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Abstract

Mining the structured data in electronic health records(EHRs) enables many

clinical applications while the information in free-text clinical notes often re-

mains untapped. Free-text notes are unstructured data harder to use in machine

learning while structured diagnostic codes can be missing or even erroneous. To

improve the quality of diagnostic codes, this work extracts structured diagnostic

codes from the unstructured notes concerning cardiovascular diseases. Five old

and new word embeddings were used to vectorize over 5 million progress notes

from Stanford EHR and logistic regression was used to predict eight ICD-10

codes of common cardiovascular diseases. The models were interpreted by the

important words in predictions and analyses of false positive cases. Trained

on Stanford notes, the model transferability was tested in the prediction of

corresponding ICD-9 codes of the MIMIC-III discharge summaries. The word

embeddings and logistic regression showed good performance in the diagnostic

code extraction with TF-IDF as the best word embedding model showing AU-

ROC ranging from 0.9499 to 0.9915 and AUPRC ranging from 0.2956 to 0.8072.

The models also showed transferability when tested on MIMIC-III data set with

AUROC ranging from 0.7952 to 0.9790 and AUPRC ranging from 0.2353 to

0.8084. Model interpretability was showed by the important words with clinical
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meanings matching each disease. This study shows the feasibility to accurately

extract structured diagnostic codes, impute missing codes and correct erroneous

codes from free-text clinical notes with interpretable models for clinicians, which

helps improve the data quality of diagnostic codes for information retrieval and

downstream machine-learning applications.

Keywords: Clinical Notes, Cardiovascular Disease, ICD-10 Codes, Natural

Language Processing, Interpretability

Introduction

The digitization of hospitals has enabled electronic health records (EHR) to

become accessible to researchers for secondary usage that benefits healthcare

research [1, 2, 3, 4]. The analyses of electronic health records contributes to a

better understanding of the clinical trajectories of patients [5], improved patient5

stratification and risk evaluation [6, 7]. However, much of the information in the

EHR is locked in free text clinical notes [2, 4]. Analyzing these free text clinical

notes is challenging [1, 2, 8]. Historically, the information in free-text clinical

notes has been extracted mostly manually by clinical experts for archiving,

retrieval and analyses and this has been particularly relevant to chronic disease10

as clinical notes dominate over structured data. More recently, natural language

processing (NLP) and machine learning methods have shown great promise to

automatically analyze clinical notes [1, 2, 9, 10].

EHR data enable researchers and clinicians to perform information extrac-

tion and encode the information for later information retrieval and secondary15

usage [4]. Based on these clinical notes, ICD-10 codes (i.e. the International

Classification of Diseases, Tenth Revision) [11] are used by clinicians to encode

diagnoses. Some typical research applications of EHR data has been using these

diagnostic codes in downstream tasks, such as automatic information retrieval,

risk prediction and the prediction of disease subtypes [1, 2, 9, 10]. As the ICD-20

10 diagnostic codes form the basis, its quality determines the performance of

downstream tasks. Furthermore, EHR data in structured format rather than
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in free-text format can be more easily used in machine learning applications or

combined with other data types.

Yet, diagnostic codes are frequently missing in EHR or the recorded diag-25

nostic codes may be inaccurate. Misclassification and inaccuracy in diagnostic

codes have been reported in an increasing number of papers, for instance, in

cases related to myocardial infarction and stroke [12, 13]. Mccarthy et al. [12]

reported that a substantial percentage of patients who had myocardial injury

were miscoded as having type 2 myocardial infarction, which may have serious30

consequences. Next, Chang et al. [13] found disagreement in stroke coding,

which may negatively influences stroke case identification in epidemiological

studies and hospital-level quality metrics. Recent studies have focused on the

problem of diagnostic code prediction [1, 9]. Although some good results have

been shown, many of the previous diagnostic code prediction studies have ap-35

plied deep-learning methods that make the models hard to interpret [2, 9, 3].

Because ICD-10 codes are usually the start for downstream tasks and clinicians

attach great significance to interpretable information extraction systems [4], in-

terpretable models may have certain advantages than less-interpretable models

in that they may not only enable accurate ICD-10 code imputation but also40

enable clinicians to readily understand the models and control the quality of

the diagnostic codes with their expertise.

In this study, we propose the use of NLP word vectorization algorithms

and logistic regression (LR) to predict eight ICD-10 codes related to common

cardiovascular diseases from free-text outpatient progress notes. We compared45

both interpretable models and less interpretable models with regards to their

performances on the ICD-10 code prediction tasks. The proposed models show

good classification performance on eight ICD-10 codes on two Stanford cohorts

and the models generalized well to the MIMIC-III data set. Additionally, the

most interpretable models also showed the best performance on all data sets50

[14, 15].
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Methods

Data description

We used outpatient progress notes of 133,644 patients diagnosed with cardio-

vascular diseases at Stanford Health Care. The patients were partitioned into a55

training set (60%), validation set (20%) and test set (20%). All notes belonging

to the same patient were partitioned into the same data set to avoid informa-

tion leakage across data sets. The data set included 5,604,539 notes from 31,502

encounters dated from April, 2000 to October, 2016. The data was retrospec-

tively collected and de-identified in accordance with approved IRB guidelines60

by Stanford University (Protocol: IRB-50033 - Machine Learning of Electronic

Medical Records for Precision Medicine). (Fig. 1).

We focused on the following eight common cardiovascular diseases from clin-

ical notes: acute myocardial infarction (I21), chronic ischemic heart disease

(I25), other pulmonary heart disease (I27), cardiomyopathy (I42), atrial fibril-65

lation flutter (I48), heart failure (I50), atherosclerosis (I70), esophageal varices

(I85). As ICD-10 codes have a hierarchy to organize the over 69,000 diagnostic

codes, we aimed at predicting the three-letter prefixes of the ICD-10 diagnosis

codes.

Data processing70

Notes with fewer than sixty words and notes without any labeled ICD-10

code were excluded, resulting in the removal of 63.2% notes defining Cohort

2. For prototyping and testing the scalability of the models, a smaller cohort,

Cohort 1 was built with randomly selected notes from Cohort 2 (Fig. 1 and

Supplementary Table 1).75

Next, we processed the clinical notes by changing them to uncapitalized

text and removing any special characters, punctuation, mathematical symbols

and universal resource locators (URLs). Stop-words such as conjunctions were

removed with Gensim [16] and the words were tokenized. Stemming was then

used to reduce inflected words to word stems with Porter stemming algorithm80

[17] with the NLTK library [18].
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Word embeddings

We used four different vectorization algorithms to convert the free-text notes

to numerical features (i.e. word embeddings): Bag-of-words (BOW), term

frequency-inverse document frequency (TF-IDF), word2vec (W2V) and doc2vec85

(D2V). In addition, the batch-word2vec (W2V batch) was introduced as a mod-

ified model based on word2vec.

BOW [19] and TF-IDF [14] are word-count based embeddings. In this study,

after applying BOW and TF-IDF to Cohort 1 and Cohort 2, the feature dimen-

sions were 88,815 and 414,391 respectively.90

W2V [20] is another vectorization algorithm to get word embeddings based

on shallow neural networks. In this work, a pre-trained W2V model was used: a

biomedical W2V model trained on a corpus collected from PubMed and MIMIC-

III [21] with 16,545,452 terms and an embedding dimension of 200. After con-

verting each term in a text into a 200-dimension embedding, an average of all95

the term embeddings was taken as the embedding for one individual note.

The progress notes we used can be divided in three general sections, describ-

ing patient history, description at presentation and plan/billing. In addition

to taking the average as a note embedding, a batched form of W2V was in-

troduced in this study by splitting a note into several batches (n = 1, 3, 5) to100

extract section-related contents. For instance, a note with a length of 1,000

words could be split into five batches and the first 200 word embeddings were

averaged as the feature of the first batch. In this modified batch-word2vec model

(W2V batch), the embedding dimension was 200n where n was the number of

batches. The n was chosen to be three based on the average area under receiver105

operating characteristic curve (AUROC) on the validation set in Cohort 1.

D2V is based on W2V but further inputs the tagged document id in the

training of word vectors [22]. In the training process, a word vector is trained

for each term, and a document vector is generated for each document. In the

inference process for prediction, all weights are fixed to calculate the document110

vector for a new document. In this study, to avoid overfitting, we used the

63.2% dropped notes (neither in Cohort 1 nor in Cohort 2 because the notes

5

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 29, 2021. ; https://doi.org/10.1101/2021.01.27.21250477doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.27.21250477
http://creativecommons.org/licenses/by-nc/4.0/


were either shorter than 60 words or without any ICD-10 codes) to train our

D2V model with 40 epochs and an embedding dimension of 200. The number

of terms modeled was 327,113.115

To visualize the data, the nonlinear dimensionality reduction method, t-

distributed Stochastic Neighbor Embedding (t-SNE) [23] was used.

Classification algorithm

Once we get the note embeddings, the vectors become the input of a classi-

fication model to predict the diagnostic code. We used logistic regression (LR)120

for ICD-10 code prediction considering model interpretability. LR [24] applies

the logistic function in combination with least square regression for classifica-

tion. In this study, we used a Python implementation of LR in the scikit-learn

package [25]. L2 regularization was used in this study and the penalty strength

C was tuned based on the average AUROC on the validation set in Cohort 1. A125

1:50 class weight was added to deal with the imbalanced cases since the average

prevalence of the eight I-codes was approximately 2%.

Model assessment and interpretation

To assess the performances of different word vectorization methods, AU-

ROC and area under precision recall curve (AUPRC) were used as the metrics130

to evaluate the word embeddings and the LR models in eight diagnostic code

classification tasks. On Cohort 1, bootstrapping [26] was done on the training

set for thirty times to test the model robustness.

As BOW and TF-IDF are directly interpretable word-based vectorization

algorithms, to interpret the models, the LR coefficients were analyzed to iden-135

tify the important words in classification. The top ten most important words

for decision were extracted after bootstrapping the training samples in thirty

repeats. In each of the bootstrapping experiments, the thirty most important

words were extracted as the candidates, and the final top ten most important

words were selected based on two metrics: 1) the ranking metric: the sum of140

rankings of the important words over all bootstrapping results (smaller ranking
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sums mean higher importance); 2) the coefficient metric: the sum of LR coef-

ficients of the important words over all bootstrapping results (larger coefficient

sums mean higher importance).

Because the recorded diagnostic codes can be missing and inaccurate in clin-145

ical practice, to test whether it was possible to impute missing ICD-10 codes

based on the model predictions, several false positive cases were randomly se-

lected and the corresponding notes were analyzed.

External validation

Next, the model transferability was tested on the MIMIC-III (Medical In-150

formation Mart for Intensive Care III) data set of de-identified health-related

data of 40,000 intensive care unit stays at Beth Israel Deaconess Medical Center

[27]. We directly applied the word embedding models (BOW, TF-IDF, W2V,

W2V batch and D2V) and the corresponding LR classifiers trained on the train-

ing set of the larger Cohort 2 of Stanford notes to predict the diagnostic codes of155

the discharge summary in MIMIC-III data set (59,652 notes, 41,127 patients).

No model fine-tuning on the MIMIC-III data set was done. As MIMIC-III uses

the ICD-9 as diagnostic codes, the ground truth was set to the corresponding

ICD-9 codes of the eight cardiovascular diseases. In this study, we matched the

ICD-10 codes to the corresponding ICD-9 codes by matching the three-letter160

prefix and the highest hierarchy of the ICD-9 code that describes a specific dis-

ease. The matched ICD-9-ICD-10 codes [28] of the diseases and the prevalence

in the MIMIC-III discharge summary are: 410 (I21, acute myocardial infarc-

tion), 10.36%; 414 (I25, chronic ischemic heart disease), 26.64%; 416 (I27, other

pulmonary heart disease), 4.95%; 425 (I42, cardiomyopathy), 3.92%; 427 (I48,165

atrial fibrillation flutter), 32.16%; 428 (I50, heart failure), 25.98%; 440 (I70,

atherosclerosis), 3.61%; 456 (I85, esophageal varices), 1.77%. Proportional z-

tests showed statistically significant difference in the prevalence of the eight

codes between the Cohort 2 training set of Stanford data and the MIMIC-III

data.170

7

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 29, 2021. ; https://doi.org/10.1101/2021.01.27.21250477doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.27.21250477
http://creativecommons.org/licenses/by-nc/4.0/


Results

Data Visualization

We first visualized the feature embeddings with TF-IDF using t-SNE to

explore the data in the clinical notes in Cohort 1 training set (Fig. 2). Due

to limited space, we presented the TF-IDF visualization as a demonstration175

because of its full interpretability. We found clusters related to several cardio-

vascular diseases. The selected clusters within the bounding boxes showed high

prevalence in I-codes, suggesting that the feature embeddings may be able to

distinguish ICD-10 codes.

Prediction of ICD-10 Codes180

First, we tested our machine learning workflow for predicting ICD-10 codes

on Cohort 1. These results showed that LR and the word embeddings enabled

the classification of the eight diagnostic codes related to cardiovascular diseases

(I-code) with high prevalence on Cohort 1 with both high AUROC and high

AUPRC (Fig. 3, Supplementary Fig. 1). The AUROC values in all classifi-185

cation tasks were higher than 0.75 and TF-IDF outperformed the other four

embeddings with AUROC values higher than 0.85 on four selected codes with

different prevalence. There was a variance in the AUPRC among the codes with

varying prevalence. For the codes with high prevalence such as I25 and I48, the

AUPRC values were above 0.60 and 0.70 for TF-IDF. Additionally, the thirty190

bootstrapping experiments on Cohort 1 showed the best performances given by

TF-IDF on the majority of the codes (Fig. 4).

Secondly, on the larger Cohort 2, with more data, the results showed that the

LR models trained on the word vectorization methods classified the I-codes with

an improvement in both AUROC and AUPRC, particularly on the codes with195

lower prevalence (Fig. 3, Supplementary Fig. 2). TF-IDF outperformed the

other word embeddings in terms of both AUROC and AUPRC. On the codes

with lower prevalence (i.e. I21 and I70) the performances were significantly

improved with AUROC values around 0.95 and AUPRC values above 0.25 based

on TF-IDF word embeddings.200
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Interpretation of important words in classification

To interpret the models, the ten most important words were extracted in

thirty bootstrapping experiments on Cohort 1 (Table 1). The results showed

that not only many important words that were found were overlapping in the

bootstrapping experiments, but also that most words could be explained based205

on the meanings related to the diagnostic codes. For example, for acute myocar-

dial infarction, non-ST-elevation myocardial infarction, myocardial, myocardial

infarction, thrombus and infarction were found important; for chronic ischemic

heart disease, coronary, coronary artery disease, artery/arterial and angina were

found important; for atrial fibrillation flutter, fibrillation, atrial, fibrillation,210

atrial fibrillation and paroxysm were found important. Meanwhile, the results

based on the two metrics were similar, indicating that the importance of words

was relatively stable over the thirty bootstrapping experiments. To conclude,

the models based on TF-IDF and LR predicted I-codes not only had high AU-

ROC and AUPRC, but were also interpretable based on clinically meaningful215

terms determining the prediction.

False positive analysis of the prediction

Next, to test whether there were missing diagnostic codes in the data sets

that could be imputed by the I-code prediction models, several randomly se-

lected false positive cases were analyzed (Table 2). This analysis suggests that220

it is possible to impute missing I-codes based on the model predictions in a

subset of cases. Additional manual curation efforts might be needed because

the most accurate TF-IDF embedding was word-based that has problems deal-

ing with negation, personal and family medical history. For instance, an I-code

might be predicted due to a patient’s medical history but not necessarily noted225

down as the diagnostic code for that specific encounter.

Model transferability on MIMIC-III data set

To test the model transferability, we extracted the discharge summaries in

MIMIC-III data set and the corresponding ICD-9 diagnostic codes of each of

9
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the eight ICD-10 codes, and tested the pre-trained word embedding models and230

classification models on the MIMIC-III data set without any fine-tuning. The

high AUROC and AUPRC values showed that all models (i.e. TF-IDF, W2V,

W2V batch and D2V) models could be well transferred to the classification of the

diagnostic codes in the MIMIC-III data set (Fig. 5, Table 3). TF-IDF showed

the best performances with the highest AUROC values and AUPRC values235

while however, BOW performed the worst in terms of AUROC and AUPRC on

the majority of the classification tasks. When compared with the test set of

Cohort 2, the TF-IDF models reached higher AUPRC values on I21, I25, I48,

I50, I85. Generally according to the results, besides BOW models, the other

models generalized well to an external cohort.240

Discussion

In this work, natural language processing (NLP) methods were used to com-

pare five different word embeddings from free-text outpatient clinical notes and

then LR was shown effective to predict the diagnostic codes of eight cardiovascu-

lar diseases. Among them, on both the smaller Cohort 1 and the larger Cohort245

2 from the Stanford EHR data set, the best embedding according to AUROC

and AUPRC was TF-IDF (Figs. 3, 4, Supplementary Figs. 1, 2). From the Co-

hort 1 to the Cohort 2, the scalability of the models was shown that with more

data the prediction performance could be improved (Fig. 3, Supplementary

Fig. 4). Additionally, the majority of the embedding models and classification250

models trained on the Stanford EHR data set also showed transferability when

applied to the MIMIC-III data set (Table 3). The TF-IDF, W2V, W2V batch

and D2V models performed well on the Stanford cohorts and generalized well on

the different MIMIC-III data set. The simple BOW embeddings showed a sharp

decrease in AUROC and AUPRC values on the different data set, showing that255

the embedding models might have overfitted the Stanford EHR data set because

it directly used the word counts as features without any normalization and the

distribution of the word counts in different data sets is likely to be different. The

10
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word embedding with normalization on word counts (TF-IDF) and the word em-

beddings (W2V, D2V) that seeks for a lower-dimension representation showed260

higher robustness in classification performance when transferred to a different

data set, potentially because the normalization and the reduced dimensionality

may lead to smaller variance across data sets. The results imply that these

models can be used in accurately predicting diagnostic codes and improving the

quality of diagnostic codes at different clinical sites. Furthermore, although the265

new word embeddings (W2V, W2V batch and D2V) embeddings did not show

higher AUROC and AUPRC when compared with TF-IDF, they were in lower

dimensions (200/600) than TF-IDF and BOW(414,391), which could be helpful

to significantly reduce computational costs with fair classification performance

in AUROC and AUPRC.270

Additionally, the interpretability of the models was shown in this work with

important word analysis and false-positive-case analysis. The important words

found in each I-code prediction tasks were clinically meaningful (Table 1). The

robustness of the important words was also shown with bootstrapping. In a

previous study, Wei et al [1] applied convolutional neural network to predict275

diagnostic ICD-10 codes with good performances but the deep-learning based

models were hard to interpret. Sheikhalishahi et al. [2] also mentioned in their

review paper that the model interpretability was a significant issue for more

complex methods. Wei et al. [1] claimed that the simple word embedding do

not give good results and showed the CNN-embedding with SVM reached a280

precision value of 0.2162 and a recall value of 0.7732 in the prediction of diag-

nostic codes. Although direct benchmarking and comparison cannot be made

due to differences in the prevalence of ICD-10 codes and data sets selected in

this study, the simple word vectorization models and LR showed good predictive

performances in our study (Fig. 3, Table 3), while maintaining interpretability285

and therefore could contribute to the diagnostic code prediction and quality

control for clinicians.

Next, false positive case analysis showed that some of the false positive pre-

dictions might be correct and could be applied to impute potential missing codes

11
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that do not have I-codes recorded by clinicians (Table 2). The false positive pre-290

dictions might not be wrong but are simply missing. However, among the false

positive cases, we also observed that certain mistakes were caused by negation,

past medical and family history. Because the best model of TF-IDF method is

word-based, it models the contents of the free-text by each individual word, and

these issues cannot be directly detected by the TF-IDF model. Therefore, to295

impute missing I-codes, the proposed classifiers here could be used to complete

records, in combination with additional methods to assert negation, temporality

and who the experiencer is.

More generally, an important use case of this work is to impute ICD-10 codes

from unstructured free-text format. As diagnostic codes rich in clinical infor-300

mation can be missing and the noted diagnostic codes may also be inaccurate,

which has been showed by recent studies for diagnostic codes related to my-

ocardial infarction and stroke [13, 12]. This study proposes a method to impute

missing diagnostic codes and potentially correct misclassified diagnostic codes

based on model predictions. In addition, the model interpretability also enables305

clinicians to interpret the models and check whether particular imputation is

correct. The improvement of the quality of diagnostic codes may help further

machine learning diagnosis because machine learning algorithms typically re-

quire structured data. Many of the previous studies directly use the diagnostic

codes for the following downstream classification tasks [1, 2, 9, 10]. To improve310

the quality of diagnostic codes also could improve the data quality for further

machine learning processes.

Although this study has shown promising results of predicting diagnostic

codes based on clinical notes, there are several points in this study that could

be further studied. Firstly, our modification of segregating the texts into batches315

did not improve the performances when compared with conventional word2vec

model. The probable reason may be the notes are of different lengths and dif-

ferent lengths of sections. Roughly splitting the notes into fixed batches may

not successfully partition the different sections. In the future, studies can be

designed to automatically detect and partition sections to improve the classifica-320
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tion performance. Secondly, in this study, after the first step of data processing,

63.2% notes were removed because they either didn’t have a diagnostic code or

were shorter than 60 words. We used these dropped notes in training the doc2vec

embedding models. The part of unlabeled notes might still contain meaningful

information related to classification. Such methods as semi-supervised learning325

[29] and conformal predictions [30, 31] might be hold potential to make use of

these unlabeled data, which could potentially further improve the prediction

performance. Thirdly, this work focused on the prediction of ICD-10 codes and

the structured codes was not tested in downstream tasks such as phenotyping

or outcome prediction with machine learning. This work might help subsequent330

prediction tasks. For example, the structured diagnostic codes based on the in-

formation from clinical notes, can be combined with other data sources in data

fusion tasks including imaging data, genomics data and laboratory test data to

predict prognosis, patient outcome and disease subtypes [32, 33, 34, 35].
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Cardiovascular Outpatient Progress Notes 
in Stanford EHR

Training Notes (Patients) 3,352,556 (80,186)

Validation Notes (Patients) 1,125,339 (26,729)

Test Notes (Patients) 1,126,644 (26,729)

Cohort 2

Training Notes (Patients) 1,234,864 (77,742)

Validation Notes (Patients) 417,498 (25,956)

Test Notes (Patients) 411,041 (25,949)

Cohort 1

Training Notes (Patients) 72,013 (4,654)

Validation Notes (Patients) 26,527 (1,546)

Test Notes (Patients) 25,278 (1,542)

Demographics
Sex:   Male(47.1%) Female(52.9%)
Ethnicity: White(56.1%) Unknown(8.5%)

Asian(14.1%) Other(14.7%)
Black(5.2%) Pacific Islander(1.1%)
Native American(0.3%)

Age:

Age

D
en

si
ty

Demographics
Sex:   Male(47.1%) Female(52.9%)
Ethnicity: White(55.1%) Unknown(8.1%)

Asian(14.2%) Other(15.3%)
Black(5.4%) Pacific Islander(1.4%)
Native American(0.5%)

Age:

Age

D
en

si
ty

Notes Removal

Random Selection

Demographics
Sex:   Male(46.9%) Female(53.1%)
Ethnicity: White(56.2%) Unknown(8.2%)

Asian(14.3%) Other(14.5%)
Black(5.3%) Pacific Islander(1.2%)
Native American(0.3%)

Age:

External Test Set: MIMIC-III Discharge Summary

Test Notes (Patients) 59,652 (41,127)

Demographics
Sex:   Male(56.4%) Female(43.6%)
More Information: [27]

Figure 1: Visualization of the cohorts used in this study with the number of notes and patients

of the cardiovascular electronic health records at Stanford, two subsets: Cohort 1 and Cohort

2, and the MIMIC-III test set for model validation. In each cohort, we also show the major

demographic features including sex, ethnicity and age.
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A1 A2 A3 A4

A5 A6 A7 A8

(-60,-10),(-40,30)

I-code Prevalence (%)

I21 1.26

I25 32.33

I27 2.04

I42 14.06

I48 38.27

I50 16.55

I70 1.18

I85 0.00

≥ 1 I-code* 86.63

(25,30),(40,50)

I-code Prevalence (%)

I21 0.23

I25 6.73

I27 0.61

I42 8.47

I48 23.45

I50 12.93

I70 0.08

I85 0.08

≥ 1 I-code* 64.45

B

* All I-codes, not limited to the eight I-codes. 

1

Figure 2: The t-SNE visualization of the training notes in the Cohort 1 of eight I-codes based

on TF-IDF. A. The t-SNE visualization of the TF-IDF embeddings of the Cohort 1 training

notes of eight I-code classification tasks. B. The prevalence of eight I-codes in the two selected

regions with high prevalence of I-codes. Here, ’more than 1 I-codes’ means all types of I-codes,

not limited to the eight I-codes we investigated.
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A1

B1 B2 B3 B4

C1 C2 C3 C4

D1 D2 D3 D4

A2 A3 A4

Figure 3: The receiver operating characteristic curves and precision recall curves of the LR

models trained on five different word embeddings and on four of the eight I-code classification

tasks which represent different prevalence (Cohort 1: A1-A4 and C1-C4; Cohort 2: B1-B4

and D1-D4).
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A

B

I21 I25 I27 I42 I48 I50 I70 I85

I21 I25 I27 I42 I48 I50 I70 I85

Figure 4: The AUROC and AUPRC of classifiers based on different word embeddings in

thirty bootstrapping experiments on Cohort 1. A. The AUROC results: the best model in

bootstrapping experiments based on AUROC was TF-IDF (mean AUROC, (95% CI)): I21:

0.8952 (0.8768-0.9075), I25: 0.9487 (0.9470-0.9514), I27: 0.9537 (0.9505-0.9585), I42: 0.9763

(0.9735-0.9790), I48: 0.9745 (0.9731-0.9762), I50: 0.9543 (0.9522-0.9571), I70: 0.9185 (0.9046-

0.9333), I85: 0.9951 (0.9918-0.9981). B. The AUPRC results: the best model in bootstrapping

experiments based on AUPRC was TF-IDF (mean AUPRC, (95% CI)): I21: 0.0723 (0.0549-

0.0951), I25: 0.6752 (0.6709-0.6830), I27: 0.5370 (0.5189-0.5557), I42: 0.6079 (0.5949-0.6240),

I48: 0.7913 (0.7878-0.7948), I50: 0.5028 (0.4888-0.5161), I70: 0.1941 (0.1344-0.2514), I85:

0.1281 (0.0727-0.2108).
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A1

A5 A6 A7 A8

A2 A3 A4

B1

B5 B6 B7 B8

B2 B3 B4

Figure 5: The receiver operating characteristic curves and precision recall curves in the clas-

sification of eight corresponding ICD-9 codes on the discharge summary in MIMIC-III data

set. A1-A8: the classification AUROC. B1-B8: the classification AUPRC.
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Table 1: The ten most important words found in thirty bootstrapping experiments based

on ranking metric and coefficient metric with TF-IDF and LR. The ranking metric ranks

the important words by the sum of the rankings of the word importance in bootstrapping

experiments and the coefficient metric ranks the important words by the sum of LR coefficients

in bootstrapping experiments. The words are shown after stemming.

Code # Words Top ten words (ranking metric) Top ten words (coefficient metric)

I21 90 nstemi, myocardi, mi, thrombu, infarct nstemi, myocardi, mi, infarct, thrombu

stemi, stent, plavix, jayden, bracken stemi, stent, plavix, jayden, xarelto

I25 65 coronari, cad, arteri, nativ, mi coronari, cad, arteri, nativ, mi

angina, plavix, cabg, stent, lad angina, plavix, cabg, stent, lad

I27 80 pulmonari, hypertens, sildenafil, ph, revatio pulmonary, hypertens, sildenafil, ph, revatio

echo, diastol, flolan, ex, shah echo, diastol, ex, vinicio, fpah

I42 79 cardiomyopathi, carvedilol, coreg, ef cardiomyopathi, carvedilol, coreg, ef, lv

hypertroph, hcm, hocm, echo, icd hypertroph, hcm, hocm, echo, icd

I48 71 fibril, atrial, fib, afib, coumadin, af fibril, atrial, fib, afib, coumadin, af

irregular, paroxysm, xarelto, digoxin irregular, paroxysm, xarelto, digoxin

I50 91 failur, chf, heart, lasix, congest failur, chf, heart, lasix, congest

diastol, systol, bnp, coreg, spironolacton diastol, systol, bnp, coreg, spironolacton

I70 94 atherosclerosi, aorta, arteri, vascular, peripher atherosclerosi, aorta, arteri, vascular, peripher

stenosi, dystroph, claudic, nail, renal claudic, stenosi, dystroph, nail, renal

I85 63 cirrhosi, varic, liver, transplant, ascit cirrhosi, varic, liver, transplant, ascit

portal, esophag, lutchman, propranolol, hepat portal, esophag, lutchman, propranolol, hepat

Table 2: The analysis of false positive cases based on TF-IDF. The note predictions were

manually analyzed and labeled as true (T) or false (F) and the potential causes of erroneous

predictions were listed.

Code Evidence excerpts of note T/F Issue

I25 ”...all negative for stress induced ischemia...” F Negation

I48 ”...has the following active medical issues hx of afib...” T

I48 ”...paroxysmal atrial fibrillation is seen here...” T

I48 ”...was found to be in atrial fibrillation...” T

I48 ”...cardiac history of atrial flutter and atrial fibrillation...” F Personal Medical History

I48 ”...for post hospital check after admission for atrial fibrillation...” F Personal Medical History
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Table 3: Prevalence and prediction performance on test sets of Stanford cohorts and MIMIC-

III data set based on TF-IDF, W2V and D2V.

Method Code Cohort 1 Cohort 2 MIMIC-III

Prevalence AUROC AUPRC Prevalence AUROC AUPRC Prevalence AUROC AUPRC

TF-IDF I21 0.25% 0.8977 0.0865 0.28% 0.9499 0.2956 10.36% 0.8648 0.6229

I25 5.62% 0.9509 0.6797 4.55% 0.9690 0.7369 26.64% 0.9027 0.7945

I27 1.26% 0.9560 0.5391 0.82% 0.9698 0.5432 4.95% 0.7952 0.2666

I42 2.20% 0.9790 0.6163 2.01% 0.9810 0.6305 3.92% 0.8507 0.4326

I48 5.79% 0.9759 0.7941 5.37% 0.9793 0.8072 32.16% 0.8563 0.8084

I50 2.96% 0.9567 0.5082 2.75% 0.9732 0.6195 25.98% 0.8684 0.7479

I70 0.15% 0.9282 0.2014 0.24% 0.9520 0.3144 3.61% 0.7982 0.2353

I85 0.02% 0.9975 0.1315 0.10% 0.9915 0.3759 1.77% 0.9790 0.7298

W2V I21 0.25% 0.8731 0.0273 0.28% 0.9170 0.0965 10.36% 0.8630 0.5681

I25 5.62% 0.9315 0.5602 4.55% 0.9405 0.5535 26.64% 0.8659 0.7548

I27 1.26% 0.9268 0.3785 0.82% 0.9407 0.2858 4.95% 0.7361 0.1563

I42 2.20% 0.9418 0.3836 2.01% 0.9467 0.3718 3.92% 0.7335 0.1193

I48 5.79% 0.9493 0.6278 5.37% 0.9524 0.6271 32.16% 0.8103 0.7158

I50 2.96% 0.9214 0.3355 2.75% 0.9441 0.3871 25.98% 0.8075 0.6200

I70 0.15% 0.8804 0.0512 0.24% 0.9306 0.1189 3.61% 0.7512 0.1331

I85 0.02% 0.9969 0.0628 0.10% 0.9805 0.1823 1.77% 0.9545 0.5180

D2V I21 0.25% 0.8040 0.0167 0.28% 0.8980 0.0613 10.36% 0.8171 0.4533

I25 5.62% 0.9209 0.5301 4.55% 0.9163 0.4415 26.64% 0.8494 0.6795

I27 1.26% 0.9033 0.3423 0.82% 0.9307 0.3149 4.95% 0.6911 0.1001

I42 2.20% 0.9468 0.4451 2.01% 0.9530 0.4298 3.92% 0.7731 0.1699

I48 5.79% 0.9395 0.5566 5.37% 0.9455 0.5943 32.16% 0.7914 0.6378

I50 2.96% 0.9185 0.2700 2.75% 0.9271 0.3067 25.98% 0.7660 0.5125

I70 0.15% 0.8079 0.0150 0.24% 0.9238 0.0872 3.61% 0.7637 0.1561

I85 0.02% 0.9673 0.0033 0.10% 0.9822 0.2102 1.77% 0.9591 0.4543
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