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Infectious disease outbreaks are expected to grow exponentially in time but their initial dynamics
is less known. Here I derive analytical expressions for the infectious disease dynamics with a gamma
distribution of generation intervals. Excluding the exponential distribution, the outbreak grows as a
power law at short times. At long times the dynamics is exponential with a growth rate determined
by the basic reproductive number and the parameters of the generation interval distribution. These
analytical expressions can be deployed to do better estimates of infectious disease parameters.

I. INTRODUCTION

Infectious diseases can spread to a significant fraction
of the population causing an epidemic. The chance for
that to happen is determined by the infectious dynam-
ics within each individual and the disease transmission
between individuals. The within individual dynamics is
reflected on the generation interval, the time interval be-
tween a primary case being infected to the disease trans-
mission to a secondary case. The transmission between
individuals is reflected in the reproductive number, the
average number of secondary infectious caused by a pri-
mary case.

The networks underlying proximity and sexual trans-
mission of infectious diseases have wide connectivity dis-
tributions and exhibit the small-world property [1, 2]. In
these networks the basic reproductive number is propor-
tional to the ratio between the second and first moments
of the connectivity distribution [3–6], which can be very
large. Less attention has been given to the shape of the
generation interval distribution.

II. SIR MODEL

Before entering the main calculations, let’s have a look
at standard models of infectious disease dynamics. In
the susceptible, infected and removed (SIR) model, sus-
ceptible individuals get infected at rate β and infected
individuals get removed at a rate γ. The basic repro-
ductive number, the average number of new infections
generated by a single infected individual, is given by

RSIR =
β

γ
(1)

The dynamics of the infected individuals at the popula-
tion level is given by

İ = β
I

N
S − γI (2)
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where S and I are the number of susceptible and infected
individuals and N is the population size. For short times
S ≈ N and I � N . In this limit we can integrate equa-
tion (7) obtaining

I(t) ∼ e(PSIR−1)γt (3)

where

PSIR = RSIR (4)

is the population reproductive number of the SIR model.
According to the SIR model, the basic and population
reproductive numbers are identical.

III. SEIR MODEL

In the SEIR model susceptible individuals get infected
at rate β without becoming infectious (exposed), exposed
individuals become infectious at a rate α and infectious
individuals get removed at a rate γ. The infected com-
partment is split into exposed, with number E, and in-
fectious, with number I. Note that once an individual
become infectious it behaves exactly as an infected indi-
vidual in the SIR model. Therefore we obtain the same
basic reproductive number

RSEIR = RSIR (5)

The dynamics of exposed/infectious individuals reads

Ė = β
I

N
S − αE (6)

İ = αE − γI (7)

For short times S ≈ N and I � N . In this limit we
can integrate equation (7) using an eigenvalue approach.
Focusing on the largest eigenvalue, we obtain

I(t) ∼ e(PSEIR−1)γt (8)

where

PSEIR =
1

2

1− α

γ
+

√(
1− α

γ

)2

+ 4
α

γ
RSEIR

 (9)
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is the population reproductive number of the SEIR
model. The introduction of the exposed compartment
carries as a consequence a discrepancy between the lo-
cal and population reproductive numbers, as previously
noted [7].

IV. BRANCHING PROCESS APPROACH

The SIR and SEIR models neglect key aspects of real
populations. First, there is a variable contact rate across
the population, which translates to a variable rate of dis-
ease transmission across infectious individuals. Second,
while the SEIR model accounts for the incubation period
of infectious diseases, it is still too restrictive. Using well
stablished mathematics from the theory of age-dependent
branching processes, I have previously calculated the ex-
pected number of infected individuals of infectious dis-
ease outbreaks on heterogeneous populations and any
given time interval distribution [8, 9]. However, the ap-
plications were limited to an exponential distribution of
generation intervals. Here I use this formalism to calcu-
late the population reproductive number for a broader
class of generation interval distributions.

The branching process approach maps contact pro-
cesses mediating disease transmission into causal trees
of disease transmission. The average reproductive num-
ber of patient zero, the expected number of secondary
cases generated by patient zero, is given by

R0 =
〈β〉
γ

(10)

where 〈β〉 is the average infectious contact rate in the
population and γ is the rate of recovery from the infec-
tion. For infected cases other than patient zero one needs
to take into account that the disease spreading biases the
disease transmission to individuals with a higher contact
rate. The patient zero can be thought as an individual
selected at random from the population. Any other in-
fected individual will not be selected at random, but it
will be found with a probability proportional to its con-
tact rate: β/N〈β〉, where N is the population size. Once
infected, the individual found by contact will engage in
new contacts at a rate β. Therefore, the average repro-
ductive number of patients other than patient zero is

R =
〈β2〉
〈β〉γ

(11)

A similar distinction of reproductive numbers is made
when considering spreading dynamics in static networks
[3, 4]. In a static network the connectivity between agents
is fixed, but agents have a variable number of neighbours,
also known as degree and denoted by k . In that case the
reproductive number of patient zero is proportional to
the average degree 〈k〉. Furthermore, under the annealed
or mean-field network approximation, the reproductive
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FIG. 1. Gamma distribution with shape parameters s.

number of any agent other than patient zero is propor-
tional to 〈k2〉/〈k〉 [3] or 〈k(k − 1)〉/〈k〉 [4], depending on
the infectious model.
R0 gives the average number of infectious at the first

generation, those generated by patient zero. R0R gives
the average number of infections at the second generation
and R0R

d−1 gives the average number of infections at the
d generation. The actual time when an infected case at
generation d becomes infected equals the sum of d gener-
ation intervals and it has a probability density function
g?d(t), where the symbol ? denotes convolution. There-
fore, the average number of new infected individuals at
time t is given by

İ(t) = N0R0

D∑
d=1

Rd−1g?d(t) (12)

where N0 is the number of patients zero and D is
the maximum generation, when the disease transmission
ends. When D is small, due to lockdown for example,
the spreading dynamics follows a polynomial or power-
law growth [8, 10]. Here, I focus on the case D →∞, or
more precisely t� D

∫
dtg(t)t. In this limit

İ(t) = N0R0

∞∑
d=1

Rd−1g?d(t) (13)

V. GENERATION INTERVAL DISTRIBUTION

Now we will focus on the shape of the generation in-
terval distribution. In the SIR model an infected individ-
ual is infectious right from the time it becomes infected
until removed. Let tR be a specific realization of the re-
moval time. Since removal takes place at a rate γ, tR
has the exponential probability density function γe−γt.
Assuming that each individual has a time-independent
contact rate, the generation intervals will be uniformly
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distributed between 0 and the recovery time, resulting in
the same exponential distribution of generation intervals

gSIR(t) = γe−γt (14)

In the SEIR model the generation interval is decom-
posed into the sum tS = tI + tR, where tI is the time
interval from exposed to infectious and tR is the removal
time. Since the transition from exposed to infectious
takes place at a constant rate α, then tI has the expo-
nential probability density function αe−αt. Therefore

gSEIR(t) = αe−αt ? γe−γt

=

 γ2te−γt α = γ

αγ
α−γ (e−γt − e−αt) α 6= γ

(15)

There are two key differences between the generation in-
terval distributions for the SIR and SEIR model. First,
the mode for gSIR(t) is zero and that for gSEIR(t) is
non-zero. Second, around t = 0, gSIR(t) ∼ γ, while
gSEIR(t) ∼ αγt. Both differences are a consequence of
introducing an incubation state between being infected
and becoming infectious.

The case α 6= γ in (15) makes the calculation of convo-
lutions difficult. A more suitable functional form is the
gamma distribution

g(t, s) =
γ

Γ(s)
(γt)s−1e−γt (16)

where s ≥ 1 is a shape parameter quantifying the convex-
ity around t = 0 (Fig. 1). The case g(t, 1) corresponds
with an exponential distribution, as in the SIR model
(14). For s = 2 we obtain the case α = γ of the SEIR
model (15). More generally, the values of s and γ could
be derived from the fitting to empirical data. For exam-
ple, for COVID-19, the inspection of inferred generation
interval distributions suggest γ > 1 [11] and a fitting to a
gamma distribution resulted in γ = 2.5 [12]. Besides cov-
ering many possible scenarios, the gamma distribution is
amenable to convolution. Using the Laplace transform
method one obtains

g?d(t, s) =
γ

Γ(ds)
(γt)ds−1e−γt (17)

The convolution of a gamma distribution is itself a
gamma distribution, with the exponent scaled by the or-
der of the convolution (d→ ds).

VI. EXPECTED NUMBER OF INFECTIONS

Coming back to the outbreak dynamics, substituting
(17) into (13) we obtain

İ(t, s) =
γN0R0

R1−1/s e
−γtf(R1/sγt, s) (18)
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FIG. 2. Shape of f(x, s) for different values of s.

f(x, s) =

∞∑
d=1

xds−1

Γ(ds)
(19)

Equations (18)-(19) provide a series representation for
the expected number of new infections. For short times,
neglecting d > 1 terms we obtain (R1/sγt� 1)

İ(t, s) =
γN0R0

Γ(s)
(γt)s−1 (20)

The case s = 1 is not representative. For s = 1 we have
İ(t, s) ∼ 1, while İ(t, s) ∼ ts−1 for s > 1. That is, except
for the exponential distribution, the outbreak grows as a
power law ts−1 for short times.

For s = 1 equation (19) is the series expansion of the
exponential

f(x, 1) =
∞∑
d=1

xs−1

(s− 1)!
= ex (21)

For s = 2 the series expansion of the hyperbolic sine

f(x, 2) =
∞∑
d=1

x2s−1

(2s− 1)!
= sinh(x) (22)

For s = 4 the series of sinh(x) minus sin(x)

f(x, 4) =
x3

3!
+
x7

7!
+
x11

11!
+ · · ·

=
1

2

[(
x1

1!
+
x3

3!
+
x5

5!
+
x7

7!
+ · · ·

)
−
(
x1

1!
− x3

3!
+
x5

5!
− x7

7!
+ · · ·

)]
=

1

2
[sinh(x)− sin(x)] (23)

Using this analytical representations we uncover the full
impact of the time generation distribution on the infec-
tion dynamics (Fig. 2). With increasing s there is an
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increase in the convexity of f(x, s) around x = 0 and the
curves shift to the right. In contrast, the asymptotic be-
haviour for x� 1 seems to be the same. In the following
I show that this is indeed the case.

When s is a natural number

f(x, s) =
∞∑
d=1

xds−1

(ds− 1)!
(24)

is a subseries of the exponential function. This series has
been calculated [13, 14], resulting in

f(x, s) =
1

s

s−1∑
n=0

exω
n

ωn(s−1)
(25)

where ω = e2πi/s. For x � 1, since <(ωn) < 1 for all
n = 1, . . . , s− 1, we obtain

f(x, s) ≈ 1

s
ex (26)

Based on this asymptotic behaviour, for R1/sγt � 1
equation (18) is approximated by

İ(t, s) ≈ γN0R0

R1−1/s
1

s
e[P−1]γt (27)

where

P = R1/s (28)

is the population reproductive number. Equation (28)
coincides with the result from Wallinga and Lipsitch
based on the Lotka-Euler equation [15].

The equation for the population reproductive number
(28) is a tool to estimate the basic reproductive number
from empirical data for the generation interval distribu-
tion and the doubling time. According to equation (27),
the disease doubling time is given by

tD =
ln 2

(P − 1)γ
(29)

tD is estimated from the plot of the number of new cases
as a function of time. s and γ are estimated from a fit to
the generation interval data. Then, using equations (28)
and (29) we can estimate P and R.

Equation (28) is definitive proof that the shape of the
generation interval distribution determines the relation-
ship between the basic (R) and population (P ) repro-
ductive numbers. For s = 1 we recover the SIR model
equation (4), when the individual and population repro-
ductive numbers coincide. For s = 2 we recover the case
α = β of the SEIR model in equation (9). Figure 3
shows the population reproductive number as a func-
tion of s for two different local reproductive numbers.
When R > 1, P decreases monotonically with increasing
s. When R < 1, P increases monotonically with increas-
ing s. In either case, P approaches 1 for large s. Note,
however, that the shape parameter s does not change the
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FIG. 3. Population reproductive number P as a function of s
for R > 1 (solid line) and R < 1 (dashed line).

fact that if R > 1 then İ(t) grows exponentially, while
I(t) decays exponentially when R < 1.

The gamma distribution of generation intervals has
a similar effect in the context of heterogenous mixing
patterns between individuals according to types [16, 17].
The outcome is similar to equation (28), replacing R by
the largest eigenvalue ρ of the mixing matrix of repro-
ductive numbers (equation 12 in Ref [17]). After making
this substitution, we obtain the population reproductive
number for the multi-type generalization

P = (RΛ1Λ2 · · · )1/s (30)

where Λi is the largest eigenvalue of the ith mixing matrix
(e.g., age, mask use, etc) [17].

VII. NUMERICAL SIMULATIONS

I have performed agent based simulations to test the
relationship between the population and agent reproduc-
tive numbers, Eq. 28. The simulation steps were re-
ported in Ref. [17]. Here, I present a concise description.
The simulations take place in a virtual city. The virtual
city is composed of a place-to-place network and the mo-
bility of individuals (agents) through the network. Most
of the city parameter are inspired on numerical simula-
tion for the city of Portland [2], containing of the order
of na = 1000000 individuals (agents) and np = 100000
places.
Place-to-place network: The place-to-place network is

modelled by a Barabási-Albert network [18]. Specifically,
starting from a complete graph of m+1 nodes, new nodes
are added one at the time up to np nodes. Each time a
node is added, it is connected to m nodes in the pre-
existing graph. The node to which each of the m edges is
attached to is selected with a probability proportional to
the node degree. The degree distribution of the Barabási-
Albert network has a power-law tail with power-law ex-
ponent -3 [18].
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FIG. 4. Numerical simulations of disease transmission in a vir-
tual city. A) Average number of new infectious as a function
of time for different number of intermediate states (symbols).
The lines are fits to the exponential function in Eq. (27), pro-
viding an estimate of P . B) Population reproductive number
P as a function of s, as obtained from the fitting to the nu-
merical data (symbols) and from the expected theoretical line
(28) (line).

Agents mobility: Agents switch location at a rate ωi,
i = 1, . . . , na, where the ωi are random variables with a
gamma distribution Prob(ωi = ω) ∼ ωsp−1e−ω/ω∗

, where
ω∗ and sp are the location and shape parameters, respec-
tively. I will set ω∗ = 1 switch per day and sp = 2, which
gives a mode at 1 switch per day. This means that in-
dividuals will be in about two places per day, one where
they started the day and the other where they switch to,
as observed for the Portland simulation. Furthermore,
the number of visitors at a given place is proportional to
the number of neighbours, i.e. the degree in the place-
to-place network. Since, the degree distribution of the
Barabási-Albert network has a power law tail with ex-
ponent -3, the number of visitors to a place also has a
power law tail with an exponent -3 [17], which is roughly

what observed for Portland [2].
Disease transmission: An infectious disease model is

simulated in the virtual city introducing a patient zero
and constraining the disease transmission to individuals
at the same place. To model the disease dynamics within
an individual, I introduce s − 1 intermediate states and
an infectious state. At a given place, I assume homoge-
nous mixing and infected agents transmit the disease to
susceptible agents at rate ξ. When a susceptible agent
becomes infected he/she transits over s−1 exposed states,
the infectious state and the removed state. The transi-
tion between these states is assumed state independent
and at rate γ. s = 1 corresponds with the SIR model.
For s = 2 the intermediate state is the exposed state
and we recover the SEIR model with α = γ. For all s
we obtain the gamma distribution of generation intervals
(16). Here I will use ξ = 4 transmission attempts per day
and γ = 1/3 per day. By transmission attempt I mean:
there is an attempt of transmission from an infectious
primary case to a potential secondary case at the loca-
tion of the primary case, the potential secondary case is
selected with uniform probability among all other agents
at that location, but the transmission will happen if and
only if the potential secondary case is in the susceptible
state.
Realizations: At each realization I generate a new

place-to-place network, assign new switching rates to
agents and run the disease transmission model. Aver-
ages are calculated over time intervals of 1 day and 100
realizations.

Figure 4A reports the average number of new infec-
tions as a function of time. The lines are fits to the
exponential function in Eq. (27). The fit is restricted
to the initial growth phase, selecting data points in the
time interval 0 < t < 0.8 ∗ t0, where t0 is the time when
İ(t) is maximum. Given that γ is known, from the fit
to Eq. (28) we obtain an estimate of P , reported in Fig.
4B. The case s = 1 corresponds with the SIR model and
P = R. In the fully mixed scenario, i.e. only one place,
we would expect a reproductive number R = ξ/γ = 12.
However, the network structure of the virtual city limits
the homogeneous mixing to individuals within the same
location. We obtain the smaller value R ≈ 7 < 12 (Fig.
4B, s = 1). Once R is known, we can use (28) to obtain
a theoretical estimate of P for s > 1, which corresponds
with the theoretical line in Fig. 4B. The agreement be-
tween the simulation symbols and the theoretical line is
very good, validating the analytical calculations.

VIII. CONCLUSIONS

In conclusion, the branching process formalism allows
for a flexible description of infectious disease outbreaks
that can be fully based on empirical distributions. At
short times the outbreak grows as a power law, ts−1,
where the exponent is determined by the shape param-
eter of the gamma distribution. Therefore a power law
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growth is not incompatible with the homogeneous mixing
approximation as previously claimed [19]. Furthermore,
this power law should not be confused with the long-time

power law induced by the truncation of the disease trans-
mission at a maximum generation, as expected from an
imposed lockdown for example [8, 10].
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