capital city, the 
location of  the  most  populated city,  the  average  between the  most  extreme points  of  the 
country,and the country centroid, among others.

As the “latitude of a country” measure, we used the country centroid. A centroid (also known 
as the centre of gravity or centre of mass) is the arithmetic mean of the positions of all the 
points in a geometrical object; for irregular objects, it is closest to the centre of the biggest 
part of the object (it is less influenced by very thin or heavily scattered boundaries). We chose 
this  measure because several countries have highly irregular geometrical boundaries  or long 
thin peninsulas or numerous islands (i.e., Greece, Norway, etc.); the country centroid is located 
closer to the widest area of the mainland. We used a standard database of countries centroids 
published by Google Maps developers [21].

As the “country boundary” measure we chose to use a simplified representation of the country 
border, the country bounding box, which is a rectangle on the surface of the Earth with North 
and South edges corresponding to the limiting (max and min) latitudes of the country and 
West and East edges corresponding to the limiting longitudes. We used a database of bounding 
boxes of all countries published by the Center of Humanitarian Data [22].

We are aware that the use of the country bounding box simplification can induce a degree of 
imprecision (smoothing) or overlapping errors. To minimize these errors, we carefully curated 
the  bounding box  coordinates  to  exclude  non-mainland  portions.  We did this  because  we 
wanted to restrict the analysis to the land portion of Europe (for example, overseas remote 
islands such as Svalbard would include almost 600 sq km of Arctic Ocean surface in Norway's 
geographical definition). We checked this by comparing the centroid location of each country 
with the average geometric centre of its bounding box, making sure that the error was less than 
1 degree of longitude or latitude.

Inclusion and exclusion criteria
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The inclusion criteria were as follows: a) all countries on the European continent; b) availability 
of epidemiological and geographical (cloudiness, insolation) data.

The  exclusion  criteria  were  as  follows:  a)  population<0.5  million  and  b)  a  geographical 
bounding box of the country smaller than 0.25° latitude x 0.25° longitude.  We used these 
criteria because European micro-states (Monaco, Vatican, San Marino, etc.) were too small to 
be properly sampled from the available resolution of geospatial data (insolation, cloudiness).

Russia was also excluded from analysis because the COVID-19 epidemiological data from the 
country was available only in an aggregate form (i.e., no data were available detailing the 
epidemiology in European and Asian parts of Russia).

In  this  way  we  obtained  a  list  of  37  European  countries  (listed  alphabetically):  Albania, 
Austria,  Belarus,  Belgium,  Bosnia  and  Herzegovina,  Bulgaria,  Croatia,  Czech  Republic, 
Denmark,  Estonia,  Finland,  France,  Germany,  Greece,  Hungary,  Ireland,  Italy,  Latvia, 
Lithuania, Luxembourg, Malta, Moldova, Montenegro, Netherlands, North Macedonia, Norway, 
Poland, Portugal,  Romania,  Serbia,  Slovakia,  Slovenia,  Spain,  Sweden, Switzerland,  United 
Kingdom (UK) and Ukraine.

For each of these countries and for each month in the studied interval (March – August 2020), 
we included in the analysis the following variables: COVID-19 mortality (deaths per 1 million 
population), insolation averaged for 1 month across the country (measured in Watt/m2), the 
cloud fraction averaged for 1 month across the country (expressed as a fraction between 0.0 … 
1.0) and the latitude of the countries. The aggregated results for each country are presented in 
the Supplementary materials, Figures S.1, S.2 and S.3)

2. Software used
We performed basic epidemiological data gathering in tabular sheets (Excel/LibreOffice Calc). 
We performed data analysis and visualization in R version 4.0.2 [23], with packages tidyverse 
[24], ggplot [25], stargazer [26]; geospatial data was analysed with raster [27].

3. Calculation
Most of the European countries reported the first deaths in March 2020 (see Supplementary 
material, Figure S.1), and we used this month as the starting point for our analysis.

We employed multiple linear regression models  with mortality as  the response (it is  log10 
transformed in all the following analyses and figures). As predictor variables we used cloud 
fraction and solar insolation, both averaged (for the March – August interval). For each one of 
the reported models we checked their validity by analysing the normality of the residuals as 
follows: normal Q-Q plot, presence of outliers, and homogeneity of the variance of residuals (we 
assumed homoscedasticity if the result of the studentized Breusch-Pagan test was bigger than 
0.05). We attempted a brief time-series analysis of the factors; we checked the distribution of 
the data in time and the autocorrelation of the disturbances with a Durbin-Watson test.

5

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 29, 2021. ; https://doi.org/10.1101/2021.01.27.21250658doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.27.21250658
http://creativecommons.org/licenses/by/4.0/


Results 

1. Overall Mortality vs. Cloudiness

Figure 1. Overall correlation between mortality and cloudiness. 
The data points are the averaged values for each one of the European countries included 
in the study during March – August 2020. Cloudiness is expressed as the cloud fraction, 
ranging between 0.0 (completely sunny sky) and 1.0 (clouds completely obscure the sun).

For each country, in the interval March – August 2020, we averaged the monthly cloudiness 
and the monthly mortality rate, and we built a linear model (Figure 1). It shows a modest but 
statistically significant correlation between the average mortality rate  and the average sky 
cloudiness (Pearson's r(35)=.779, P<.001).

The linear model that fits the data shown in Figure one is presented in Table 1. In continental 
Europe, from the beginning of the epidemic, approximately 59% of the variance in COVID-19 
mortality/million appears to be predicted by the cloudiness fraction of the sky. The model 
passes the quality criteria listed in the  Calculation section, and the residuals of the model 
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appear  to  be  homoscedastic,  Breusch-Pagan  test  P-value=0.893).                 

2. Overall Mortality vs. Insolation

Figure 2. Overall correlation between averaged mortality and averaged insolation (solar irradiance). 
The data points are the averaged values for all European countries included in the study during 
March – July 2020. The dashed line represents the apparently good-fitting linear model, although this 
model is not valid upon close inspection (see text). We included it as a guide for the eye.

The dataset shows a low, negative correlation between the mortality rate (evaluated at the end 
of  a month)  and the overall  insolation received by the country area in that entire month 
(Pearson's  r(35)=-0.622,  P<.001).  Note that some of  the data points  are missing (for the 
month of August 2020 the solar irradiance data were not yet available at the time of writing).

The linear model that fit this dataset explains only approximately 37% of the variance of the 
data; the regression model did not hold after a close inspection of the distribution of residuals. 
It  passed the  Breusch-Pagan test  (P=0.11),  but  the  analysis  of  the  residuals  vs.  leverage 
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revealed some issues with the model: Portugal is a high leverage point (with a high Cook's 
distance);  its  exclusion  from the  analysis  would  significantly  change  the  model.  Quantile-
quantile (Q-Q) plot analysis indicates that both Portugal and Belgium have more extreme 
values that would be expected from the rest of the data points. We plotted the regression line 
in Figure 2 for the completeness of the graphic. This seems to strongly suggest that there are 
some highly divergent confounding factors in this regression model of mortality vs. insolation.

As we noted in the Introduction, it is well known that the solar irradiance at the ground level 
is primarily influenced by clouds and secondarily by other factors. We verified that this fact is  
indeed true in the analysed dataset: the insolation vs. cloud fraction has Pearson's r(183)=-
0.804, P<.001, and the adjusted R2=0.654, for all the raw data points. Similar results were 
obtained if we analysed the averaged data for each country over the March–August interval: 
Pearson's  r(35)=-0.838,  P<0.001,  adjusted  R2=0.695.  The  other  confounding  factors  that 
influenced the variation are unknown, and we tried to address some of the possibilities in the 
Discussion  section.  A combined  model  of  mortality  vs.  cloudiness  and  insolation  (with  or 
without interaction) did not significantly change the above results.

3. Time-series analysis
We also wanted to  make sure that  the above results were not  the  result of  chronological 
influence over the chosen factors. As a preliminary check, we verified the independent variation 
in time of these variables; these are reported in Supplementary material, Figures S.4 – S.6. The 
overall mortality rate (Figure S.4) increases continuously. The cloudiness seem to be randomly 
distributed with no discernible pattern in the 6-month interval analysed (Figure S.5); this is 
expected because the seasonal temporal variability in the cloud cover is usually ~30%, with 
bigger  differences  between  extreme seasons  [28].  The average  solar  insolation  in  European 
countries month-by-month (Figure S.6) follows the expected sinusoidal pattern due to seasonal 
changes [10].

After these checks we verified the correlations of these factors (cloud fraction, insolation) with 
mortality at monthly intervals (Figure 3).
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For  the  dataset  analysed  we  found  no  consistent correlation  between  the  insolation  and 
mortality in the month-by-month analysis.  The Pearson's r values  were negative (with the 
exception  of  March)  but  the  models  did  not  pass  the  stringent  criteria  defined  in  the 
Calculation section.

4. Mortality vs. Latitude

Figure 4. COVID-19 mortality and latitude of the European countries. 
No correlation found; the data points are the averaged mortality values for all European 
countries included in the study during March – August 2020. 

The dataset (Figure 4) shows no correlation between the mortality rate and the latitude of the 
European countries for the entire interval studied (Pearson's r(35)=.06, P=0.72). We used the 
"country centroid" [21] latitude as the single number that defined the latitude of a country (as 
discussed in the Methods section).
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Discussion
Contrary to some previously reported results (for example [2,5]) we did not find a correlation 
between  latitude and mortality  in  the  studied European  countries.  This  result  is  possibly 
because we used the rather stringent centroid definition of the coordinates of countries, rather 
than a broad geographical area [2] or the coordinates of the capitals [1].

We also found a very low correlation (and negative) between the measured amount of sunlight 
and  mortality  that  was  not  consistent  month-by-month.  This  result  tends  to  support  the 
previously published idea that a greater amount of sunlight might have some beneficial effects 
[29]. However the lack of month-by-month consistency and the low  quality of the regression 
model suggests  that the  absolute amount of sunlight does not seem to have an impact on 
mortality.

Together,  these two results  seem to suggest that the mortality-vitamin D hypothesis (lower 
sunlight at higher latitudes leads to lower vitamin D levels, which leads to higher mortality) is 
perhaps incomplete. As a note of interest, other studies found that serum vitamin D correlates 
stronger with skin tone than with latitude (higher melanin content effectively prevents UV 
photons from initiating synthesis); see for example Åkeson et al. [30] for a study of vitamin D 
variation at a single latitude (Sweeden), Martin et al.  [31] for a general meta-analysis, and a 
review of vitamin D and COVID-19 [32].  

Unexpectedly, we found that the cloudiness in a month (the monthly averaged cloud fraction) 
has the strongest positive correlation with COVID-19 mortality. This has been, to the best of 
our knowledge, unreported up to now.

We suggest the following possible explanations for this unexpected finding:

1) Heavy cloudiness is linked with colder outdoor surfaces, which might aid virus survival

A higher cloud cover quickly cools down the outdoor surfaces, especially at lower latitudes [33]. 
Colder  surfaces  facilitate  the  survival  of  SARS-Cov-2  [34].  As  observed  by  Heneghan  & 
Jefferson [35], the risk of incidence was higher in days with lower temperature (citing a study 
of a previous SARS epidemic by Lin et al, 2005 that observed an 18-fold increase in incidence 
in lower temperature days than in higher temperature days  [36]);  the plausible increase in 
actual incidence might thus lead to an increased number of deaths. As an easy-to-spot example 
for  this  unexpected  finding,  in  the  spring  of  2020  Spain  was  cloudier  than  Norway  (see 
Supplementary Material, Figures S.2 and S.1 for cloudiness and mortality charts).

2) Reduced evaporation rate

We speculate that in addition to lowering temperature,  a cloudy sky may drive down the 
evaporation rate (via two mechanisms: lower solar energy reaching the ground and perhaps by 
increasing  the  relative  air  humidity).  This  might  favour  the  stabilization  of  the  infectious 
droplets  and  enhance  viral  propagation  (as  suggested by  Sajadi  [2]).  This  seems  to  be 
supported  by  the  evidence  that  coronaviruses  survive  better  in  colder  environments  but 
contradicts  the  finding  that  higher  humidity  impairs  the  transmission  [3].  This  is  highly 
speculative because in this dataset we could not check for actual humidity in the atmosphere 
(and to further complicate the interaction, we note that rainy clouds do increase the humidity).
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3) Moderate pollution may be linked to both cloudiness and mortality

Even moderate pollution in the atmosphere helps clouds form [37], and it was also previously 
found that airborne pollution was linked to worse outcomes for the COVID-19 patients (see for 
example [38] for documented pollution effects in Italy; other similar studies are currently under 
review). Therefore, it might be that cloudiness data could be a proxy for pollution data (which 
is not available for all countries).

4) Behavioural changes due to cloudiness

We suggest that an additional simple hypothesis is that overly cloudy weather (a higher cloud 
fraction) might change behavioural choices at large scale, nudging people to spend more time 
indoors rather than outdoors. It was suggested that spending more time in closed environments 
facilitates  the secondary transmission of  COVID-19,  thus driving up the rate  of  infections 
(Nishiura  et  al.,  2020,  under  review).  This  explanation  seems  to  be  consistent  with  the 
observation that living in overcrowded conditions is associated with poorer outcomes  [8] and 
with the observation that some other environmental factors are at play in addition to the lack 
of sun-induced vitamin D synthesis [9].

The results show a difference in the relationships of COVID-19 deaths to cloud fraction versus 
solar radiation. This could perhaps be explained by a higher net amount of infrared radiation 
that reaches the ground surface when higher clouds are present compared with the presence of 
lower clouds [39,40] (we thank an anonymous reviewer for this insight). Our study could not 
distinguish between the types of clouds constituting the cloud fraction.

We are aware that this study has limitations: we did not investigate the precipitation rate, 
wind velocity, air pressure, air pollution and density (these are factors that are under scrutiny 
for their possible impact on COVID-19 epidemiology). We acknowledge that our observational 
retrospective study is limited: temporal autocorrelation cannot be excluded over longer periods 
of time. The possibility of spatial autocorrelation was not researched by this study. Cloudiness 
might be a confounding factor in the previous studies  that related vitamin D synthesis  to 
latitude and sunlight. The authors support the current guidelines that in patients with vitamin 
D deficiency this should be treated irrespective of any link with respiratory infections. We are 
also aware that different countries took different governmental responses  to the COVID-19 
crisis, which has lead to different epidemiological outcomes. Last, we urge the reader not to 
extrapolate these results because we only investigated these variables in 37 European countries, 
not in the entire world. Additionally, this investigation was time-limited for 6 months; the story 
is developing, and we wait to see what it is the impact of an entire seasonal cycle. We plan to 
update the analysis as new data become available (see Data Availability Statements below). We 
hope that these results will bring a warning about the possible impact of extended cloudiness 
on COVID-19 transmission.

Conclusions
The  data  from  the  European  continent  in  the  spring-summer  of  2020  suggest  that  the 
atmospheric cloudiness over a longer period (i.e., a month) seems to explain about a third of 
the variance of  coronavirus (COVID-19)  mortality;  a  higher  degree  of  sky cloudiness  in a 
month seems to be correlated with an increased mortality rate in that month. This knowledge 
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might  help  advise  public  health  policies  related  to  COVID-19  mitigation  and  control;  we 
suggest increased vigilance and increased frequency of sanitation of outdoor high-risk surfaces 
during cloudy weather.
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Tables
Table 1. The statistics of the linear model of the overall averaged mortality vs. averaged cloudiness.

Dependent variable:

Averaged Log10(Deaths/million)

Averaged 
Cloud_Fraction

1.896***

(0.257)

t = 7.370

p = 0.000

Constant 1.033***

(0.106)

t = 9.723

p = 0.000

Observations 37

R2 0.608

Adjusted R2 0.597

Residual Std. Error 0.334 (df = 35)

F Statistic 54.317*** (df = 1; 35) (p = 0.000)

Note: *p<0.1; **p<0.05; ***p<0.01
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Table 2. The statistics of the linear models of monthly mortality vs. cloudiness. 

Dependent variable:

Log10(Deaths/million)

Mar Apr May Jun Jul Aug

(1) (2) (3) (4) (5) (6)

Cloud_Fraction 2.113*** 2.174*** 2.293*** 1.424*** 1.088*** 0.747***

(0.501) (0.460) (0.321) (0.233) (0.237) (0.268)

t = 4.217 t = 4.724 t = 7.136 t = 6.101 t = 4.580 t = 2.787

p <.001 p <.001 p <.001 p <.001 p <.001 p <.001

Constant 0.075 0.939*** 1.150*** 1.417*** 1.508*** 1.745***

(0.195) (0.170) (0.112) (0.101) (0.124) (0.134)

t = 0.384 t = 5.536 t = 10.247 t = 14.002 t = 12.176 t = 13.069

p = 0.704 p = <.001 p = <.001 p = <.001 p = <.001 p = <.001

Observations 33 37 37 37 37 37

R2 0.365 0.389 0.593 0.515 0.375 0.182

Adjusted R2 0.344 0.372 0.581 0.502 0.357 0.158

Residual Std. 
Error

0.563  
(df = 31)

0.491  
(df = 35)

0.372  
(df = 35)

0.391  
(df = 35)

0.418  
(df = 35)

0.454  
(df = 35)

F Statistic
17.784***  
(df = 1; 31)  
(p <.001)

22.312***  
(df = 1; 35)
(p <.001)

50.917***  
(df  =  1;  35)
(p <.001)

37.224***  
(df  =  1;  35)
(p <.001)

20.976***  
(df  = 1;  35)
(p <.001)

7.765***  
(df  =  1;  35)
(p <.001)

Note: *p<0.1; **p<0.05; ***p<0.01
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