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Abstract

The human leukocyte antigen (HLA) system is the single most important genetic 

susceptibility factor for many autoimmune diseases and immunological traits. 

However, in a range of clinical phenotypes the impact of HLA alleles or their 

combinations on the disease risk are not comprehensively understood. 

For systematic population-level analysis of HLA-phenotype associations we 

imputed the alleles of classical HLA genes in a discovery cohort of 146,630 and 

replication cohort of 89,340 Finns of whom SNP genotype data and 3,355 disease

phenotypes were available as part of the FinnGen project. 

The results suggest HLA associations in phenotypes not reported previously and 

highlight interactions between HLA genes and alleles in autoimmune diseases. 

Furthermore, shared HLA alleles in autoimmune and infectious diseases support 

a genetic link between these diseases. 

Introduction

Regulation of adaptive immune system function is based on recognition of 

foreign antigens and infectious agents by human leukocyte antigen (HLA) 

receptors encoded by highly polymorphic loci within the major histocompatibility 

complex (MHC) on chromosome 6. Out of more than 200 genes harbored by the 

MHC region approximately half have known immune-related functions (The MHC 

sequencing consortium, 1999). The HLA molecules play a key role in the 

initiation of immune response by binding internal (HLA class I molecules A, B, C) 

and external (HLA class II molecules DR, DQ, DP) peptides and presenting them 

to T lymphocytes. While class I receptors present antigens directly to cytotoxic 

CD8+ T cells, the class II molecules are recognized by CD4+ T cells that polarize 

into different regulatory subtypes (A. Barr et al., 2012). The extremely high 

genetic polymorphism of HLA genes results in structural variation in the peptide 

binding pockets between HLA alleles, consequently leading to different peptide-

binding preferences and varying antigen repertoires presented to T cells. 

Originally discovered over 50 years ago as the major determinant of organ and 

hematopoietic graft rejection (Thorsby, 2009), genetic variation in HLA has since 

been linked to a wide spectrum of immunological diseases (Trowsdale and 

Knight, 2013). In major multifactorial autoimmune diseases, HLA alleles and their
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protein-level motifs present the most important single genetic component in 

disease susceptibility (Matzaraki et al., 2017), even though in most diseases the 

triggering peptide complexing with the implicated HLA protein polymorphism 

remains unknown (Dendrou et al., 2018). On the other hand, varying degrees of 

protective allelic effects as distinguished from the absence of strong 

susceptibility alleles have been reported for major autoimmune disorders 

(Bettencourt et al., 2015; van der Helm-van Mil et al., 2005; van Lummel et al., 

2019). The effect towards the reduction of disease risk is presumably mediated 

through presentation a favourable selection of antigens in terms of specificity 

and self-regulation (Tsai and Santamaria, 2013). Accordingly, both susceptibility 

and resistance effects have been attributed to amino acid residues and their 

positions in the HLA protein sequence (Furukawa et al., 2017; Gregersen et al., 

1987; Raychaudhuri et al., 2012). Different alleles sharing a similar structural 

motif also manifests in local epistasis. Detailed analyses of large cohorts of 

patients with rheumatoid arthritis or type 1 diabetes have demonstrated that the

MHC-mediated risk can be pinpointed to specific amino acid positions, and the 

effect is being modified non-additively by amino acid polymorphisms in a few 

other positions in the same or different class II gene (Hu et al., 2015; Lenz et al., 

2015; Okada et al., 2016). 

HLA allelic variance can cause differences in the strength of immune response 

against infectious agents such as HIV by differential preference of viral peptides 

(The International HIV Controllers Study, 2010). However, in case of structural 

similarity between pathogen T cell epitope and a host peptide, immune reaction 

against the antigen may also increase the likelihood of developing autoimmunity 

(Oldstone, 1998). Predisposition to infections before the onset of an autoimmune

condition has been reported in several cases (Sfriso et al., 2010), and reaction of 

host T cell clones against the pathogen epitope mimicking host structures has 

been demonstrated experimentally (Wucherpfennig and Strominger, 1995). 

Nevertheless, exposure to a rich microbial environment also contributes to 

achieving protective, tolerogenic setting through toll-like receptor, regulatory T 

cell and interleukin signaling (Bach, 2018). Immunological regulation and its 

perturbation are therefore dependent on both environmental and host genetic 

factors that are mediated by individually varying HLA presentation.

Large biobank genome data collections combined with electronic health records 

have made phenome-wide association studies (PheWAS) feasible (Denny et al., 

2013), leading to increased power and novel discoveries in disease genetics 
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(Diogo et al., 2018; Liu et al., 2016; Verma et al., 2018). Population-based 

approach for the analysis of phenotypic spectrum of HLA associations can give 

novel insights into the architecture of well-established autoimmune and immune 

disease associations and broaden the view toward other traits as well (Hirata et 

al., 2019; Karnes et al., 2017; Liu et al., 2016). The first reported HLA PheWAS 

analysis with over 11,000 individuals found eight novel phenotypes linked with 

MHC SNPs as well as five previously unknown associations across multiple 

phenotypes (Liu et al., 2016). Karnes and coworkers (2017) imputed HLA alleles 

from cohorts of 28,839 and 8,431 individuals of European origin and tested HLA 

associations with 1,368 phenotypes. 104 significant associations were observed 

with 29 phenotypes and 29 HLA alleles. In addition to well-established HLA 

associations, four novel phenotypes were reported. Hirata and coworkers (2019) 

analyzed 106 clinical phenotypes for association with MHC variation in a cohort 

of 166,190 individuals from Japan. They reported significant genotype–phenotype

associations in 52 phenotypes, and their fine-mapping showed multiple different 

patterns of HLA associations, some of which were independent from classical 

HLA genes.

Here we report a systematic, population-based association study of imputed HLA 

alleles in 3,355 phenotypes in discovery and replication cohorts of 146,630 and 

89,340 individuals, respectively. These large single-population cohorts enabled 

us to perform HLA analysis in diseases not studied in detail before and to reveal 

cross-phenotype dependencies of allelic associations particularly between 

autoimmune and infectious diseases. Furthermore, as a systematic examination 

of risk-modifying effects have not, to our knowledge, been implemented at 

biobank-scale to date, we sought to define protective allelic effects as opposed 

to nonpredisposition to the top risk alleles. To this end, we studied heterozygous 

risk allele genotypes, and hypothesized that a risk allele effect could also be 

modified by a HLA locus of a different class. 

Results

Associations of imputed HLA alleles

Altogether 155 four-digit HLA alleles were imputed with posterior probability > 

0.5, and of these, 84 alleles had at least one confirmed association in both 

cohorts. In total, we found 3,649 statistically significant HLA-allele-phenotype 
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associations in 368 phenotypes (Supplementary Table 1). Supplementary Figure 

1 summarises the distribution of allele associations across the main phenotype 

categories for each HLA gene. HLA class II genes harboured both the largest 

number of associations and the strongest associations as indicated by their 

effect sizes. The top disease categories in terms of number of associations were 

type 1 diabetes and rheumatic diseases. We did not find a relationship between 

the number of significant associations and the number of available cases in a 

phenotype (Supplementary Figure 2). 

1,620 of the 3,649 replicated HLA associations were in diabetes-related traits 

(Supplementary Table 1) with DQB1*03:02 as the top risk allele. Celiac disease 

(CD) had the second highest number of HLA associations. The lowest p-values 

were for DRB1*03:01, DQA1*05:01 and DQB1*02:01 followed by other alleles 

known to be in a strong linkage disequilibrium with this HLA class II haplotype. 

To validate our analysis we compared our results with previously published HLA 

PheWAS studies (Hirata et al., 2019; Karnes et al., 2017; Liu et al., 2016). We 

observed a consistent relationship between the obtained odds ratios of 

associated HLA alleles or genes and those of the three other previously published

HLA PheWAS studies (Figure 1a). Further, to evaluate the consistency of 

associations between the discovery and replication cohorts, we correlated the 

logistic regression log-odds ratios (betas) for the three types of analysis 

implemented here: HLA allele, diplotype and haplotype. Expectedly, we observed

a strong correlation between the two independent cohorts (Pearson’s correlation 

coefficient about 0.9; Figure 1b).

We discovered statistically significant (discovery FDR < 0.01, replication p < 

0.01) HLA allele associations in seven phenotypes for which we found scarce 

prior evidence of HLA association in the literature (Table 1). For example, we 

observed an association for DQA1*01:03 and DQB1*06:03 in mental and 

behavioural disorders due to cannabinoids (p-value = 10-5; beta = 0.6). 

Moreover, drug-induced hypoglycaemia without coma, vitreous haemorrhage, 

otitis externa, acute sinusitis, and trigger finger were all associated with 

DQB1*03:02 and scleritis and episcleritis was associated with B*27:05. 
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Figure 1. Comparison of HLA association effects. a) Odds ratios of previously 

reported HLA PheWAS associations (x-axis) vs. the discovery cohort of the 

present study (y-axis). Depending on the study, associations are shown either at 

the level of four-digit alleles (Karnes et al.) or at gene-level tagged by the 

highest ranking variant (Liu et al. & Hirata et al.). b) Correlation of HLA 

association FDR < 0.01 log-odds ratios (betas) between the discovery cohort (x-

axis) and the replication cohort (y-axis) of the present study. Panels from left to 

right show the data for HLA allele, genotype, and two-locus haplotype association

analyses. 

6

139

140

141

142

143

144

145

146

147

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 29, 2021. ; https://doi.org/10.1101/2020.10.26.20219899doi: medRxiv preprint 

https://doi.org/10.1101/2020.10.26.20219899
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1. HLA allele associations and modifying effects in previously poorly 

studied phenotypes. Diplotype and haplotype analyses show effects of 

combinations of two alleles. Here, a strong protective effect on the risk allele can

result in non-significant association. 

7

Phenotype Primary HLA Modifying HLA
Discovery Replication

Beta SE Beta SE

allele

DQB1*03:02 4.14E-05 0.667 0.155 0.917 0.173

DQA1*03:01 4.83E-05 0.663 0.155 0.926 0.173

DQA1*01:03 7.26E-06 0.603 0.128 0.439 0.127

DQB1*06:03 1.22E-05 0.59 0.128 0.413 0.129

DRB1*13:01 3.23E-05 0.54 0.125 0.378 0.125

Vitreous haemorrhage

DQB1*03:02 1.36E-24 0.701 0.064 0.726 0.079

DQA1*03:01 1.33E-23 0.688 0.065 0.707 0.079

DRB1*04:01 4.61E-13 0.552 0.073 0.765 0.085

Otitis externa

DQB1*03:02 1.39E-05 0.221 0.051 0.212 0.058

B*18:01 2.46E-05 0.291 0.068 0.341 0.08

DQA1*03:01 4.32E-05 0.209 0.051 0.208 0.059

Acute sinusitis

DQA1*03:01 1.97E-07 0.147 0.028 0.145 0.033

DQB1*03:02 2.66E-07 0.145 0.028 0.142 0.032

DRB1*04:01 7.41E-06 0.142 0.032 0.134 0.036

Trigger finger

DQB1*03:02 7.39E-08 0.333 0.061 0.261 0.074

DQA1*03:01 7.67E-08 0.333 0.061 0.257 0.074

DRB1*04:01 1.88E-06 0.328 0.068 0.357 0.079

Scleritis and episcleritis B*27:05 8.48E-08 0.579 0.102 0.574 0.122

diplotype

Lichen planus DQB1*05:01
2.46E-14 1.323  0.166 1.400 0.216

DQB1*03:01 2.26E-02 0.385  0.165 0.621 0.201

DRB1*04:08
5.84E-35 1.739  0.146 2.490 0.204

DRB1*08:01 2.50E-01 0.205  0.223 0.226 0.384

DRB1*04:01

1.27E-76 0.953  0.052 0.877 0.068

DRB1*15:01 6.61E-01 0.020  0.045 -0.067 0.061

DRB1*11:01 9.20E-01 0.009  0.089 0.204 0.124

DRB1*14:54 3.38E-01 -0.167  0.177 -0.026 0.24

DQB1*02:01
4.71E-15 1.203  0.134 0.989 0.172

DQB1*05:01 8.74E-03 0.387  0.144 -0.112 0.207

haplotype

DQB1*03:02

7.24E-14 2.223 0.255 2.190 0.309

B*40:01 6.04E-08 0.885 0.15 1.129 0.165

B*27:05 3.50E-06 0.823 0.164 0.713 0.214

Diabetes, kidney failure DQB1*03:02

8.34E-19 1.333 0.129 1.240 0.177

B*27:05 3.86E-03 0.518 0.173 -0.355 0.366

B*18:01 1.58E-02 0.371 0.149 0.486 0.19

Diabetic maculopathy DQB1*03:02

1.34E-17 1.353 0.136 1.502 0.176

B*18:01 4.83E-04 0.548 0.15 0.656 0.191

B*27:05 3.70E-01 0.217 0.215 -0.171 0.366

DRB1*04:01
1.51E-06 0.695 0.147 0.586 0.18

B*44:02 8.63E-03 0.100 0.038 0.042 0.052

B*27:05
2.04E-19 1.046 0.102 0.978 0.132

DRB1*04:04 8.75E-01 0.047 0.191 0.090 0.249

Type of 
analysis p-value

Drug-induced hypoglycaemia 
without coma

Mental and behavioural 
disorders due to 

cannabinoids

  DQB1*05:01 a

Seropositive rheumatoid 
arthritis

  DRB1*04:01 a

Co-morbidites, CVD and 
metabolic diseases

  DRB1*03:01 a

Thyroiditis, ILD-related 
definition

  DQB1*03:02 a

Type1 diabetes, definitions 
combined

  B*44:27 a

  B*56:01 a

  B*56:01 a

ILD Co-morbidites, CVD and 
metabolic diseases

  B*44:27 a

Other (seronegative) 
rheumatoid arthritis, wide

  DRB1*04:08 a

a Protective effect was determined relative to this allele combination in diplotype and haplotype analyses.
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Cross-phenotype HLA allele associations

To evaluate possible independence of an HLA association between two 

phenotypes, we conducted analyses by including a phenotype as an additional 

covariate in the regression models. We observed that altogether 68 HLA alleles 

showed evidence of independent association with two or more phenotype 

categories (Supplementary Table 2). To study shared HLA associations in 

autoimmune and infectious diseases, we narrowed down the results for these 

phenotypes to include only alleles that in conditional analyses showed evidence 

of associating with infectious diseases independently of at least one autoimmune

disease. The results are summarized by Figure 2, showing the alleles, p-values,  

phenotypes and effect sizes of the associations. We found 12 alleles in five 

infectious and five autoimmune diseases that fulfilled the above criteria of 

association. Nine HLA alleles, eight of which appeared to be parts of C*07:01 – 

B*08:01 – DRB1*03:01 – DQA1*05:01 – DQB1*02:01 and DRB1*04:01 – 

DQA1*03:01 – DQB1*03:02 haplotypes, as well as B*13:02, predisposed to both 

autoimmune diseases and infections. Three alleles, all part of the DRB1*13:01 – 

DQA1*01:03 – DQB1*06:03 haplotype, showed a lower frequency in cases. 

Altogether ten alleles associated with two or more infectious-autoimmune 

disease pairs. 

HLA diplotype associations

To analyze the effect of HLA risk allele diplotypes on the level of disease 

susceptibility, we conducted conditional regression analyses with diploid allele 

combinations. We found 225 statistically significant (discovery FDR < 0.01, 

replication p < 0.01) phenotypes representing 21 different phenotype categories 

associated with at least one risk allele diplotype (Supplementary Table 3). In 91 

phenotypes representing 13 different phenotype categories the other HLA allele 

in the same locus exerted a statistically significant (discovery FDR < 0.01, 

replication p < 0.01) modifying effect on the risk allele (Supplementary Table 4). 

Figure 3 shows significant modifying allelic effects in phenotypes that deviated 

the most from expectation (i.e. the sum of individual allele effects, Figure 3a). 

For example, in type 1 diabetes, the results replicated the well-estalished 

protective allele DQB1*06:02 and showed that DQB1*04:02 increased the 

DQB1*03:02 mediated risk for insulin medication despite having negative effect 
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direction (-0.16) in the allele-level association analysis (Figure 3b). In coeliac 

disease, alleles such as DQB1*06:03 or DQB1*04:02, that showed negative beta 

values in the single allele association test, contributed towards increasing the 

DQB1*02:01 mediated risk (Figure 3b). Potentially novel heterozygotic effects on 

the risk allele are listed by Table 1.

Figure 2. HLA alleles associated with an infectious disease independently of 

autoimmune disease. a) P-values of significant (< 5 x 10-8) alleles. Each panel 

show an infectious disease phenotype. Within panels, one allele can associate 

with more than one autoimmune disease. b) HLA alleles associated with 

infectious diseases (y-axis) independently from autoimmune diseases (x-axis). 

The color-filled squares indicate the effect size and direction. The results are 

grouped by known haplotypes in each row. DQA1*05:01 is omitted from the first 

row as its profile is indentical to the other two shown class II alleles. The data are

based on conditional regression analyses with p < 5 x 10-8 threshold in the full 

dataset (discovery+replication), where selected phenotypes were analysed by 

adding a different phenotype as an additional covariate in the model one at a 

time.
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Figure 3. HLA diplotype effects. Risk allele in combination with the second allele

of the same HLA gene. a) Phenotypes in which the risk allele diplotype 

association effects deviate from expected (i.e. sum of individual allelic effects). 

b) The x-axis shows log-odds ratios (betas) for different diplotypes depicted on 

the y-axis. The y-axis label indicates the primary risk allele, and the tick mark 

labels indicate the other alleles in the same locus. The vertical dashed lines 

indicate the risk allele’s effect estimates based on allele-level analysis. Only 

significant (discovery FDR < 0.01, replication p < 0.01) effects on the risk allele 

are shown. The error bars indicate standard errors for the beta values.
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HLA haplotype associations

To test whether the effect of a primary risk allele was affected by alleles of a HLA

gene of a different class, we conducted conditional regression analyses with 

allele combinations from two HLA genes (termed here as haplotype 

associations). The analysis was performed using phased data but we cannot 

prove that they genuinely formed haplotypes. We found a total of 16 statistically 

significant haplotype associations with 224 phenotypes representing 23 different 

phenotype categories (Supplementary Table 5). There was a statistically 

significant (discovery FDR < 0.01, replication p < 0.01) modifying effect on the 

risk allele in 56 phenotypes representing 10 phenotype categories 

(Supplementary Table 6). Figure 4a shows significant modifying allelic effects in 

phenotypes that deviated the most from expectation (i.e. the sum of individual 

allele effects). For example, in T1D, even though B*44:27 by itself was not 

associated, together with  DQB1*03:02 the risk is increased (Figure 4b). 

Potentially novel haplotype modifier effects on the risk allele are listed by Table 

1.  

Discussion

The current study presents results of a systematic association analysis of 

imputed HLA alleles with over 3,000 clinical phenotypes in more than 235,000 

individuals. In total, we report 3,649 statistically significant and successfully 

replicated allele-phenotype associations in 368 phenotypes distributed over 35 

disease categories. Consistently with previous HLA PheWAS and other reports 

(Dendrou et al., 2018), our study uncovered well-established associations with 

major autoimmune disorders, and also found evidence of HLA pleiotropy (Karnes 

et al., 2017; Liu et al., 2016) in particular between infectious and autoimmune 

diseases. Expectedly, the effect size estimates between the previous studies and

our discovery and replication data sets showed overall high concordance, 

validating the accuracy of HLA imputation, phenotype data and association 

analyses based on these. The results from conditional analyses focusing on 

selected combinations of HLA alleles and cross-phenotype associations further 

add to the existing knowledge by including risk-modifying effects not studied 

before in a phenome-wide context.
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Figure 4. HLA haplotype effects. Risk allele in combination with another allele  

of a different HLA gene.  a) Phenotypes in which the risk allele haplotype 

association effects deviate from expected (i.e. sum of individual allelic effects). 

b) The x-axis shows log-odds ratios (betas) for different two-locus allele 

combinations depicted on the y-axis. The y-axis label indicates the primary risk 

allele and the tick marks indicate alleles of a different HLA gene. The vertical 

dashed lines indicate the risk allele’s effect estimates based on allele-level 

analysis. Only significant (discovery FDR < 0.01, replication p < 0.01) effects on 

the risk allele are shown. The error bars indicate standard errors for the beta 

values.
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In a recent well-powered association study, MHC region was linked with multiple 

common infectious diseases, and fine-mapping revealed several independent 

signals among HLA-gene variants and alleles (Tian et al., 2017). Moreover, in 

another study on MHC expression quantitative trait loci, protection from bacterial

infections in cystic fibrosis by the common autoimmune risk haplotype AH 8.1 

was found to be mediated by a non-HLA gene carried in the same haplotype 

(D’Antonio et al., 2019). Our finding that certain HLA alleles in common 

haplotypes were shared by infectious and autoimmune diseases is intriguing in 

regard to the proposed triggering role of infections in autoimmunity (Ercolini and 

Miller, 2009). The result on the B*13:02 – DQB1*03:02 and C*07:01 – 

DQB1*02:01 haplotypes showed that class I and II alleles exhibited different 

associated phenotypes, suggesting that  these alleles may have effects that are 

not explained by linkage disequilibrium alone. As evidence of HLA pleiotropy was

also reported by two previous MHC PheWASs (Karnes et al., 2017; Liu et al., 

2016), it will be of great interest to try to reveal the mechanistic background for 

these shared associations, especially between infections and autoimmunity 

(D’Antonio et al., 2019; Matzaraki et al., 2017). 

The strong enrichment of HLA risk alleles in autoimmune diseases, e.g. DQ8 in 

T1D, DQ2 in coeliac disease, or B27 in arthropathies, automatically leads to 

lower frequencies of other alleles in the risk locus and consequently to risk-

reducing effect estimates irrespective of actual association. Conditional analyses 

adjusted for allelic variation can reveal genuine effects of the risk-gene HLA 

genotypes. In line with previous analyses, our HLA diplotype PheWAS replicated  

known protective allelic effects in e.g. in demyelinating diseases (DRB1*07:01 

and 01:01) (Wu et al., 2010), arthropathic psoriasis (C*07:01) (Queiro et al., 

2006), diabetes (DQB1*06:02) (Pugliese et al., 1995), and seropositive RA 

(DRB1:13:01 and 08:01) (van der Helm-van Mil et al., 2005) and provided 

estimates for risk-modifying effects of a range of alleles occurring together with 

the top risk allele in autoimmune disorders. Our results showed a risk-modifying 

effect of DQB1*03:01 for DQB1*05:01 in lichen planus (LP), helping resolve the 

somewhat contradictry results obtained by previous serotyping studies on 

frequencies of DQ1 and DQ3 in LP patients (Nasa et al., 1995; Porter et al., 

1993). 

Population founder effect can lead to reduced genetic diversity and altered 

frequencies of genetic variants (Chheda et al., 2017), including HLA alleles and 
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haplotypes (Creary et al., 2019; Hurley et al., 2020). The current study was 

based on genetically defined cohort of Finns that constitute a Northern European

genetic isolate. A characteristic genetic architecture is visible in the repertoire of 

HLA haplotypes where a number of Finnish enriched rare (FER) haplotypes are 

substantially more common than elsewhere in Europe (Linjama et al., 2018). Our 

HLA class I – class II analysis demonstrates how haplotype effects can be 

estimated in a genetically characteristic population. We found that B*27:05 

occurring together with DRB1*04:08 carried the highest risk for seronegative 

rheumatic diseases, confirming an association that has been previously 

described in the Finnish population (Tuokko et al., 1997). This allele combination 

occurs in C*01:02 - HLA-B*27:05 – DRB1*04:08 – DQB1*03:01 haplotype that 

belongs to the FER group and is 3300 times more frequent in the Finnish 

population than in other European populations. Our study further demonstrated 

that the predisposing effect of B*27:05 was effectively removed by DRB1*04:04. 

This allele pair is known to occur in the C*01:02/02:02 – B*27:05 – DRB1*04:04 – 

DQB1*03:02 FER haplotype. 

While HLA class I and II have been reported to be independently associated with 

T1D (Eike et al., 2009; Mikk et al., 2017), the compund effect of allelic 

heterogeneity between HLA class I and II remains less comprehensively 

understood. We observed protective effects for HLA class I alleles that by 

themselves did not have association with T1D and its comorbidities in our 

analyses or elsewhere in the literature (Noble and Valdes, 2011). For example, 

B*27:05 and B*40:01 occurring together with DQB1*03:02 reduced the risk 

conferred by DQB1*03:02 while B*44:27 substantially increased it. The 

predisposing effect of the uncommon B*44:27 allele in diabetes-related 

conditions can go unnoticed in mixed populations due its infrequency or 

appearance in different class II haplotypes. Allele B*44:27 is relatively rare also 

in Finland and occurs mostly with C*07:04 – B*44:27 – DRB1*16:01 – 

DQB1*05:02, DRB1*08:01 – DQB1*04:02 and DRB1*01:01 – DQB1*05:01. As 

these haplotypes lack known risk alleles, the causative variant remains unknown 

but suggests a potential role for B*44:27. Obviously, rare alleles such as B*44:27

and haplotypes carrying it are not widely studied, and also the risk factor 

associated with B*44:27 may not be the same as in DQB1*03:02 haplotypes. 

Our study is also limited in some respects. First, analysis of HLA alleles alone 

cannot definitively attribute the observed associations directly to HLA owing to 

strong linkage disequilibrium within the MHC (Trowsdale and Knight, 2013). For 
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example, the known associations between disorders of iron metabolism and 

A*03:01, and that between disorders of adrenal gland and DRB1*04:04, at least 

partially are a result from linkage disequilibrium with HFE gene and CYP21 gene, 

respectively. Also, most of the rare HLA alleles were not covered by the used 

imputation panel and consequently the analysis did not cover their possible 

associations. Second, our study is restricted by statistical power particularly in 

conditional analyses with many covariates and in endpoints having a low number

of cases. While the independent replication design of the study helps eliminate 

non-systematical false positives arising from e.g. relatedness, batch and other 

chance factors, it cannot categorically rule them out or remove sampling 

uncertainty in low-powered endpoints. Third, the FinnGen phenotypes, albeit 

carefully curated, were derived from health register which cannot be assumed to

be totally accurate. Finally, haplotype analysis cannot prove that the alleles are 

encoded in cis, but the effects between two HLA genes, or chromosomal regions 

between them, can also take place in trans. 

In conclusion, the results of the present study illustrate the role of HLA alleles 

both separately and in combination in immune-mediated diseases, revealing 

potentially new HLA-linked disease phenotypes and providing a data resource for

future HLA analyses in independent populations. The results expand the view of 

the complex genetic structure of HLA, motivating the consideration of allele and 

gene interactions in risk calculations. These results can serve as starting points 

for functional studies focusing on mechanistic molecular underpinnings of the 

discovered associations.

Materials and Methods

Subjects and clinical endpoints

The discovery cohort of the study included all biobank participants in the 

FinnGen (www.finngen.fi) data release R3 (ntotal = 146,630) while the independent

replication cohort comprised the data release R5 (without R3; ntotal = 89,340). 

Numbers of cases and controls for each phenotype are given in the 

Supplementary Table 1. Endpoints with at least 5 cases carrying a given allele in 

both discovery and replication cohorts were included in the analysis. The clinical 

disease endpoint definitions were curated from ICD 9-10, ICD-O-3, the Social 

Insurance Institute (KELA) drug reimbursement codes and ATC-codes as a part of
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the FinnGen project (finngen.gitbook.io/documentation/methods/endpoints). For 

clarity, the FinnGen phenotypes include many partially overlapping diseases or 

traits, particularly in diabetes and its comorbidities. Thus, the included 

phenotypes are not necessarily independent. All patients and control subjects 

provided an informed consent for biobank research in accordance with the 

Finnish Biobank Act, with the exception of FinnGen legacy samples which were 

approved by the National Supervisory Authority for Welfare and Health (Valvira). 

The FinnGen study protocol was approved by the Ethical Review Board of the 

Hospital District of Helsinki and Uusimaa (Nr HUS/990/2017). All samples and 

individual-level data were pseudonymized and processed in accordance with the 

EU GDPR law.

Genotyping

Genotyping of FinnGen samples was performed on a customized ThermoFisher 

Axiom array at the Thermo Fisher genotyping service facility (San Diego, USA). 

Genotype calling and quality control steps are described in 

finngen.gitbook.io/documentation/methods/genotype-imputation. The array 

markes files can be downloaded from www.finngen.fi/en/researchers/genotyping.

The protocol for genotype liftover to hg38/GRCh38 is described in detail in 

www.protocols.io/view/genotyping-chip-data-lift-over-to-reference-genome-

xbhfij6?version_warning=no, and genotype imputation protocol is described in 

www.protocols.io/view/genotype-imputation-workflow-v3-0-xbgfijw. 

HLA allele analysis

We implemented the PheWAS approach (Denny et al., 2013) for imputed alleles 

of HLA-A, -B, -C, -DRB1, -DQA1, -DQB1 and -DPB1 genes to analyze their 

correlation with 3,355 clinical case-control endpoints in 37 broad disease 

categories. Each analysed phenotype included at least five cases in both 

discovery and replication sets. HLA imputation at four-digit resolution (i.e. 

protein-level) was conducted as described previously (Ritari et al., 2020). Briefly, 

we used HIBAG v1.18.1 (Zheng et al., 2014) R library with a Finnish population-

specific HLA reference panel (n = 1,150) based on ~4,500 SNPs within the MHC 

region (chr6:28.51-33.48 Mb; hg38/GRCh38), and considered imputation 

posterior probabilities > 0.5 as acceptable. For association analyses, we defined 

the imputed HLA alleles as bi-allelic SNPs and assumed additive effects of allele 
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dosages on the binary phenotype. Logistic regression models were run using 

SPAtest v3.0.2 (Dey et al., 2017) in R v3.6.3 (R Core Team, 2020) with top 10 

genetic principal components (PCs), age and sex as covariates. To correct for 

multiple testing under dependency and to identify associations for validation in 

the replication cohort, we applied adaptive Benjamini-Hochberg (Benjamini and 

Hochberg, 2000; Kim and van de Wiel, 2008) procedure to the discovery cohort 

SPAtest saddlepoint approximated p-values using the R library mutoss v0.1-12 

(MuToss Coding Team et al., 2017) at FDR < 0.01 threshold. We considered an 

association valid if the replication p-value was < 0.01 and the effect direction 

was consistent with the discovery cohort.

To evaluate independent contributions of HLA alleles significantly associated with

multiple disease categories, we performed conditional analyses that 

systematically included a phenotype from a different disease category as an 

additional covariate. In this analysis we used the whole dataset (data release R5)

and genome-wide p-value threshold of 5x10-8. To exclude phenotypes in strong 

correlation with each other from the analysis, we first computed an all-vs-all 

Pearson’s correlation matrix between the phenotypes and removed those having

a correlation >0.8 with another phenotype. Association for each HLA allele with a

given phenotype was performed by including a different, non-correlating 

phenotype as a covariate along with age, sex and 10 genetic PCs using SPAtest 

as described above.

HLA diplotype analysis

To systematically study how the association effect of the primary risk allele was 

impacted by other alleles of the same HLA gene, we performed association 

analyses for HLA allele combinations (termed here as diplotypes). The top risk 

alleles were identified based on the lowest significant single-allele p-value for 

each phenotype in the discovery cohort. We performed conditional regression 

analyses by including all the diplotypes in the same model for a given 

phenotype. With this approach our aim was to quantify actual allelic effects as 

distinguished from nonpredisposition to the risk allele. As described above, the 

top 10 genetic PCs, age and sex were included as other covariates. To identify 

significant effects relative to the top risk genotype for a given phenotype, we 

performed a two-tailed Z-test on the obtained conditional logistic regression 

coefficients (betas) and their standard errors.
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HLA haplotype analysis

The haplotype analysis was based on the observation that in some phenotypes a 

significant association was found both in HLA class I and class II genes. To 

evaluate whether alleles in a class I gene affected the risk of an allele in a class II

gene, or vice versa, we considered combinations of alleles from both class I and 

II. The top risk allele for each phenotype was first identified based on the lowest 

significant single-allele p-value in the discovery cohort, and then combined with 

alleles of a HLA gene of a different class (termed here as haplotypes). Thus, the 

primary risk allele was studied in all available allele combinations of the 

secondary gene. HLAs were imputed on phased genotype data obtained from 

genotype imputation, and the combined loci under analysis were selected from 

the same phase. All haplotypes were included in the same regression model for a

given phenotype. Two-tailed Z-test was used to evaluate the significance of the 

haplotoypic effects.  

Data availability

The FinnGen summary statistics data can be accessed through the Finnish 

Biobanks’ FinnBB portal and the FinnGen website 

(https://www.finngen.fi/en/access_results). 

Code availability

The analysis code is available at https://github.com/FRCBS/HLA_PheWAS. The 

FinnGen genotyping and imputation protocol is described at https://doi-

org.libproxy.helsinki.fi/10.17504/protocols.io.nmndc5e.
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