
1 

 

The consequences of adjustment, correction and selection  

in genome-wide association studies used for two-sample Mendelian randomization 

 

Venexia M Walker1-3, Sean Harrison1-2, Alice R Carter1-2,  

Dipender Gill4-8, Ioanna Tzoulaki4,9-11, and Neil M Davies1-2,12 

 

1. MRC University of Bristol Integrative Epidemiology Unit, Bristol, UK 

2. Bristol Medical School: Population Health Sciences, University of Bristol, Bristol, UK 

3. Department of Surgery, University of Pennsylvania Perelman School of Medicine, 

Philadelphia, USA. 

4. Department of Epidemiology and Biostatistics, School of Public Health, Imperial College 

London, London, UK 

5. Centre for Pharmacology & Therapeutics, Department of Medicine, Hammersmith 

Campus, Imperial College London, London, UK. 

6. Novo Nordisk Research Centre Oxford, Old Road Campus, Oxford, UK. 

7. Clinical Pharmacology and Therapeutics Section, Institute of Medical and Biomedical 

Education and Institute for Infection and Immunity, St George’s, University of London, 

London, UK. 

8. Clinical Pharmacology Group, Pharmacy and Medicines Directorate, St George’s 

University Hospitals NHS Foundation Trust, London, UK. 

9. Department of Hygiene and Epidemiology, University of Ioannina Medical School, 

Ioannina, Greece. 

10. Medical Research Council Centre for Environment, School of Public Health, Imperial 

College London, London, UK. 

11. Health Data Research UK-London, London, UK. 

12. K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, 

NTNU, Norwegian University of Science and Technology, Norway. 

 

Correspondence to: Venexia Walker; Bristol Medical School, University of Bristol, 

Oakfield House, Oakfield Grove, Bristol, BS8 2BN; venexia.walker@bristol.ac.uk 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted January 29, 2021. ; https://doi.org/10.1101/2020.07.13.20152413doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2020.07.13.20152413
http://creativecommons.org/licenses/by/4.0/


2 

 

ABSTRACT 
 

Introduction: Genome-wide association studies (GWASs) often adjust for covariates, correct 

for medication use, or select on medication users. If these summary statistics are used in 

two-sample Mendelian randomization analyses, estimates may be biased. We used 

simulations to investigate how GWAS adjustment, correction and selection affects these 

estimates and performed an analysis in UK Biobank to provide an empirical example. 

 

Methods: We simulated six GWASs: no adjustment for a covariate, correction for medication 

use, or selection on medication users; adjustment only; selection only; correction only; both 

adjustment and selection; and both adjustment and correction. We then ran two-sample 

Mendelian randomization analyses using these GWASs to evaluate bias. We also performed 

equivalent GWASs using empirical data from 306,560 participants in UK Biobank with systolic 

blood pressure as the exposure and  body mass index as the covariate and ran two-sample 

Mendelian randomization with coronary heart disease as the outcome. 

 

Results: The simulation showed that estimates from GWASs with selection can produce 

biased two-sample Mendelian randomization estimates. Yet, we observed relatively little 

difference between empirical estimates of the effect of systolic blood pressure on coronary 

artery disease across the six scenarios. 

 

Conclusions: Given the potential for bias from using GWASs with selection on Mendelian 

randomization estimates demonstrated in our simulation, careful consideration before using 

this approach is warranted. However, based on our empirical results, using adjusted, 

corrected or selected GWASs is unlikely to make a large difference to two-sample Mendelian 

randomization estimates in practice. 

 

KEYWORDS 
 

Mendelian randomization; systolic blood pressure; genome-wide association studies; 

adjustment; correction; selection 
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INTRODUCTION 
 

Concurrent with the advent of large-scale biobank studies collecting a vast array of genetic 

and phenotypic data, there has been a rapid increase in genome-wide association studies 

(GWASs) aiming to identify the genetic causes of common diseases or risk factors. Two-

sample Mendelian randomization is a popular causal inference method that uses summary 

statistics from two GWASs to assess the effect of an exposure, obtained from one GWAS, on 

an outcome, obtained from the second GWAS. [1–3] It is a form of instrumental variable 

analysis and therefore requires four assumptions in order to obtain a point estimate for the 

causal effect, as summarised in Figure 1. Key advantages of two-sample Mendelian 

randomization include that it removes the need for individual level data and sample sizes 

can be maximized, particularly for rare outcomes, by using two separate studies instead of a 

single study that captures both the exposure and outcome.  

 

Figure 1 Schematic of Mendelian Randomization and the assumptions that must be satisfied 

for the results to be valid 

Many GWASs used for two-sample Mendelian randomization analyses were conducted for 

other purposes, such as identifying individual single nucleotide polymorphisms (SNPs) 

associated with a phenotype. Consequently, GWASs are often adjusted for covariates, 

corrected for medication use, or selected on medication users to maximise power and avoid 

potential biases from factors that are not the phenotype of interest. However, while these 
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practices are often beneficial for GWASs, they may affect the SNP-phenotype associations 

and consequently may cause bias in two-sample Mendelian randomization analyses. [4] The 

implications of adjustment for covariates in GWASs has been previously discussed, yet the 

consequences of correcting and selecting for treatment have not been fully described. 

[3,5,6] The aim of this study was therefore to assess the consequences of three common 

GWAS alterations and, where appropriate, their combination on two-sample Mendelian 

randomization estimates: 

• Adjusting for a covariate – for example, including body mass index as a covariate in a 

GWAS of systolic blood pressure 

• Correcting for medication use – for example, adding 10 mmHg to systolic blood 

pressure measures of individuals exposed to antihypertensive medicine prior to their 

blood pressure measurement [7] 

• Selecting on medication users – for example, removing individuals receiving 

antihypertensive medicine prior to their blood pressure measurement 

 

METHODS 
 

To demonstrate the possible consequences of using adjusted, corrected or selected GWASs 

in two-sample Mendelian randomization, we simulated genetic associations for six scenarios. 

These were: 1) no adjustment, correction or selection; 2) adjustment for a covariate; 3) 

selection on medication users; 4) correction for medication use; 5) adjustment for a 

covariate and selection on medication users; and 6) adjustment for a covariate and 

correction for medication use. These scenarios are illustrated using directed acyclic graphs in 

Figure 2. We then performed two-sample Mendelian randomization using the genetic 

associations from each of the scenarios and compared the results with the simulated effect 

of the exposure on the outcome.  To demonstrate these consequences in a more realistic 

setting, we also conducted a comparable analysis using empirical data from UK Biobank with 

systolic blood pressure as the exposure, body mass index as the covariate and coronary 

heart disease as the outcome. [8] 
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Figure 2 Directed acyclic graphs illustrating the six models considered in this study 
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Simulation 
 

Data generation 

 

We conducted a simulation based on a sample of 1,000,000 individuals with 200 SNPs that 

instrument our exposure. The simulation included specification of six parameters: 

𝛼!", 𝛼"# , 𝛼""∗ , 𝛼#"∗ , 𝛼!$ 	and	𝛼"∗$. We simulated the genetic variants as a binomial function 

to get a SNP dose multiplied by a random effect of the SNP on the exposure phenotype. The 

formula for this, and the other main components of the simulation, are detailed below. 

 

• Genetic variants,	𝑍% = Binomial)2,	Uniform(0,1)/ × Normal(0,0.1)	for	1 ≤ 𝑖 ≤ 200  

 

• A continuous covariate, 𝐶 = Normal(0,1) 

 

• Unmeasured exposure phenotype, 𝐴 = ∑ 𝑍%% + 𝛼!"𝐶 + 𝜀"		

where	𝛼!" = 1,	and 𝜀" = Normal(0, 2.5)	is a random error term   

 

• A treatment indicator, denoted by	𝑇 = 1 if	𝑝& > Uniform(0,1)	and	0	otherwise 

where	𝑝& =
exp(𝛼"#𝐴 + 𝜀#)

1 + exp(𝛼"#𝐴 + 𝜀#)
	and 𝜀# = Normal(0, 1)	is a random error term	 

 

• Measured exposure	phenotype, 𝐴∗ = 𝛼""∗𝐴 + 𝛼#"∗𝑇 + 𝜀"∗ 		

where		𝛼""∗ = 1, 𝛼#"∗ = −0.2,	and 𝜀"∗ = Normal(0, 1)	is a random error term  

	

• Outcome phenotype: 𝐵 = 𝛼"∗$𝐴∗ + 𝛼!$𝐶 + 𝜀$ 	

where	𝛼"∗$ = various, 𝛼!$ = 1,	and 𝜀$ = Normal(0, 1)	is a random error term  

 

Genetic associations for the exposure phenotype 

 

To obtain genetic associations for the exposure phenotype, we performed the following for 

a random sample of half the simulated individuals: 
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(0) Regressed the measured exposure phenotype on all genetic variants 

(1) Regressed the measured exposure phenotype on all genetic variants, adjusting for 

the covariate 

(2) Regressed the measured exposure phenotype on all genetic variants, excluding those 

indicated for treatment (𝑇 = 1) 

(3) Regressed the corrected, measured exposure phenotype on all genetic variants – the 

correction was made by subtracting the product of the treatment indicator and the 

coefficient for the treatment indicator T from the regression 𝐴∗~	𝑇 + 𝐴 from the 

measured exposure phenotype value 

(4) Regressed measured exposure phenotype on all genetic variants, adjusting for the 

covariate and excluding those indicated for treatment (𝑇 = 1) 

(5) Regressed the corrected, measured exposure phenotype on all genetic variants, 

adjusting for the covariate – the correction was made by subtracting the product of 

the treatment indicator and the coefficient for the treatment indicator T from the 

regression 𝐴∗~	𝑇 + 𝐴 from the measured exposure phenotype value 

 

Genetic associations for the outcome phenotype 

 

We obtained genetic associations for the outcome phenotype by regressing the outcome 

phenotype on all genetic variants for the individuals that were not used to calculate the 

genetic associations for the exposure phenotype. This prevented bias from sample overlap. 

[9] 

 

Mendelian randomization analysis and comparison with true effect 

 

The true effect of the unmeasured exposure phenotype on the outcome phenotype per unit 

increase in the exposure in the simulation is equal to 𝛼"∗$𝛼""∗. We simulated data for values 

of 𝛼"∗$ between -1 and 1 in increments of 0.1, excluding zero. We performed Mendelian 

randomization for each dataset using the ‘mrrobust’ package in Stata. [10] We then 

calculated the difference between the Mendelian randomization estimate and the value of 

𝛼"∗$𝛼""∗. To ensure the effects were comparable, despite the different true effects, we 
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scaled the differences by dividing by the value of 𝛼"∗$𝛼""∗. Finally, we meta-analysed these 

scaled differences across all 20 simulated datasets using the ‘metan’ package in Stata with a 

fixed effect model and Mantel-Haenszel method. [11]  

 

Empirical analysis 
 

Data source 

 

We conducted the systolic blood pressure GWAS in UK Biobank. [8,12] UK Biobank recruited 

503,317 UK adults between 2006 and 2010, collecting a wealth of phenotypic and genetic 

data. Analyses for this study were carried out on unrelated individuals of White British 

ancestry with a systolic blood pressure measure (N = 306,560, including 67,727 

antihypertensive users). Individuals reported their ancestry, which was confirmed by 

assessing the consistency of individuals’ genetic principal components with those of a 

European reference panel computed from the 1000 genomes project that was derived by UK 

Biobank.  [13] 

 

Genetic associations for systolic blood pressure 

 

We used the mean of two systolic blood pressure readings, which were automatically 

recorded two minutes apart for all participants at the baseline UK Biobank assessment 

centre, to determine systolic blood pressure. Body mass index was calculated at the baseline 

assessment centre from baseline measures of height and weight. A list of antihypertensive 

medication was defined based on twelve headings from the British National Formulary 

(adrenergic neuron blocking drugs; alpha-adrenoceptor blockers, angiotensin-converting 

enzyme inhibitors, angiotensin-II receptor blockers, beta-adrenoceptor blockers, calcium 

channel blockers, centrally acting antihypertensive drugs, loop diuretics, potassium-sparing 

diuretics and aldosterone antagonists, renin inhibitors, thiazides and related diuretics, 

and vasodilator antihypertensives). [14] Antihypertensive medication use was then 

determined based on this list from medication records made by clinic nurses at baseline. 
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To obtain the SNP-systolic blood pressure associations for each scenario, we did the 

following: 

(0) Performed a GWAS of systolic blood pressure in all individuals 

(1) Performed a GWAS of systolic blood pressure in all individuals with body mass index 

included as a covariate 

(2) Added 10 mmHg to systolic blood pressure for individuals who reported 

antihypertensive medication use at baseline and performed a GWAS of systolic blood 

pressure in all individuals 

(3) Removed individuals who reported antihypertensive medication use at baseline and 

performed a GWAS of systolic blood pressure in the remaining individuals 

(4) Added 10 mmHg to systolic blood pressure for individuals who reported 

antihypertensive medication use at baseline and performed a GWAS of systolic blood 

pressure in all individuals with body mass index included as a covariate 

(5) Removed individuals who reported antihypertensive medication use at baseline and 

performed a GWAS of systolic blood pressure in the remaining individuals with body 

mass index included as a covariate 

 

The value of 10 mmHg was chosen as the correction for antihypertensive medication use 

based on the fact that antihypertensives are estimated to reduce systolic blood pressure by 

9 mmHg on average. [7] All GWASs were conducted using the MRC Integrative Epidemiology 

Unit Pipeline with a BOLT-LMM model to account for population stratification. [15] All six 

GWASs were adjusted for age, sex and 40 principal components.  

 

Genetic associations for coronary artery disease 

 

We obtained genetic associations for coronary artery disease from a multi-ethnic meta-

analysis study by Nikpay et al of 60,801 cases and 123,504 controls to avoid sample overlap 

with UK Biobank. [16] This study used an inclusive definition for disease cases including 

clinically documented cardiac angina, coronary artery stenosis greater than 50%, and 

coronary revascularization. 
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Mendelian randomization analysis 

 

Genome-wide significant hits from each GWAS were clumped using the ‘clump_data’ 

command in the ‘TwoSampleMR’ R package with a R squared threshold of 0.001 and a 

clumping window of 10,000kb. [17]  These SNPs were then used as the instrument for the 

two-sample Mendelian randomization analysis, also performed using the ‘TwoSampleMR’ R 

package. All estimates were scaled to the effect per standard deviation increase in systolic 

blood pressure for presentation. 

 

Code availability 
 

All analyses were conducted in Stata version 15.1 and R version 3.4 or higher. The code is 

available from GitHub: https://github.com/venexia/MR-GWAS-consequences. 

 

RESULTS 
 

Simulation 
 

We found selection on medication users led to a point estimate of the beta that was 47% 

(95% CI: 46 to 48) greater than the simulated true effect of unmeasured exposure 

phenotype on the outcome phenotype across effect sizes. The combination of adjustment 

for a covariate and selection on medication users also led to an overestimate of the beta of 

41% (95% CI: 40 to 42). There was little difference between the estimates and the simulated 

true effect of unmeasured exposure phenotype on the outcome phenotype obtained in the 

other scenarios. 
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Figure 3 Percentage differences between two-sample Mendelian randomization estimates 

and the simulated true effect of unmeasured exposure phenotype on the outcome 

phenotype for different instrument-exposure association models 

 

 

Empirical analysis 
 

The estimates of the odds ratio for a standard deviation increase in systolic blood pressure 

on coronary artery disease varied between 1.82 (95% CI: 1.62 to 2.05; #SNPs = 218) for the 

model corrected for antihypertensive use only to 2.05 (95% CI: 1.75 to 2.41; #SNPs = 160) for 

the model adjusted for body mass index only. The confidence intervals for all estimates were 

overlapping suggesting little difference between estimates based on the different exposure 

GWAS used for these analyses. 
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Figure 4 Two-sample Mendelian randomization estimates of the effect of systolic blood 

pressure on coronary artery disease for different instrument-systolic blood pressure 

association models 

 

DISCUSSION 
 

The aim of this study was to assess the consequences of using adjusted, corrected or 

selected GWASs on two-sample Mendelian randomization estimates. We demonstrated 

through simulations that selection of medication users can lead to substantial bias in 

Mendelian randomization estimates. On the other hand, bias from adjustment for a 

covariate and correction for medication use was minimal in the simulated scenarios. We 

have also presented results from an empirical analysis, where we used Mendelian 

randomization to estimate the effect of systolic blood pressure on coronary artery disease 

with body mass index as the covariate. We found little difference in the estimates for the 

effect of a standard deviation increase in systolic blood pressure on coronary artery disease 

across the six scenarios, even those selecting on medication users. Furthermore, in this 
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example, the observed differences would not have affected the inference drawn from the 

analysis. This suggests that the bias observed in the simulations may be less pronounced in 

practice.  

 

There are several potential causes of bias in the six scenarios we consider (Figure 2) that may 

explain our simulated results. In the case of scenario 0 (no adjustment, correction or 

selection) and scenario 1 (adjustment for a covariate only), ignoring the effect of treatment 

can lead to model misspecification. This is because the relationship between the instrument 

and the exposure will be a mixture of two distributions – one for those who are treated and 

one for those who are untreated. If the effect of the treatment on the exposure is large, the 

simple linear model used to capture the relationship between the instrument and the 

exposure will be inadequate to describe the mixture of these two distributions. In the 

remaining scenarios, where treatment is accounted for through selection on medication 

users or by adjusting for treatment effect, treatment becomes a collider and can introduce 

collider bias. This is because accounting for treatment in these ways is akin to conditioning 

on treatment and can therefore introduce spurious associations between any confounders 

and the genetic variants. This, in turn, leads to incorrect estimation of the effect of the 

genetic variants on the exposure. When these effects are then used in two-sample 

Mendelian randomization analyses, they may lead to bias in the estimation of the exposure-

outcome effect.   

 

The potential for bias in two-sample Mendelian randomization estimates using GWASs with 

adjustment, correction or selection has previously been highlighted as a limitation of this 

method in the literature. [18] For instance, Hartwig et al investigated the impact of using 

adjusted GWASs on two-sample Mendelian randomization estimates using a similar 

approach. [5] There has also been detailed discussion of the impact of selection and the 

potential for collider bias. For example, the idea of selection on medication use presented 

here relates to the selection criterion previously discussed by Gkatzionis and Burgess. [6] 

However, to our knowledge, there are no previous studies that have considered how the use 

of GWASs with a combination of adjustment for a covariate and measures to account for 

treatment, such as correction or selection, may impact two-sample Mendelian 
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randomization estimates. This is despite several examples, including blood pressure, where 

such combinations are commonplace. Future work in this area should look to consider the 

potential for bias from adjustment, correction and selection in other implementations of 

Mendelian randomization, such as multivariable Mendelian randomization. [19] 

 

While knowing the data generation mechanism for a simulation is an advantage, generated 

data is a simplification of real data generation mechanisms. Reality is likely much more 

complicated than the models we have studied. Our findings may therefore be considered 

indicative of potential bias in the scenarios we have outlined, rather than a quantification of 

the potential bias in all possible scenarios. For example, correction for medication use may 

have had little effect here because treatment occurs between the instrument and measured 

exposure phenotype, without having a direct effect on the outcome phenotype, and so 

should be captured within the GWAS of measured exposure phenotype. A further 

consideration is that our empirical analyses may also be subject to the common limitations 

of Mendelian randomization, such as horizontal pleiotropy. This may serve to amplify or 

disguise differences between estimates due to adjustment, correction and/or selection in 

the exposure GWAS.  

 

Using simulations, we have shown that bias is possible in two-sample Mendelian 

randomization when using GWASs with selection on medication users. Careful consideration 

is therefore warranted before using this approach to account for treatment. Despite this, 

little difference was observed between the two-sample Mendelian randomization estimates 

in our empirical example and the inference drawn from these analyses remained the same 

for all six scenarios studied. This suggests that, in practice, using adjusted, corrected or 

selected GWASs is unlikely to make a large difference to estimates obtained from two-

sample Mendelian randomization. 
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