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ABSTRACT 
Despite the high morbidity and mortality associated with Acute Respiratory Distress Syndrome (ARDS), discrimination of 
ARDS from other causes of acute respiratory failure remains challenging, particularly in the first 24 hours of mechanical 
ventilation. Delay in ARDS identification prevents lung protective strategies from being initiated and delays clinical trial 
enrolment and quality improvement interventions. Medical records from 1,263 ICU-admitted, mechanically ventilated 
patients at Northwell Health were retrospectively examined by a clinical team who assigned each patient a diagnosis of 
“ARDS” or “non-ARDS” (e.g., pulmonary edema). We then applied an iterative pre-processing and machine learning 
framework to construct a model that would discriminate ARDS versus non-ARDS, and examined features informative in 
the patient classification process. Data made available to the model included patient demographics, laboratory test results 
from before the initiation of mechanical ventilation, and features extracted by natural language processing of radiology 
reports. The resulting model discriminated well between ARDS and non-ARDS causes of respiratory failure (AUC=0.85, 
89% precision at 20% recall), and highlighted features unique among ARDS patients, and among and the subset of ARDS 
patients who would not recover. Importantly, models built using both clinical notes and laboratory test results out-
performed models built using either data source alone, akin to the retrospective clinician-based diagnostic process. This 
work demonstrates the feasibility of using readily available EHR data to discriminate ARDS patients prospectively in a 
real-world setting at a critical time in their care and highlights novel patient characteristics indicative of ARDS. 
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INTRODUCTION 

Characterized by inflammation, hypoxemia, and non-cardiogenic pulmonary edema, the Acute Respiratory Distress 

Syndrome (ARDS) is described among as many as 10% of all patients admitted to the intensive care unit (ICU)1. ARDS is 

thought to affect over 190,000 patients in the US each year2, and the diagnosis of severe ARDS (PaO2:FIO2 ≤ 100mm Hg) 

is associated with a nearly 50% mortality rate1. Those that survive ARDS experience an elevated risk of cognitive decline 

and persistent skeletal-muscle weakness3,4. Despite the known prevalence of ARDS, due to its potential obfuscation 

among other disorders requiring ventilation, many clinicians fail to recognize ARDS at the time of respiratory failure1 

which prevents the initiation of targeted treatments which could improve outcomes (such as prone ventilation, early 

diuresis and driving pressure-targeted volumes).  

 

The pathophysiologic definition of ARDS has been refined since the disease’s initial description in 20005, but consists of 

diffuse lung inflammatory changes with increased vascular permeability. The clinical diagnosis is based on bilateral lung 

infiltrates seen on chest imaging not fully explained by cardiogenic pulmonary edema, and profound hypoxemia6. Similar 

radiologic features and hypoxemia may also be seen in the setting of cardiogenic pulmonary edema (elevated left atrial 

pressures) making the initial diagnosis challenging in some presentations7. As there are no known biomarkers that can 

diagnose ARDS8,9, a real-time implementable patient classification framework that can help discriminate between ARDS 

versus non-ARDS causes of respiratory failure could assist with earlier identification and potentially reduce the associated 

morbidity and mortality. It would also allow for prospective enrollment into clinical trials or quality improvement 

initiatives by assisting first-level automated screening which is particularly helpful for large, multi-hospital clinical 

studies. 

 

When applied in combination with traditional approaches, machine learning models have shown effectiveness in 

predicting patient outcomes across disease states, including Sepsis10, ICU admission11, and Asthma/COPD12. Owing to 

their ability to ingest, integrate, and interpret large volumes of data, ML-based predictive frameworks present substantial 

potential for the improvement in emergency room operations13. Several previous studies have successfully applied ML in 

the prediction of ARDS (summarized in Table 1), demonstrating the utility of this approach. However, while varied in 

their specific outcomes of interest, none have approached the problem of differentiating ARDS among other causes of 

respiratory failure requiring mechanical ventilation, which remains a pressing challenge for physicians.  

 

Our goal in this study was to build a tool capable of identifying ARDS in a manner similar to real-time clinical evaluation 

in patients with severe hypoxemia (PaO2:FiO2 ratio < 150) receiving mechanical ventilation. To increase the likelihood 

that the algorithm developed would be applicable to a real-world patient population, we focused on building/refining our 

model using data collected in ICUs of one of the most diverse hospital networks in the United States (Northwell Health, 

New York), and focused on data readily available to clinicians within a 24-hour window preceding the diagnosis. After 

feature extraction from medical records that included laboratory values and natural language processing (NLP) of 

radiological reports, we implemented a unique, iteration based framework that allowed us to build an effective 

discriminator that can potentially be implemented in clinical sites to inform on ARDS diagnosis in real time. In doing so, 

we identified clinical parameters capable of augmenting real-time clinical assessment of ARDS in the ICU. 
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METHODS 

Dataset 

As our goal in this investigation was to construct a discriminative model for ARDS among patients requiring mechanical 

ventilation, it was critical to construct cohorts of patients with physician-diagnosed ARDS versus respiratory injury from 

another source (herein ARDS and non-ARDS, respectively; see Figure 1). Our analysis used a dataset of 1,263 

mechanically ventilated patients with severe hypoxemia (PaO2/FiO2 < 150) admitted between May-2016 and April-2019 

to the ICU in 12 hospitals at Northwell Health in New York State. Northwell Health is New York State’s largest 

healthcare provider and cares for a socio-economically and racial/ethnically diverse patient population. The screening 

period took place during the flu seasons (defined as October through April of each year) starting October 2016 through 

April 2019. The dataset was built using an algorithm to identify all invasively mechanically ventilated patients who could 

potentially have severe ARDS using the following query steps: 1. All intubated patients; 2. Admitted to an intensive care 

unit (ICU); 3. PaO2:FiO2 ratio of < = 150 based on arterial blood gas results, on at least two consecutive samples; 4. PEEP 

> 5cm H20, and ; 5. Age >= 18. For patients identified from this query, radiology reports most proximal to the timing of 

the PaO2:FiO2 criteria were extracted into a relational database (REDCap) and included an indication (Y/N) of whether 

they carried an ICD code for respiratory failure (using codes J80.X, J96.X, 518.81, and 518.82). These were not filters, 

but helped with the further refinement of the query as described below.  

 

This process occurred prospectively to search for new patients, and records of those already selected on previous days 

were updated with newly available data. Next, two additional criteria described in more detail below had to be satisfied 

for the presence of moderate to severe ARDS: a) bilateral opacities on chest radiograph or computed tomography scan not 

fully explained by effusions, lung collapse, or nodules, and b) respiratory failure not fully explained by cardiac failure or 

fluid overload (based on clinical notes). All data including demographics, lab and image results, flow sheets, medications, 

and notes, were exported to an SQL database for further data analysis. All patients who met the screening criteria of 

potentially having severe ARDS were auto-identified in the EMR system as described above and filtered into a relational 

database (REDCap) with pre-defined fields of characteristics important for ARDS diagnosis. This included radiographic 

reports and clinical notes at the time of meeting severe hypoxemia inclusion criteria. Clinicians had access to the full 

electronic health record to further investigate the patient’s clinical course as needed and the auto-detection algorithm was 

iteratively updated for other features important to include in the database after observations of clinician interaction with 

the patients’ electronic health record files. 

 

Clinical Evaluation 

For the identification of true positive severe ARDS, three pulmonary critical care physicians independently reviewed the 

records in the REDCap database and categorized patients into those with clinically confirmed ARDS and other diagnoses 

of respiratory failure. A senior pulmonary critical care physician reviewed a random sample of 20% of all confirmed 

ARDS cases.  
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Automated Feature Extraction from Radiological Reports 

Next, we examined unstructured free text observations from chest X-ray and CT scan reports for the entire cohort of 

mechanically ventilated patients with respiratory failure. Minimal preprocessing was applied to the notes before 

conversion to numerical feature vectors. Specifically, a manual spelling correction was applied, the stop words were 

removed, and a lemmatization was performed using the NLTK python package14.  The notes were then summarized to 

contain only the sentences with keywords manually curated based on relevance to bilateral infiltration and pulmonary 

edema. The subset of relevant keywords was based on an initial list extracted from all available radiology reports15, and 

refined by the clinical team based on their domain knowledge (see Table 2 for the list of keywords).  

 

Radiology reports were then converted into numerical feature vectors using doc2vec16, implemented using the spacy 

package for Python. These numerical word embeddings inherently contain the relationships between words, and thus are 

capable of retaining the relational structure of the text. We removed numbers and non-alphanumeric characters and stop 

words to prepare the summarized texts for doc2vec. The data were then randomly split into training and test sets, and a 

Random Forest model trained with performance measured using the (withheld) test set to determine discrimination 

between ARDS and non-ARDS. To have a reliable estimate of performance, we used a cross-validation framework in 

which the process was repeated 100 times with different training and test sets in each iteration. The final performance 

metric is the median of the metrics acquired for the 100 iterations.  

 

Medical Lab Test Data Processing 

The dataset included the results of all lab tests performed during patient admissions. In total, the dataset consisted of 1933 

distinct lab tests, for 1,263 total patients. Lab tests with >50% missingness were excluded from the analysis (Table S1).  

 

Timing of ARDS onset was based on the first PaO2/FiO2 measurement that met inclusion criteria. To ensure that the 

model would only contain information available to clinicians within 24hrs of ARDS onset, only lab tests taken prior to 

ARDS onset were considered as features in the laboratory analysis. Lab values considering two timepoints were included: 

static measurements in the 24 hours prior to PaO2/FiO2 inclusion criteria, and the rate of change (slope) of continuous lab 

test values over the prior four days. The slope for rate of change in labs was measured by fitting a linear regression model 

on the data. If a measurement was missing for a specific day, we used the last observation carried forward (LOCF) 

imputation approach used commonly in longitudinal studies. This method assumes that the value has stayed the same as 

the prior value. The absolute value of the slope represents the rate of change over time, and the sign (+/-) represents the 

direction of change (increased/decreased). 

 

Machine Learning Analysis 

In addition to selection of an ML algorithm, ML workflows often involve selection of model parameters, feature reduction 

approaches, and feature normalization techniques. These are selected through combinations of known best practices, 

empirical observation, or performance scoring-based permutation. To allow for an unbiased determination of these model 

parameters and maximize the ability of the model to automatically adjust to additional datasets, we implemented an 

iterative processing framework in which data pre-processing parameters, ML models, and ML hyperparameters were 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 28, 2021. ; https://doi.org/10.1101/2021.01.26.21250316doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.26.21250316
http://creativecommons.org/licenses/by-nc-nd/4.0/


simultaneously permuted to find an optimal configuration (Figure S1). Before beginning the learning process, the data 

were divided into training and validation sets of 80% and 20%, respectively, and all permutations were evaluated based on 

iterative bootstrapping of the training set. All model parameters mentioned below were identified through this process. 

 

Classification models were built using features extracted from laboratory test results, features extracted from the 

radiological reports, all features combined, and outputs of combined models. This allowed for evaluation of the relative 

impact of these data sets to discriminate between ARDS versus non-ARDS. In total we built five models: model 1 

included frequencies of each lab test’s acquisition (per hour) from the period of admission to the PaO2:FiO2 measurement 

time; model 2 included laboratory features (results) and mechanical ventilator parameters which together we term as ‘lab 

values’, and demographic information (i.e. age, gender) as well as comorbidities; model 3 included keywords from the 

radiology reports derived using the NLP method described above; model 4 used both model 2 and 3 inputs (i.e., both lab 

values and radiology reports), and; model 5 included the model outcomes from model 1, 2 and 3 combined in a logistic 

regression model.  

 

For ARDS classification based on the lab tests (models 1 and 2), we used the Random Forest classifier implemented in the 

Python sklearn package17. The Random Forest (RF) model provides an importance score for each feature, and has hyper-

parameters (e.g. number of trees) that can require tuning. To identify an optimal model for this dataset, we tuned: max 

depth, min samples split, min samples leaf, max features, number of estimators, and criterion, used a Bayesian approach 

implemented in the Optuna Python package18. To evaluate performance, we randomly split the dataset of 1,263 patients 

into training (80%), and final test sets (20%). The final test set was not used in any part of the analysis, and was 

considered an independent set to report the performance. The initial training set was then split randomly 100 times into 

training (70%) and validation (30%) sets. The RF hyper-parameters were tuned based on the performance on the 

validation set. The trained models in each iteration were stored to later create an ensemble model. We used the same 

approach for prediction of ARDS based on the radiology reports (model 3). Twenty percent of the data was considered a 

final test set, and the remaining data was split in a cross-validation framework (70% training, and 30% validation) 100 

times to obtain a distribution of the model performance and to get a robust estimation of performance metrics. The trained 

models in each iteration were again stored to later create an ensemble model. This same process was again repeated for 

the model that included the combined features (i.e., radiology report features and medical lab results; model 4).  

 

The performance of all models was measured as the area under the Receiver Operating Characteristic (ROC) curve 

(AUC); and the precision at 20% recall on the final test set. Note that precision at a given recall indicates the positive 

predictive value of a test at a given, fixed sensitivity. So, for example, precision at 20% recall is the equivalent of the 

positive predictive value at a sensitivity threshold in which at least 20% of the positive cases have been identified, and 

thus suggests the positive predictive value of the classifier for the most “identifiable” 20% of patients. Unlike AUC, this 

score ranges from 1.0 (perfect precision) to the ratio of true positives to total cases (the Prior), as this is the performance 

we would expect from a random classifier. It is being included as a metric here because precision/recall values are less 

prone to inflation due to class imbalance (e.g. more negatives than positives in the population) than AUC.  
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The analysis with combined features (model 4) was based on the existence of interaction between lab result features and 

features extracted from radiology notes. The improvement in performance upon considering this interaction might be 

offset by increasing the number of features and subsequently the estimation variance. As an alternative approach, in model 

5 we used the outputs from models 1, 2, and 3 (RF models), as inputs to a logistic regression model to estimate the data 

label (i.e. ARDS, or non-ARDS). Similar to the previous modeling approaches, the training was performed in a cross-

validation framework with 100 random splits of data into training and test sets. Hyperparameter optimization was 

determined through permutations of each model (Table 3) with average precision score as the performance metric.  

 

An RF model consists of a number of decision trees, and every node in the decision tree is conditioned on a single feature. 

As a result, the heterogeneity of samples in each set (a.k.a. impurity) can be reflected by the change in Entropy of the 

samples when a particular feature is used within a node of a decision tree. This average Entropy change was interpreted as 

feature importance, wherein the features that more greatly decrease the impurity get a higher importance score. However, 

the importance score is a relative measure and can only be compared within a specific training setup (specific feature set, 

and model hyper-parameters). Therefore, a permutation-based test was used to identify when features were significantly 

contributing to model construction. Specifically, target labels were randomly permuted at least 1000 times, and the 

distribution of importance score for each feature score was measured. The empirical p-value was determined as the 

number of times (out of the number of total permutations) that a feature had a higher feature importance in a random-

model compared to its feature importance in the true model (as previously described19). Those features with p<0.05 were 

interpreted to be significantly contributing to the model.   

 

RESULTS 

 
A total of 1,263 patients were prospectively identified as potentially meeting the Berlin criteria of severe ARDS based on 

PaO2:FiO2 levels, among mechanically ventilated patients at Northwell Health hospitals during the flu seasons of 2016 - 

2019. Manual screening identified 293 of these patients as true positive severe ARDS cases which were confirmed by a 

senior clinician. The remaining 1,091 were determined to be false positives, and were then further classified into 11 sub-

categories: Pneumonia (unilateral), Pulmonary Edema (Cardiogenic or Neurogenic), Atelectasis, Chronic Lung 

Disease/ILD COPD/Asthma, Pneumothorax, Pleural Effusion, Pulmonary Embolism, Pulmonary AVM, Intra-cardiac 

shunt, Pulmonary Contusion, Pulmonary Hemorrhage (Table S1). 

 

There was a modest, but significant age difference between ARDS and non-ARDS groups (median age of 63 for the 

ARDS group versus 67 for non-ARDS, p-value=0.014, Mann-Whitney Test; Table 4). The distributions of age were 

found to be similar, however, there was an additional peak between ages 30-40 for ARDS patients. Race appears equally 

distributed, and in both groups males comprise a greater proportion of patients than females.  

 

We constructed several classification models based on independent feature sets to allow us to objectively determine the 

predictive capacity of each in identifying ARDS among mechanically ventilated patients (Figure S1). When examining 
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the data, we observed that patients had a disparity in the availability of laboratory parameters and wanted to determine 

whether the presence of an order for a lab test by itself was informative. Therefore, in the first model (Model 1) we used 

only the frequencies of lab test acquisition as features (i.e., not the lab values themselves). This model achieved fair 

performance (Area under the Receiver Operating Characteristic Curve (AUC) 0.71 (95% CI [0.68, 0.73]), Precision at 

20% Recall (P@20R) 0.5; Figure 2). This confirms that there is discriminative information content in the frequency of 

tests performed. 

 

Next, we created a model using laboratory values themselves in addition to the demographics and comorbidities (Model 2; 

Figure 2). We eliminated lab features that had >50% missingness in the cohort, so as to focus on construction of a model 

potentially generalizable across multiple clinical cohorts. In other words, missingness for a dataset like ours implies that 

the clinician did not believe the feature (lab value) needed to be measured. Performance prediction metrics showed a small 

increase in performance over Model 1 (AUC 0.75 with 95% CI [0.70, 0.76], 0.54 P@20R with 95% CI [0.42, 0.54]). 

 

In Model 3 we examined ARDS versus non-ARDS classification using only RF models trained on features extracted from 

radiology reports. Performance of this model was higher than that seen in the laboratory test model (AUC 0.79 with 95% 

CI [0.82, 0.84], P@20R 0.73 with 95% CI [0.85, 0.9]; Figure 2). Model 4 included features used in both Models 2 and 3, 

and again, classification performance was found to incrementally improve (AUC=0.8 with 95% CI [0.82, 0.85], 

P@20R=0.74 with 95% CI [0.81, 0.92]). Finally, Model 5 provided the highest classification accuracy (AUC=0.85 with 

95% CI [0.83, 0.86], P@20R=0.89 with 95% CI [0.83, 0.92]) by combining the outputs of the models 1, 2 and 3 in a 

logistic regression framework. 

 

With the models constructed, we next applied a permutation-based method to investigate features that were contributing to 

classification accuracy. We performed this analysis for Models 1, 2 and 3 only, as these models contained all features 

included in subsequent models. First, in Model 1 (Figure 3), the frequency of myelocytes and metamyelocytes seen in lab 

reports, as well as a higher frequency of blood gas measurements rank as important for identifying ARDS among 

mechanically ventilated patients. For Model 2 (Figure 4), arterial pH, arterial oxygen saturation, serum albumin, and total 

serum calcium results were ranked the most relevant static lab results in the 24 hours prior to ARDS diagnosis. The 

following features were most relevant in predicting ARDS based on change over time in the 4 days prior to ARDS 

diagnosis (Figure 4b): arterial partial pressure of oxygen (PaO2), arterial pH, and eGFR. For Model 3, the features were 

acquired from a non-invertible word2vec transform on the text that obfuscates the relation between features and the text. 

Therefore, the feature importance is not meaningful for discrimination between ARDS and non-ARDS reports.  

 

Our clinical evaluators used both radiological reports and clinical notes for their retrospective assessment of ARDS (see 

Methods), consistent with the Berlin criteria. However, we saw fair performance for models 2 (reports only) and 3 (lab 

tests only), which prompted us to examine whether subsets of patients could be accurately classified using either data type 

alone. To this end, we examined the probabilities of classification for individual patients (whether the model suggests 

classification into ARDS versus non-ARDS groups) from models trained using these datasets (models 2 and 3; Figure 5). 

There was a moderate correlation of the classification probability scores for each patient (r=0.4, p<0.01), suggesting a 
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non-random but modest agreement between classification scores generated by models trained on laboratory tests and 

radiological reports alone. In other words, consistent with what is seen clinically, while both laboratory tests alone and 

radiological reports may be indicative of ARDS, there may be key implicators only contained in one data type for a given 

patient, thus explaining the improved performance of classifiers using both datasets.  

 

Next, we examined patients that were incorrectly classified by our most accurate model to determine if there were any 

consistent features among patients that could not be classified by our framework. Specifically, we measured the 

classification error within the ARDS group (i.e., those wrongly classified as ARDS), and we explored the relationship 

between the error and mechanical ventilation parameters and demographic information using PLS regression (Figure 6). 

Based on the result from our best model (i.e., Model 5), our machine learning framework has a higher error rate for older 

patients and performs better for patients with a history of respiratory failure. This suggests that ARDS risks outputted 

from this model for older patients, specifically those with no previous history of respiratory failure, should be interpreted 

with caution before therapeutic action. 

 

Finally, we sought to determine if the models could be used to identify features unique among ARDS patients expiring as 

a result of their illness, versus non-ARDS patients. Specifically, we re-trained the above models to predict mortality 

among either ARDS or non-ARDS patients, with the expectation that the resulting feature importance analysis would 

identify features predictive of mortality uniquely in ARDS. We found that a number of features (notably pH) were more 

strongly indicative of mortality for ARDS patients (Figure S2a), as compared to non-ARDS patients (Figure S2b). 

 

DISCUSSION 
 

Discrimination of ARDS from other causes of respiratory failure requiring mechanical ventilation remains a challenge 

despite extensive study. The propensity of the Berlin criteria to produce substantial false-positives, coupled with the lack 

of available biomarkers for ARDS has necessitated manual review of radiology reports and laboratory tests by physicians, 

which can introduce subjectivity. This subjectivity not only impacts patient care, but introduces inconsistency in clinical 

trial inclusion for ARDS. Under-diagnosis of ARDS has been found by observational studies20, and even within the 

context of a randomized controlled clinical trial misclassification if radiology reports has been demonstrated21.  

Consequently, a machine-learning based assessment framework would: 1) provide physicians with a real-time assessment 

of ARDS likelihood, 2) allow for standardized ARDS assessment across ICUs, and 3) identify novel clinical determinants 

specific to ARDS for further study. Importantly, the machine-learning framework must emulate objective clinician 

practice with readily available data, in this case laboratory tests, radiology reports, and mechanical ventilator features.   

 

The model building process we employed independently optimized five model configurations, each leveraging different 

input feature sets. By comparing these respective models we were able to more objectively determine the relative 

contribution of each of these feature sets to classification performance. As a baseline model, and to examine the 

importance of measurement frequency on classification, we began by including only features corresponding to the 
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frequency of measurement of laboratory tests. This produced a surprisingly robust classifier, suggesting that patterns in 

clinical care, including ordering of tests, is itself predictive of patient outcome. This is an important observation, and 

suggests that alterations in measurement procedure, even owing to altered and/or updated risk assessments of ARDS, 

should be accounted for in future models.  

 

Next, we examined the contribution of laboratory test values and radiological reports, both apart and together, in 

discriminating ARDS among our ventilated patients. Unsurprisingly, a model leveraging both of these datasets in 

combination outperformed models built using either data source alone, mimicking the diagnostic process of a clinician. 

The high performance of our final model (Model 5) suggests that all three components - frequency of test measurement, 

laboratory test results including changes over time, and radiological reports – improve model discrimination. 

 

To place our study in context with the work of other colleagues who have endeavoured to identify ARDS we summarize 

these in Table 1. Most of the studies have been focused on prediction the onset of ARDS or Acute Lung Injury (ALI) 

which in prior versions of accepted categorization encompassed ARDS as a more severe form of lung injury. In contrast, 

our study was aimed at discriminating cause of respiratory failure requiring invasive mechanical ventilation to be ARDS 

versus another cause. The study most closely resembling ours is the recent study by Le et al.22 which similarly attempts to 

detect ARDS although their study did not include radiography features and did not include changes in features over time. 

The AUC for the model was similar to ours (AUC 0.83) and the most influential features - albeit only provided for the 

non-mechanically ventilated cohort - included antibiotics, vital signs, and pH. Our study did not include treatments or 

vital signs but similarly found pH to be a highly-ranked feature for discriminating between ARDS and non-ARDS causes 

of respiratory failure. Other models which have looked at ARDS prediction have found vital signs, in particular heart rate, 

mean arterial pressure and respiratory rate to be important for predicting ARDS. This is likely due to the overlap between 

sepsis and ARDS. Our models did not include treatments or vital sign information. Laboratory features of importance that 

have been found by other investigators include low hematocrit, low glucose, low sodium, normal platelet count, and 

elevated white blood to increase the risk of ARDS. Laboratory features of importance in our models for the 24 hours prior 

to meeting potential ARDS criteria included arterial blood gas values (lower values of pH and PaO2, and higher PaCO2 for 

ARDS classification), and lower values for serum albumin, calcium and sodium predicting ARDS rather than non-ARDS 

causes of respiratory failure. Changes in laboratory values that were important included arterial blood gas values (greater 

magnitude of change in PaO2, PaCO2, and lower magnitude of change in PH for ARDS classification), anion gap (lower 

magnitude of change, ARDS), as well as eGFR and Prothrombin Time (greater magnitude of change, ARDS). Together, 

these features make clinical sense to be associated with ARDS more than with non-ARDS and to therefore help 

discriminate the two for mechanically ventilated patients. This can assist with the detection of ARDS shortly after 

mechanical ventilation is required and can support rapid implementation of ARDS treatment protocols, clinical trial 

enrollment and quality improvement monitoring. Earlier identification of ARDS could also assist with planning for 

potential transfers to tertiary care facilities with ARDS management experience.  

 

The importance of discriminating ARDS from other causes of acute respiratory failure that require mechanical ventilation 

is underscored by our observation of differential risk factors for mortality. This could be important for longitudinal re-
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assessment of risk based on changes in these features, which in turn could inform prognostic conversations. These risk 

factors could also prompt causal pathway studies and discovery of treatment targets. 

 

The most important limitation of this study is similar for all studies seeking to predict ARDS, which is the method by 

which true positive cases of ARDS are determined. Several studies have used an automated version of the Berlin criteria. 

This raises concerns about the validity of the true positive cases. Our automated query based on P:F values, bilaterality of 

infiltrates and invasive mechanical ventilation identified several false positive cases. We therefore assembled a group of 

physicians with ARDS experience who classified each of the potential cases. A senior clinician further confirmed a 

random selection of these cases which were coded by the clinicians. Nevertheless, subjective misclassification may still 

have occurred. Without a biomarker for true positive determination this remains the best method available currently. This 

underlines the importance of model validation prospectively. It should be noted that false negatives were not formally 

determined, as this would have required the manual check of all mechanically ventilated patients, and patients who were 

not intubated perhaps due to less severe illness of decisions to provide hospice care. However, it would be unlikely that an 

intubated ARDS case would have been missed by an algorithm based on P:F ratio such as ours.   

 

Our goal was to determine if a trained machine learning classifier could accurately discriminate ARDS among other 

causes of respiratory failure requiring mechanical ventilation. Although our results suggest a useful model to augment 

clinician decision making, a fundamental next step will be prospective validation of model performance. While this model 

may begin to be evaluated to assess risk prospectively among patients in the Northwell Health, it is inevitable that some 

amount of refinement will have to occur with this or any ML model before generalization toward a more objective 

classification scheme at subsequent clinical sites. If we are successful in prospective validation, we must next determine 

whether it can be successfully implemented within clinical workflows to aid physicians in a difficult and potentially 

subjective definition that could impact patient care. This is particularly important for hospitals which do not have 

dedicated intensive care physicians who have extensive experience in ARDS diagnosis and management.  

 

In summary, we have developed ML models which can assist with discriminating between mechanically ventilated 

patients who have ARDS vs, non-ARDS causes of respiratory failure, based on changes in laboratory features and 

radiology reports. Each of these features can be readily extracted from electronic health records to auto-populate models 

triggered by the start of mechanical ventilation.  

 

 

 

 

 

 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 28, 2021. ; https://doi.org/10.1101/2021.01.26.21250316doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.26.21250316
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

REFERENCES 
1 Bellani G, Laffey JG, Pham T, et al. Epidemiology, patterns of care, and mortality for patients with acute 

respiratory distress syndrome in intensive care units in 50 countries. JAMA - J Am Med Assoc 2016. 
DOI:10.1001/jama.2016.0291. 

2 Rubenfeld GD, Caldwell E, Peabody E, et al. Incidence and outcomes of acute lung injury. N Engl J Med 2005. 
DOI:10.1056/NEJMoa050333. 

3 Herridge MS, Moss M, Hough CL, et al. Recovery and outcomes after the acute respiratory distress syndrome 
(ARDS) in patients and their family caregivers. Intensive Care Med. 2016. DOI:10.1007/s00134-016-4321-8. 

4 Herridge MS, Tansey CM, Matté A, et al. Functional disability 5 years after acute respiratory distress syndrome. N 
Engl J Med 2011. DOI:10.1056/NEJMoa1011802. 

5 Ware LB, Matthay MA. The acute respiratory distress syndrome. N. Engl. J. Med. 2000. 
DOI:10.1056/NEJM200005043421806. 

6 Thompson BT, Chambers RC, Liu KD. Acute Respiratory Distress Syndrome. N Engl J Med 2017; 377: 562–72. 
7 Bauer TT, Ewig S, Rodloff AC, Müller EE. Acute respiratory distress syndrome and pneumonia: A comprehensive 

review of clinical data. Clin. Infect. Dis. 2006. DOI:10.1086/506430. 
8 Ware LB, Calfee CS. Biomarkers of ARDS: what’s new? Intensive Care Med 2016. DOI:10.1007/s00134-015-

3973-0. 
9 Blondonnet R, Constantin JM, Sapin V, Jabaudon M. A Pathophysiologic Approach to Biomarkers in Acute 

Respiratory Distress Syndrome. Dis. Markers. 2016. DOI:10.1155/2016/3501373. 
10 Taylor RA, Pare JR, Venkatesh AK, et al. Prediction of In-hospital Mortality in Emergency Department Patients 

with Sepsis: A Local Big Data-Driven, Machine Learning Approach. Acad Emerg Med 2016. 
DOI:10.1111/acem.12876. 

11 Wellner B, Grand J, Canzone E, et al. Predicting Unplanned Transfers to the Intensive Care Unit: A Machine 
Learning Approach Leveraging Diverse Clinical Elements. JMIR Med Informatics 2017. 
DOI:10.2196/medinform.8680. 

12 Goto T, Camargo CA, Faridi MK, Yun BJ, Hasegawa K. Machine learning approaches for predicting disposition 
of asthma and COPD exacerbations in the ED. Am J Emerg Med 2018. DOI:10.1016/j.ajem.2018.06.062. 

13 Berlyand Y, Raja AS, Dorner SC, et al. How artificial intelligence could transform emergency department 
operations. Am. J. Emerg. Med. 2018. DOI:10.1016/j.ajem.2018.01.017. 

14 Bird S, Bird S, Loper E. NLTK�: The natural language toolkit NLTK�: The Natural Language Toolkit. Proc 
ACL-02 Work Eff tools Methodol Teach Nat Lang Process Comput Linguist 1 2016. 
DOI:10.3115/1225403.1225421. 

15 Solti I, Cooke CR, Xia F, Wurfel MM. Automated classification of radiology reports for acute lung injury: 
Comparison of keyword and machine learning based natural language processing approaches. In: Proceedings - 
2009 IEEE International Conference on Bioinformatics and Biomedicine Workshops, BIBMW 2009. 2009. 
DOI:10.1109/BIBMW.2009.5332081. 

16 Le Q, Mikolov T. Distributed representations of sentences and documents. In: 31st International Conference on 
Machine Learning, ICML 2014. 2014. 

17 Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: Machine learning in Python. J Mach Learn Res 2011. 
18 Akiba T, Sano S, Yanase T, Ohta T, Koyama M. Optuna: A Next-generation Hyperparameter Optimization 

Framework. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data 
Mining. 2019. DOI:10.1145/3292500.3330701. 

19 Good PI. Resampling methods: A practical guide to data analysis. 2006 DOI:10.1007/0-8176-4444-X. 
20 Bellani G, Laffey JG, Pham T, Fan E. The LUNG SAFE study: A presentation of the prevalence of ARDS 

according to the Berlin Definition! Crit. Care. 2016. DOI:10.1186/s13054-016-1443-x. 
21 Constantin JM, Jabaudon M, Lefrant JY, et al. Personalised mechanical ventilation tailored to lung morphology 

versus low positive end-expiratory pressure for patients with acute respiratory distress syndrome in France (the 
LIVE study): a multicentre, single-blind, randomised controlled trial. Lancet Respir Med 2019. 
DOI:10.1016/S2213-2600(19)30138-9. 

22 Le S, Pellegrini E, Green-Saxena A, et al. Supervised Machine Learning for the Early Prediction of Acute 
Respiratory Distress Syndrome (ARDS). medRxiv 2020; : 2020.03.19.20038364. 

23 Le S, Pellegrini E, Green-Saxena A, et al. Supervised machine learning for the early prediction of acute respiratory 
distress syndrome (ARDS). J Crit Care 2020. DOI:10.1016/j.jcrc.2020.07.019. 

24 Ding XF, Li JB, Liang HY, et al. Predictive model for acute respiratory distress syndrome events in ICU patients 
in China using machine learning algorithms: A secondary analysis of a cohort study. J Transl Med 2019. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 28, 2021. ; https://doi.org/10.1101/2021.01.26.21250316doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.26.21250316
http://creativecommons.org/licenses/by-nc-nd/4.0/


DOI:10.1186/s12967-019-2075-0. 
25 Yang P, Wu T, Yu M, et al. A new method for identifying the acute respiratory distress syndrome disease based on 

noninvasive physiological parameters. PLoS One 2020. DOI:10.1371/journal.pone.0226962. 
26 Zeiberg D, Prahlad T, Nallamothu BK, Iwashyna TJ, Wiens J, Sjoding MW. Machine learning for patient risk 

stratification for acute respiratory distress syndrome. PLoS One 2019. DOI:10.1371/journal.pone.0214465. 
27 Reamaroon N, Sjoding MW, Lin K, Iwashyna TJ, Najarian K. Accounting for label uncertainty in machine 

learning for detection of acute respiratory distress syndrome. IEEE J Biomed Heal Informatics 2019. 
DOI:10.1109/JBHI.2018.2810820. 

28 Chbat NW, Chu W, Ghosh M, et al. Clinical knowledge-based inference model for early detection of acute lung 
injury. Ann Biomed Eng 2012. DOI:10.1007/s10439-011-0475-2. 

29 Koenig HC, Finkel BB, Khalsa SS, et al. Performance of an automated electronic acute lung injury screening 
system in intensive care unit patients. Crit Care Med 2011. DOI:10.1097/CCM.0b013e3181feb4a0. 

30 Herasevich V, Yilmaz M, Khan H, Hubmayr RD, Gajic O. Validation of an electronic surveillance system for 
acute lung injury. Intensive Care Med 2009. DOI:10.1007/s00134-009-1460-1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 28, 2021. ; https://doi.org/10.1101/2021.01.26.21250316doi: medRxiv preprint 

https://doi.org/10.1101/2021.01.26.21250316
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

Study Design Setting N Dataset ARDS 
definition 

Ground 
truth 

Labeling 

Timing of 
predictio

n 

ML 
algorithm 

Features included Highly ranked 
Features Performance 

Le et al. 
202023 

Retrospective ICU 
9919 (296 

ARDS) 
MIMIC-

III 
Berlin 

definition 

Berlin 
definition 

and mention 
of bilateral 
opacities or 
infiltrates 

in the 
patient's 

radiology 
report 

Detection 
of ARDS 
at onset, 

and 
prediction 
at 12- 24- 
and 48 hr 
prior to 
onset 

XGBoost 

Age; 
Antibiotics; 
Bilirubin; 

Blood Culture; 
Creatinine; 

Diastolic BP; 
Fluid Bolus; 

GCS; 
HR; 
INR; 

Lactate; 
MAP; 

Organ Dysfunction; 
PP; 

Platelets; 
Resp. Rate; 

SpO2; 
Systolic BP; 

Temp.; 
Urine Output; 

WBC; 
pH 

Antibiotics; MAP; 
PH, RR and SpO2 
(note – this is for 

the non-
mechanically 

ventilated cohort; 
data not made 

available for the 
mechanically 

ventilated cohort) AUC value  0.843 for 
detection among 

mechanically ventilated 
subset 

Ding et al. 
201924 

Retrospective 
analysis of 

prospectively 
collected data 

ICU 
296  (91 
ARDS) 

5 
hospitals 

in 
Beijing, 
China 

Berlin 
definition 

Automated 
Berlin 

Criteria 
application 

Predicting 
the onset 
of ARDS 
24 after 

admission 

Random 
forest 

minimum 
respiratory rate, 

maximum respiratory 
rate, minimum 
haematocrit, 

minimum systolic 
blood pressure, 

minimum 
mean arterial pressure 

(MAP), maximum 
heart 

rate, minimum 
glucose, minimum 
white blood cell 
(WBC) count, 

minimum heart rate, 
minimum 

temperature, 
minimum sodium 

level. 

Min/max RR; Min 
hematocrit (ARDS 
assoc with lower 
Hct); min SBP; 
Min MAP; Max 

HR; Min Glucose 
(ARDS assoc with 
higher glucose); 

Min WBC (ARDS 
assoc with higher 
WBC); Min HR; 

Min Temperature; 
Min Sodium 

(ARDS assoc with 
lower sodium); 

Age; Min 
Creatinine; Max 

MAP; PH; 
APACHE II 

AUC 0.83 

Yang et al. 
201925 

Retrospective ICU 8702 
MIMIC-

III 
Berlin 

definition 

labeled based 
on Berlin 
definition 
P/F< 300, 

mechanically 
ventilated, in 
ICU > 48 hrs 

identify 
ARDS 

by 
monitorin

g P/F 
values 

through a 
variety of 
noninvasi

ve 
parameter

s 

XGBoost 

SpO�; S/F; OSI; 
PaO�; P/F; OI; 

FiO�(%); 
Temperature (˚C); 

Respiratory 
rate(b/min); Tidal 

volume(mL);   Tidal 
volume(mL/kg); 

Minute ventilation 
volume(mL/min Peak 

pressure(cmH�O); 
plateau 

pressure(cmH�O); 
Mean air 

pressure(cmH�O);  
PEEP(cmH�O); 
Heart rate(bpm);  

Nisbp(mmHg); Nidbp 
(mmHg);  Nimbp 

(mmHg); GCS 

SpO2; S/F; FiO2;  
PEEP, Mean 

airway pressure, 
respiratory rate 

AUC  0.9128 

Zeiberg et al. 
201826 

Retrospective ICU 
1621 (51 
ARDS) 

Single 
hospital 

Berlin 
definition 

Labeled by 
two critical 
care trained 
physicians 

Predicting 
ARDS 

from the 
time of 

moderate 
Hypoxia 

Regulariz
ed logistic 
regression 

baseline patient 
characteristics 

(e.g., age, race, and 
sex) and structured, 
time-stamped data 

elements (laboratory 
values, vital signs, 

medications 
administered 

Min PaO2/FiO2 
ratio; high HR; Nl 

Hgb; High 
Albumin; Low 

minimum SpO2; : 
nl Plt count; values 
decreasing ARDS 
prediction: missing 

lactate count; 
missing PH; 

Location Schedule 
Chemotherapy; 

middle age range 
(47-58) 

AUC of 0.81 (95% CI: 
0.73–0.88) 

Reamaroon 
et al. 201827 

Retrospective 
Not 

reported 
401 (48 
ARDS) 

Single 
hospital 

Berlin 
definition 

Group of 
expert 

clinicians 
labeled 

ARDS and 
non-ARDS 
based on 

Berlin 
definition 
and onset 

time between 
positive 
patients 
provided 

confidence 
level 

Predicting 
ARDS 
with 

uncertain 
ARDS 
positive 
labels 

Support 
Vector 

Machine 

Not reported   
 

Not reported 

AUROC of 0.8157 with 
specificity at 95% 

sensitivity of 0.5285 on 
uncertain labels 

Schenck et 
al. 201825 

Retrospective 
Not 

reported 

4361 
ARDS 
(458 

riARDS) 

ARDSNet 
trials 

PaO2:FIO
2 > 300 
on the 

first study 
day 

Not reported  

Prediction 
of 

riARDS 
at 

Enrollmen

Logistic 
regression 

PaO2:FIO2 
at screening 

Change in PaO2:FIO2 
from 

screening to 

 
 

Not reported 
ROC 0.82 (95% CI, 0.78-

0.85) 
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following 
enrollmen
t; and/or 

(2) 
achieving 
unassisted 
breathing 

on the 
first study 

day 
following 
enrollmen

t and 
remaining 
free from 
assisted 

breathing 
for at least 

48 h. 

t enrollment, No use of 
vasopressor, FIO2 ≤ 

0.45 
Bilirubin 

Zaglam et al. 
2014 26 

Retrospective 
Pediatric 
Intensive 

Care 

90 (53 
ARDS) 

TARD 
study: 

Transfusi
on 

Associate
d 

Respirator
y Distress 

presence 
of 

bilateral 
opacities 
in CXR 
based 

Consensu
s 

Conferenc
e (AECC) 

criteria 

Two 
intensivists 

labeled chest 
radiographs  

computer-
aided 

diagnosis 
system for 

the 
detection 
of ARDS 
based on 

CXR 

Support 
Vector 

Machine 
on feature 
extracted 

from 
CXR 

Spectral features 
patches and opacities 

 
 

N/A 

Sensitivity of 90.6% at a 
specificity of 86.5% 

Chbat et al. 
201228 

Retrospective ICU 
526 (216 

ALI) 

Multidisci
plinary 

Epidemiol
ogy and 

Translatio
nal 

Research 
in 

Intensive 
Care 

(METRIC
) 

DataMart 

ALI: 
American 
European 
Consensu

s 
Conferenc
e (AECC) 

criteria 

 
Two 

independent 
physician 
review of 
radiologic 
assessment 

of 
bilateral 

infiltrates 
and 

PaO2/FiO2 
ratio 

thresholds  

Early 
detection 
of ALI 

Rule-
based 
fuzzy 

inference 
systems, 
Bayesian 
networks, 
finite state 
machines 

Pre-ICU data included 
patients’ chronic 

diseases and surgical 
history;  

ICU data included 
demographics, 

monitoring data, 
medications, 

ventilation settings, 
laboratory findings, 
and current health 
status information. 

 
 
 
 
 
 

Not reported 
71.7–92.6% sensitivity 

and 
60.3–78.4% specificity 

Koenig et al. 
201129 

Prospective ICU 
1270 (84 

ALI) 

Hospital 
of the 

University 
of 

Pennsylva
nia 

ALI: 
American 
European 
Consensu

s 
Conferenc
e (AECC) 

criteria 

Screening by 
research 

coordinator 
with two 
physician 

adjudication 
when 

discrepancy 
between 

automated 
screen 

detection and 
coordinator 
detection 

Early 
recognitio
n of Acute 

lung 
injury 
(ALI) 

No ML 
model. 

Automate
d 

Electronic 
Acute 
Lung 
Injury 

Screening 
tool 

(ASSIST 
screening 

tool) 

  
 
 
 
 
 

ABG results 
CXR report 

 
 
 
 
 
 

Not reported 

Sensitivity of 97.6% 
(95% 

confidence interval, 96.8 
–98.4%) and a specificity 

of 97.6% (95% 
confidence interval, 96.8 

–98.4%) 

Solti et al. 
200915 

Prospective 
All in-
patients 

856 

University 
of 

Washingt
on Health 

System  

ALI: 
American 
European 
Consensu

s 
Conferenc
e (AECC) 

criteria 

11 
Physicians 

annotated 96 
CXR reports 
as ALI or not 

Machine-
learning 

based 
classificat
ion ALI 

from 
chest 

radiograp
hy 

Maximum 
Entropy 

(MaxEnt) 
algorithm 

 
 
 

N/A 

 
 
 

N/A Recall=0.91, 
Precision=0.90 and F-

measure=0.91 

Herasevich et 
al. 200930 

  
3795 (325 

ALI) 

Single 
Healthcar
e System 

ALI: 
American 
European 
Consensu

s 
Conferenc
e (AECC) 

criteria 

Two 
clinician 
review of 
‘sniffer’ 
detected 

cases 

Two 
features: 
PaOs/FiO
2ratio and 
radiology 
report if 
included 
‘bilateral’ 

and 
‘infiltrate’ 

OR 
‘edema’ 

No ML 
model. 
Rule-

based ALI 
Sniffer 

based on 
presence 

of 
PaO2/FiO
2 < 300 

and 
radiology 

report 
features 

 
 
 
 

N/A 

 
 
 
 

N/A 
Sensitivity 96.3% (93.6 -
98.1); Specificity 89.4 % 

(88.4 - 90.4); PPV 46; 
NPV 99.6 

 
Table 1 - Recent publications applying ML to predict ARDS onset/diagnosis (limited to non-COVID ARDS studies). 
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ARDS key words 

ARDS, biapical, bibasilar, bilateral, edema, 
infiltrate, parahilar, perihilar,  

 
Cardiovascular-related keywords 
 

cardiac, cardiomegaly, cardiac, congestive, 
enlarged, failure, heart, flow 

 
Other key words 
 

widespread, blood, coarse, consolidation, cysts, 
extensive, brochogram, bronchial 
Lung, opacification, groundglass, opacities, 
opacity, pulmonary, peribronchial cuffing, 
pneumonia, pneumocyte, air, airspace, alveolar, 
aspiration, bronchovascular, bullae, air, airspace, 
coalescent, diffuse, dilatation, pleural, effusion, 
fibrosis, inverted, septal, lines, multifocal, pattern, 
pedicle, proliferation, reticular, size, vascular, 
volume 

Table 2 - List of keywords used for text summarization from radiographic reports, organized by domain 
(ARDS/Cardiovascular/Other). 
 
 
 
 
 number of 

estimators 
criterion max 

depth 
min 
samples 
leaf 

min samples 
split 

max feature 

Model 1 2100 gini 4 20 8 sqrt 
Model 2 2300 entropy 4 10 10 sqrt 
Model 3 2400 gini 6 10 14 auto 
Model 4 2000 gini 7 16 19 sqrt 
Table 3 - Hyperparameters for models 1, 2, 3 and 4 that provided the highest performance (avg precision score). 
 
 
 
 

Characteristic ARDS non-ARDS 
Median age (range) 63 (19-119) 67(18-127) 
Race or ethnic group – no. of 
patients (%) 

  

White 165 (58.7) 594 (60.5) 
Black 47 (16.7) 146 (14.9) 
Asian 20 (7.1) 56 (5.7) 
Native Americans 1 (0.4) 5 (0.5) 
Multiple or Unknown 48 (17.1) 181 (18.4) 
Gender – no. of patients (%)   
Female 111 (39.5) 345 (35.1) 
Male 170 (60.5) 637 (64.9) 
Totals 281 982 
 
Table 4 – Demographics for ARDS and non-ARDS patients in the cohort. 
 
 
 
FIGURES 
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Figure 1 - Flow diagram of study cohort selection and ground truth labeling by senior pulmonary critic
physicians. These criteria were used to define 281 gold standard ARDS patients from among the patients 
Northwell Health between May 2016 and April 2019.  
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Figure 2 – Classifier performance. Five sets of models were trained using features extracted from (1) frequenc
1933 medical lab tests (per hour) from the admission to P/F measurement; (2) medical lab tests, mechanical ven
measurements, demographic information; (3) radiology reports (keywords in Table 2); (4) combined medical l
with radiology reports features; (5) model (1), (2) and (3) outputs  (two stage model). The training was perform
cross-validation framework with 100 splits, and the performance metrics were measured for each split. Left: The 
operating curve of the trained models.  Middle: The area under the ROC curve; and Right: the precision (at 20%
for the same models.  
 
 
 
 

Figure 3 - Feature importance scores for Model 1. Feature importance scores for a random forest classifier
using frequency of timing of laboratory tests (top 100 features shown). The orange (or blue) color for a box indica
the associated lab test was acquired in a higher rate in the ARDS patients (or non-ARDS patients). For e
Myelocytes % acquisition rate is a feature with high importance in discriminating between ARDS versus non-AR
is higher in ARDS compared to non-ARDS. 
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Figure 4 – Feature importance scores for Model 2. (A) The feature importance scores for Model 2 using 
values extracted using a random forest model in a cross-validation framework. The orange (or blue) color fo
indicates that the associated lab test has a higher value in the ARDS patients (or non-ARDS patients). For exam
Arterial is a feature with high importance in discriminating between ARDS versus non-ARDS, and is lower in
compared to non-ARDS; and alkaline phosphatase is higher in ARDS compared to non-ARDS.  (B) The
importance score for model 2 using change in slope of the values extracted using random forest model in 
validation framework. The orange (or blue) color for a box indicates that the magnitude of change in the associ
test is greater in the ARDS patients (or non-ARDS patients). For example, change in arterial PCO2 has high imp
for discriminating between respiratory failure likely due to ARDS versus non-ARDS, and a greater magnitude of
in arterial PCO2 over four days is more likely to be seen in ARDS as compared to non-ARDS; similarly, change 
gap has high importance for discriminating between respiratory failure likely due to ARDS versus non-ARDS
greater magnitude of change in anion gap is more likely to be seen in non-ARDS as compared to ARDS. The 
below each feature indicates its importance score has passed the significance threshold (p<0.01).  
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Figure 5 – Performance by patient for Models 2 and 3. The scatter plot shows the output of Model 3 (traine
radiology reports) versus Model 2 (trained using laboratory tests) for both ARDS (orange) and non-ARDS (blue) p
The distributions of the probabilities for Models (2) and (3) are shown on upper and right side of the scatter plot 
ARDS and non-ARDS patients. Underlying heterogeneity among patients makes a definitive classification diffic
with access to both radiological reports and laboratory tests.  
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Figure 6 – Classification error by feature. The relationship between classification error, ventilation, and demo
information (x-axis) plotted against error correlation (arbitrary units; y-axis). The predictions generated by Model
a higher error with increasing age of the patient, and error was inversely correlated with respiration failure 
meaning the framework performed better for patients with a history of respiratory failure. 
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SUPPLEMENT 
Potassium, Serum 
Sodium, Serum 
Blood Urea Nitrogen, Serum 
Calcium, Total Serum 
Creatinine, Serum 
Carbon Dioxide, Serum 
Glucose, Serum 
Chloride, Serum 
eGFR if Non African American 
eGFR if African American 
pCO2, Arterial 
pO2, Arterial 
HCO3, Arterial 
Base Excess, Arterial 
Oxygen Saturation, Arterial 
pH, Arterial 
RBC Count 
Platelet Count - Automated 
Hemoglobin 
Hematocrit 
WBC Count 
Mean Cell Volume 
Mean Cell Hemoglobin Conc 
Mean Cell Hemoglobin 
Red Cell Distrib Width 
Anion Gap, Serum 
Blood Gas Arterial - Potassium 
Blood Gas Arterial - Sodium 
Magnesium, Serum 
Blood Gas Arterial - Calcium, Ionized 
Phosphorus Level, Serum 
Activated Partial Thromboplastin Time 
Albumin, Serum 
Bilirubin Total, Serum 
Protein Total, Serum 
Alanine Aminotransferase (ALT/SGPT) 
Aspartate Aminotransferase (AST/SGOT) 
Alkaline Phosphatase, Serum 
INR 
Prothrombin Time, Plasma 
Auto Neutrophil % 
Auto Lymphocyte % 
Auto Monocyte % 
Auto Eosinophil % 
Auto Lymphocyte # 
Auto Neutrophil # 
Auto Monocyte # 
Auto Basophil % 
Auto Eosinophil # 
Auto Basophil # 
Creatine Kinase, Serum 
Antibody Screen 
Specific Gravity 
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Urine Appearance 
Ketone - Urine 
Nitrite 
Color 
Bilirubin 
Protein, Urine 
Urobilinogen 
Leukocyte Esterase Concentration 
White Blood Cell - Urine 
Red Blood Cell - Urine 
Age 
Gender 
PaO2 Value 
PaO2/FiO2 
PEEP/CPAP (cm H20) 
Oxygen Concentration (%) 
Respiratory Failure on Problem List 

 
Table S1 - Medical lab tests, demographic information and ventilator measurements used for identification of ARDS 
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Features for which the value (in the case of labs, for the 
proceeding 24 hours before ARDS inclusion criteria) was 
statistically significant for discriminating between ARDS 
compared to non-ARDS  

Median Importance Score Value in 
ARDS group 
relative to non-
ARDS 

   
PEEP/CPAP (cm H20) 0.0397 Higher 
   
Albumin, Serum 0.0346 Lower 
   
pH, Arterial 0.0278 Lower 
   
Calcium, Total Serum 0.0265 Lower 
   
Blood Gas Arterial - Calcium, Ionized 0.0170 Lower 
   
PaO2/FiO2 0.0170 Lower 
   
pCO2, Arterial 0.0167 Higher 
   
Base Excess, Arterial 0.0157 Lower 
   
Oxygen Saturation, Arterial 0.0152 Lower 
   
Blood Gas Arterial - Sodium 0.0140 Lower 
   
Auto Basophil # 0.0138 Higher 
   
Alkaline Phosphatase, Serum 0.0130 Higher 
   
Age 0.0129 Lower 
   
Auto Monocyte % 0.0106 Lower 
   
PaO2_Value 0.0099 Lower 
   
WBC Count 0.0099 Higher 
   
Protein, Urine 0.0087 Higher 
   
Auto Lymphocyte # 0.0074 Lower 
   
Blood Gas Arterial - Potassium 0.0073 Lower 
   
Auto Neutrophil # 0.0061 Higher 
   
Auto Monocyte # 0.0060 Higher 
   
Ketone - Urine 0.0058 Higher 
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Auto Eosinophil % 0.0058 Lower 
   
Specific Gravity 0.0038 Lower 
   
Urobilinogen 0.0038 Higher 
   
Auto Eosinophil # 0.0035 Lower 
   
Oxygen Concentration (%) 0.0034 Higher 
   
Leukocyte Esterase Concentration 0.0021 Higher 
   
Color 0.0018 Higher 
   
Urine Appearance 0.0015 Higher 
   
Antibody Screen 0.0011 Higher 
   
Bilirubin 0.0010 Higher 
   
Had_RespiratoryFailure_On_Problem_List 0.0010 Higher 
   
Gender 0.0006 Higher 
   
Nitrite 0.0006 Higher 
 
 
Features for which the change in value over 4 days preceding 
ARDS inclusion criteria (slope) was statistically significant 
for discriminating between ARDS compared to non-ARDS 

Median 
Importance 
Score 

Relative rate of change 
(ARDS versus non-ARDS) 

   
* pCO2, Arterial 0.0290 Increased 
   
* pO2, Arterial 0.0236 Increased 
   
* pH, Arterial 0.0130 Decreased 
   
* Anion Gap, Serum 0.0102 Decreased 
   
* eGFR if African American 0.0086 Increased  
   
* eGFR if Non African American 0.0079 Increased 
   
* Prothrombin Time, Plasma 0.0046 Increased 
Relative rate of change indicates the magnitude of the slope (change). For example, a greater change in 
arterial pCO2 suggests ARDS classification instead of non-ARDS. 
 
Table S2 – Features with high importance scores and magnitude of change, indicating ARDS as compared to non-ARDS 
as a cause of respiratory failure requiring mechanical ventilation.  
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Figure S1 – Overview of the Machine Learning Process. Multiple models were built leveraging different combinations 
of input features. In each case models were trained using an 80/20 training/test data split and evaluated over 100 
permutations using test data. All five final models were evaluated using data withheld from the entire procedure.  
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Figure S2 – Feature importance scores for Mortality Prediction. (A) The feature importance scores for a pr
model discriminating ARDS patients who would not recover, versus those that were discharged  (feature scor
ranking performed as indicated above). Similarly, feature importance scoring is shown for patients that would not 
versus those that would be discharged from the ICU for the non-ARDS group (B). The asterisk below each
indicates its importance score has passed the significance threshold (p<0.01).  
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