
 1 

SARS-CoV-2 infection in pregnancy is associated with robust inflammatory response at 
the maternal-fetal interface 
 

Alice Lu-Culligan1, Arun R. Chavan1, Pavithra Vijayakumar2, Lina Irshaid3, Edward M. 

Courchaine4,5, Kristin M. Milano2, Zhonghua Tang2, Scott D. Pope1, Eric Song1, Chantal B.F. 

Vogels6, William J. Lu-Culligan4,5, Katherine H. Campbell2, Arnau Casanovas-Massana6, Santos 

Bermejo7, Jessica M. Toothaker8,9, Hannah J. Lee1, Feimei Liu1, Wade Schulz10, John 

Fournier11, M. Catherine Muenker6, Adam J. Moore6, Yale IMPACT Team, Liza Konnikova8,2, 

Karla M. Neugebauer4, Aaron Ring1, Nathan D. Grubaugh6, Albert I. Ko6, Raffaella Morotti3, 

Seth Guller2, Harvey J. Kliman2, Akiko Iwasaki1,12,13*, Shelli F. Farhadian11,* 

 
1Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA 
2Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, 

New Haven, CT, USA 
3Department of Pathology, Yale School of Medicine, New Haven, CT, USA 
4Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA 
5Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA 
6Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, 

CT, USA 
7Section of Pulmonary and Critical Care Medicine, Department of Medicine, Yale School of 

Medicine, New Haven, CT, USA 
8Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA 
9Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA 
10Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA 
11Section of Infectious Diseases, Department of Medicine, Yale School of Medicine, New 

Haven, CT, USA 
12Department of Molecular, Cellular and Developmental Biology, New Haven, CT, USA 
13Howard Hughes Medical Institute, Chevy Chase, MD, USA 

 

*Correspondence: akiko.iwasaki@yale.edu, shelli.farhadian@yale.edu 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted January 26, 2021. ; https://doi.org/10.1101/2021.01.25.21250452doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2021.01.25.21250452
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

Abstract 
  

Pregnant women appear to be at increased risk for severe outcomes associated with COVID-

19, but the pathophysiology underlying this increased morbidity and its potential impact on the 

developing fetus is not well understood. In this study of pregnant women with and without 

COVID-19, we assessed viral and immune dynamics at the placenta during maternal SARS-

CoV-2 infection. Amongst uninfected women, ACE2 was detected by immunohistochemistry in 

syncytiotrophoblast cells of the normal placenta during early pregnancy but was rarely seen in 

healthy placentas at full term. Term placentas from women infected with SARS-CoV-2, 

however, displayed a significant increase in ACE2 levels. Using immortalized cell lines and 

primary isolated placental cells, we determined the vulnerability of various placental cell types to 

direct infection by SARS-CoV-2 in vitro. Yet, despite the susceptibility of placental cells to 

SARS-CoV-2 infection, viral RNA was detected in the placentas of only a subset (~13%) of 

women in this cohort. Through single cell transcriptomic analyses, we found that the maternal-

fetal interface of SARS-CoV-2-infected women exhibited markers associated with pregnancy 

complications, such as preeclampsia, and robust immune responses, including increased 

activation of placental NK and T cells and increased expression of interferon-related genes. 

Overall, this study suggests that SARS-CoV-2 is associated with immune activation at the 

maternal-fetal interface even in the absence of detectable local viral invasion. While this likely 

represents a protective mechanism shielding the placenta from infection, inflammatory changes 

in the placenta may also contribute to poor pregnancy outcomes and thus warrant further 

investigation. 
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Introduction 
   

Coronavirus disease 2019 (COVID-19), due to SARS-CoV-2 infection, is a public health 

emergency that has impacted the lives of millions of people around the world. The effect of 

SARS-CoV-2 infection in pregnant women is of particular concern: population-based studies 

suggest that pregnant women with COVID-19 are at increased risk for severe illness compared 

to non-pregnant women with COVID-19(1).  SARS-CoV-2 infection during pregnancy has also 

been associated with increased risk of pregnancy complications such as preterm birth, 

premature rupture of membranes, and preeclampsia(2-4). However, the mechanisms underlying 

these poor outcomes are unknown, and their dependence on SARS-CoV-2 infection of the 

placenta remains poorly understood. 

 

Studies of other coronaviruses suggest the potential for placental pathology during maternal 

coronavirus infection both through direct viral invasion at the placenta and through a secondary 

inflammatory reaction. Mouse hepatitis virus (MHV), a coronavirus of laboratory mice, infects 

placental cells in vivo(5), leading to placental inflammation and increased susceptibility to 

subsequent bacterial infection of the placenta(6). During the SARS pandemic of 2008, maternal 

infection with SARS-CoV-1 was associated with histological abnormalities but not with viral 

invasion of the placenta(7). Case reports during the current COVID-19 pandemic have 

demonstrated that SARS-CoV-2 is capable of infecting the placenta(8-10); however, the 

mechanism for viral entry remains unclear. While variable findings have been reported(11-15) 

multiple recent transcriptomic analyses of healthy placentas have suggested limited expression 

of the canonical SARS-CoV-2 receptor ACE2 in the placenta and little to no co-expression of 

ACE2 with its classical co-factor TMPRSS2 at the transcriptional level(11-13). Thus, it remains 

unclear whether the placenta is susceptible to SARS-CoV-2 infection under normal 

physiological conditions or under conditions of systemic inflammation, such as that which occurs 

with maternal COVID-19. Moreover, it remains unknown whether placental pathology develops 

in the absence of viral infection of the placenta(10, 16, 17).   

 

In this study, we investigated the susceptibility of the human placenta to SARS-CoV-2 infection 

over the course of pregnancy, through in situ analysis of ACE2 protein expression and through 

in vitro studies. Furthermore, we describe in vivo immune responses at the maternal-fetal 

interface in response to maternal SARS-CoV-2 infection during pregnancy. 
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Results 

  

Clinical, virological, and histological features of COVID-19 cases 
A total of 39 women were identified as positive for COVID-19 by SARS-CoV-2 reverse 

transcription quantitative PCR (RT-qPCR) via nasopharyngeal swab prior to or at the time of 

delivery hospitalization. Universal screening of women presenting to Labor and Birth at Yale 

New Haven Hospital began on April 2, 2020.  Two women were found to be SARS-CoV-2 RT-

qPCR-positive before the universal screening period began; both were symptomatic with 

pneumonia. During the universal screening period, an additional 37 were identified as SARS-

CoV-2 positive. Twenty-two (56%) of the SARS-CoV-2-infected women had symptomatic 

COVID-19. There were five cases of severe COVID-19 disease, requiring the administration of 

supplemental oxygen or ICU stay. Thirty-eight of the 39 pregnancies resulted in live births, with 

a median Apgar score of 9 (range 4-9). Clinical and demographic information for the COVID-19 

cases is presented in Table 1. 

  

Among the 15 placentas tested by RT-qPCR for the presence of SARS-CoV-2, viral RNA was 

detected in two (~13%) of the placentas (Supplementary Table 1). One was from a 32-year-old 

woman who presented in labor at 38 weeks of gestation with symptoms of pneumonia, not 

requiring supplemental oxygen, who progressed to a healthy delivery. The neonate tested 

negative for SARS-CoV-2 by nasopharyngeal swab RT-qPCR at the time of delivery. The other 

was from a woman who presented at 22 weeks of gestation with severe COVID-19 pneumonia 

and developed preeclampsia and fetal demise, resulting in fetal loss at 22 weeks. This case was 

excluded from the placental analyses presented here, since the details of this case have been 

reported previously(10).  Plasma from 12 SARS-CoV-2 infected women was tested for SARS-

CoV-2 spike S1 protein-specific IgG and IgM antibodies (anti-S1-IgG and -IgM). No apparent 

differences in ELISA absorbance values were observed between symptomatic and 

asymptomatic infected mothers, or between pregnant and non-pregnant SARS-CoV-2 infected 

individuals (Supplementary Figure 1). 

  

A total of 28 placentas from 27 COVID-19 mothers were available for histological analysis (one 

COVID-19 case resulted in the delivery of dizygotic twins). The COVID-19 placental cases 

available for examination did not differ from the overall cohort of COVID-19 pregnancies during 

the study period by maternal age, gestational age, mode of delivery, neonatal outcomes, or co-

morbidities (Table 1). Placental specimens were examined by two independent pathologists 
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blinded to the patient’s COVID-19 status, and were assessed for the presence of villitis, 

chorioamnionitis, intervillositis, for increased decidual lymphocytes, and for fetal and maternal 

vascular malperfusion. No significant differences were seen between cases and controls for 

these features (Supplementary Table 2). However, increased intervillous fibrin was seen in 33% 

of cases (9/27) but in none of the controls (Figure 1; p=0.036). We found no association 

between the presence of increased intervillous fibrin and clinical features, including the 

presence of COVID-19 symptoms, co-morbidities, mode of delivery, or BMI. Overall, our 

analysis suggests that increased intervillous fibrin may be the only distinct histologic feature 

observed in placentas from COVID-19 positive mothers. 

  

Decreased ACE2 protein expression in the placenta over the course of normal pregnancy  
We assessed the potential for SARS-CoV-2 infection of the placenta by examining placental 

expression of ACE2, the canonical receptor required for SARS-CoV-2 infection. Prior 

transcriptome studies have suggested that ACE2 is absent or expressed at low levels in 

placenta. Consistent with these previous reports, our analysis of bulk and single-cell RNA 

sequencing data in placenta from COVID-19 cases and controls demonstrates very low levels of 

ACE2 gene expression at the term placenta (Supplementary Figure 2). However, when protein-

level ACE2 expression was examined by immunohistochemistry, we found ACE2 to be highly 

expressed in syncytiotrophoblast cells in first and second trimester placentas, with ACE2 protein 

expression virtually absent in normal term placentas obtained from pre-pandemic controls 

(Figure 2B-F). 

 

While the expression pattern of ACE2 in the placenta decreased steadily over gestational age in 

placentas derived from healthy pregnancies (Figure 2I), we found that ACE2 protein was 

present at significantly higher levels in term placenta collected from COVID-19 cases (Figure 

2J). These findings suggest that detection of ACE2 mRNA expression is not a reliable surrogate 

for ACE2 protein expression in the placenta and, importantly, that ACE2-mediated risk for 

placental infection by SARS-CoV-2 may vary over the course of pregnancy, with our detection 

of higher ACE2 levels in the first and second trimesters suggesting the most vulnerability may 

exist prior to term. 

 

In vitro infection of primary isolated cytotrophoblasts by SARS-CoV-2 
To determine whether the low rate of placental infection we observed in our case series was 

due to intrinsic resistance to SARS-CoV-2 infection by placental cells, we performed in vitro 
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infections of placental cells to determine the infectious potential of SARS-CoV-2 at the placenta. 

We infected primary placental cells isolated from healthy term deliveries with a replication-

competent infectious clone of SARS-CoV-2 expressing the fluorescent reporter mNeonGreen 

(icSARS-CoV-2-mNG)(18) for 24 hours. 
  

We observed no detectable infection of primary isolated syncytiotrophoblasts (derived from 

cytotrophoblasts allowed to spontaneously differentiate for 72-96 hours), Hofbauer cells, or 

fibroblasts following 24 hours of infection. However, we found infection of primary isolated 

cytotrophoblasts, as observed by mNeonGreen reporter detection and staining for SARS-CoV-2 

nucleocapsid (NP) (Figure 3A). These findings were consistent with SARS-CoV-2 N1 detection 

by RT-qPCR in cells infected at 24 hours (Figure 3B). 

  

Immortalized cell lines are commonly used as a model for placental cell types. The BeWo line, a 

human choriocarcinoma line, is used to model villous cytotrophoblasts. The HTR-8/SVneo line 

is derived from invasive extravillous cytotrophoblasts isolated from first trimester placenta and 

contains two cell populations(19, 20). Neither of these immortalized cell lines, BeWo and HTR-

8/SVneo, exhibited significant infection with icSARS-CoV-2-mNG at 24 hours (Figure 3A). 

 

While primary syncytiotrophoblasts and BeWo cells were not readily infected by icSARS-CoV-2-

mNG in vitro, in rare cases, an individual cell exhibiting viral mNeonGreen fluorescence and NP 

staining (estimated to be <0.0001%) could be detected. These extremely rare positive cells 

were notably isolated cells that, in the case of the syncytiotrophoblast population, appear to be 

cytotrophoblast cells defective for syncytialization (Supplementary Figure 3). SARS-CoV-2 

infection was thus not observed in any syncytialized placental cells in vitro. These results 

indicate that at least in the ex vivo context, cytotrophoblasts, but not other placental cell types, 

are infected by SARS-CoV-2.  

  

Transcriptional changes at the placenta during maternal COVID-19 reflect a localized 
inflammatory response to systemic SARS-CoV-2 infection 
Despite the fact that cytotrophoblasts are permissive to SARS-CoV-2 infection in vitro, and that 

SARS-COV-2 infection of syncytiotrophoblasts has been demonstrated in isolated cases(10, 16, 

21, 22), SARS-CoV-2 infection was not detected in the majority of the placentas tested in our 

case series. This was true even in women with high nasopharyngeal viral loads and with 

symptomatic SARS-CoV-2 infection, including those with severe complications. This absence of 
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placental infection suggested the presence of a localized and effective anti-viral response in the 

placenta. We thus used bulk-RNA sequencing of placental villi to examine differences in 

placental gene expression between pregnant women with COVID-19 (n=5) and uninfected 

controls matched for maternal age, gestational age, maternal comorbidities, and mode of 

delivery (n=3). 

  

In our comparison of the placental transcriptome in COVID-19 cases to matched controls, 

COVID-19 cases showed increased expression of genes associated with immune responses, 

suggesting a robust local response to respiratory infection, even in the absence of localized 

placental infection (p<0.05, Figure 4A). These changes in gene expression were largely shared 

among COVID-19 cases when compared to controls, as indicated by their grouping upon 

hierarchical clustering; placental transcriptomes from COVID-19 cases largely clustered 

together, and separately from healthy controls, with the exception of one case (COVID-1) 

(Figure 4A). Further analysis of differentially expressed genes by gene ontology indicated an 

enrichment in defense and immune response categories in COVID-19 cases compared to 

healthy controls (Figure 4B). The most significantly upregulated gene in the placenta during 

maternal SARS-CoV-2 infection was HSPA1A, which encodes the heat shock protein Hsp70 

(Figure 4C), a proposed alarmin that has been previously implicated in placental vascular 

diseases and preeclampsia(23-25). 

  

Single cell transcriptomic profiling of the placenta reveals cell-type specific immune 
response to maternal SARS-CoV-2 infection 
We next assessed COVID-19 associated transcriptomic changes in the placenta in a cell-type 

specific manner. To do so, we characterized placenta cells from hospitalized maternal acute 

COVID-19 cases (n=2) and matched controls (n=3) through unbiased, single cell RNA 

sequencing. A total of 83,378 cells were included in the analysis, 44,140 from placental villi and 

39,238 from decidua parietalis. Placentas from these COVID-19 cases tested negative for 

SARS-CoV-2 by RT-qPCR. To further test for the presence of intracellular virus, open reading 

frames of SARS-CoV-2 (spike, ORF3a, envelope, membrane glycoprotein, ORF6, ORF7a, 

ORF8, nucleocapsid and ORF10) were added to the reference genome before alignment with 

CellRanger. No viral transcripts were detected in any of the placenta cells. We next performed 

unsupervised cluster analysis and represented single cell transcriptome data from COVID-19 

cases and controls in UMAP space (Figure 5A). 
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The classification of placental cells by single cell RNA sequencing is challenging because the 

placenta is comprised of multiple cell types, of both maternal and fetal origin, in highly active 

transcriptional states. We overcame this challenge by creating a reference set of cell type-

specific transcriptomes for cell types present at the human fetal-maternal interface, using cell 

type-averaged expression values from three previously published placenta single cell RNA 

sequencing studies(26-28). We then compared single cell transcriptomes in our dataset to this 

composite reference dataset, and, after annotating clusters by comparison with the reference 

dataset, we manually examined clusters for marker gene expression and annotated remaining 

clusters. Through this approach we identified 21 distinct cell types in the placenta (Figure 5A). 

  

Differential gene expression analysis revealed significantly altered gene expression in both 

immune and non-immune cell types in the placenta from COVID-19 cases (Figure 5B), including 

markedly increased expression of pro-inflammatory genes and chemokines. In placental NK 

cells during COVID-19, we found significant enrichment of genes encoding cytotoxic proteins, 

including GZMA, GZMB, and GNLY, as well as a tissue-repair growth factor, AREG. T cell 

subsets from COVID-19 cases upregulated CD69, a classical activation marker, as well as 

genes encoding ribosomal proteins, RPL36A and RPS10. Among endothelial cells, which have 

previously been implicated in COVID-19 pathogenesis, including COVID-19 associated 

thrombosis and vasculopathy(29), we found evidence for increased innate immune responses in 

COVID-19 cases compared to controls, including significant upregulation of ISG15, an 

interferon-induced protein that has been implicated as a central player in host antiviral 

responses, and NFKBIA and NFKBIZ, critical regulators of the NF-KB pathway. Notably, while 

we do not find significant expression of ACE2 or TMPRSS2 in placental cells in either COVID-

19 cases or healthy controls, we do find widespread expression of CTSL, an alternative SARS-

CoV-2 entry co-receptor, including in placental immune cells, fibroblasts, and trophoblasts, and 

find that CTSL expression is increased in decidual stromal cells and decidual antigen presenting 

cells in COVID-19.  

 

Given the increasing evidence that hospitalized patients with COVID-19 demonstrate strong 

type-1 interferon responses(30, 31), we used Interferome(32), a database of interferon-

regulated genes, to determine whether an interferon-driven inflammatory signature is displayed 

by the placenta. We find that placental cellular subsets demonstrate significantly increased 

expression of interferon-related genes in COVID-19 compared to healthy controls (Figure 5C). 

Pathway analysis of all differentially expressed genes likewise shows increased engagement of 
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immune-related pathways in placental subsets from COVID-19 cases, as well as increases in 

synthesis of selenocysteine associated with the anti-oxidative response to oxidative stress 

(Figure 5D). Finally, we asked whether the transcriptional changes observed in placental tissue 

suggested altered cellular interactions in the placenta during COVID-19 compared to healthy 

conditions. Using CellphoneDB signaling network analysis(33), we found a significant increase 

in the number of interactions between immune cells at the maternal-fetal interface in COVID-19 

cases when compared to controls. Among the strongest enriched relationships identified in 

COVID-19 cases were the interactions of T cells with monocytes and NK cells (Figure 5E), 

suggesting innate to adaptive immune cell communication in the local placental environment 

during maternal COVID-19.  

 

Consistent with the bulk RNA-seq data, analysis of single-cell data indicated significant 

upregulation of HSPA1A, the gene encoding heat shop protein 70, in select placenta cellular 

subsets in COVID-19, including decidual APCs, decidual endothelial cells, and extravillous 

trophoblasts (Figure 5F). 
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Discussion 
Immune responses in the placenta can be a double-edged sword. These responses are critical 

for protecting the developing fetus from pathogen invasion, but, at the same time, placental 

inflammation itself may lead to pathological changes detrimental to pregnancy and fetal 

development(34-37). In this study, we demonstrate that a placental cell type is susceptible to 

SARS-CoV-2 infection ex vivo; that SARS-CoV-2 infection of the placenta in vivo is rare; and 

that a robust maternal immune response is mounted at the placenta even in the absence of 

placental infection. 

  

While previous studies analyzing transcriptomic data have yielded mixed results regarding 

ACE2 expression at the placenta(11-15), our immunohistochemical analysis conclusively 

demonstrated that ACE2 protein is present in the placenta despite low transcript levels. 

Furthermore, ACE2 protein expression is highest in the first trimester and decreases over the 

course of healthy pregnancy, indicating potential vulnerability to SARS-CoV-2 infection during 

early pregnancy. Surprisingly, we found that ACE2 expression appears to be widely expressed 

in the placenta of COVID-19 cases at term despite low levels of ACE2 in the placentas of 

healthy controls at term. The unique modifying factors that drive placental ACE2 expression 

during COVID-19 remain unknown; however, studies of ACE2 expression during other disease 

states, including COPD, suggest that ACE2 is upregulated under inflammatory conditions(38). 

Our data suggest that the hyperinflammatory state associated with COVID-19 may similarly 

increase ACE2 expression at the term placenta.  

 

The presence of ACE2 at the syncytiotrophoblast layer of the placental villi is consistent with the 

finding that the in vivo distribution of SARS-CoV-2 in rare cases of placental infection is also 

observed predominantly at the syncytiotrophoblasts(10, 16, 21, 22). In contrast, we found that 

only cytotrophoblasts are infected by SARS-CoV-2 in vitro. Given that syncytiotrophoblasts 

originate from the spontaneous differentiation and fusion of cytotrophoblast stem cells(39), it is 

possible that removed from their in vivo context, these terminally differentiated cells are not 

capable of supporting a productive viral infection in vitro. Differences in susceptibility to viral 

infection in vivo versus in vitro have also been demonstrated for Zika virus(40). Notably, unlike 

Zika virus, and many other “TORCH” pathogens capable of causing congenital conditions 

following in utero exposure, SARS-CoV-2 does not appear to productively infect placental 

Hofbauer cells either in vivo or in vitro(41-43). 
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Despite the capacity of cytotrophoblasts to be infected in vitro, SARS-CoV-2 invasion of the 

placenta is only rarely observed in vivo. Indeed, only ~13% of maternal COVID-19 cases we 

examined demonstrated placental infection with SARS-CoV-2. This may be due to previously 

reported low levels of SARS-CoV-2 viremia(44) (i.e., the absence of a direct route of infection to 

the placenta in vivo), or to variable ACE2 expression at term. Unfortunately, we were unable to 

screen for potential maternal SARS-CoV-2 viremia in our cohort. Nonetheless, even in the 

absence of placental infection, we observed localized gene expression differences in SARS-

CoV-2-affected term placentas indicating a marked immune response to maternal respiratory 

infection distinctly manifesting at the maternal-fetal interface. The majority of these differentially 

expressed genes are interferon-regulated genes, demonstrating the capacity of the placenta to 

sense and respond to both local and distal infection.  

 

We found that HSPA1A (Hsp70), is highly upregulated in the placenta during maternal COVID-

19. Notably, Hsp70 has been proposed as a potential alarmin that has been shown in vitro to 

stimulate proinflammatory processes associated with parturition and pre-term birth(23, 45, 46). 

Hsp70 is associated with endothelial activation in placental vascular disease(25) and serum 

levels are increased in cases of preeclampsia(24, 47, 48). Hsp70 levels are furthermore 

significantly elevated in patients exhibiting hemolysis, elevated liver enzymes, and low platelet 

count (HELLP syndrome) compared to patients with severe preeclampsia without HELLP 

syndrome(24, 49). Intriguingly, there have been multiple reports of HELLP or HELLP-like 

syndrome in pregnant women affected by SARS-CoV-2 infection and COVID(10, 50, 51). While 

the interplay between COVID-19 and HELLP-like syndrome remains incompletely understood, 

these results suggest a potential common pathway for COVID-19 associated maternal morbidity 

and placental vascular diseases, including HELLP and preeclampsia.  Moreover, extracellular 

Hsp70 is known to stimulate proinflammatory cytokines such as TNF-⍺, IL-1β, and IL-6(24). 

 

We found increased intervillous fibrin deposition in the placenta in approximately one third of the 

COVID-19 cases. Intervillous fibrin is a pathological finding that increases with decreased 

maternal perfusion, increased maternal coagulability, and decreased thrombolytic function of the 

trophoblasts(52). Intervillous fibrin has been previously reported in cases of maternal COVID-

19(10, 53), but the significance of this findings is unclear. One possibility may be that maternal 

SARS-CoV-2 infection activates the maternal endothelium, leading to a localized decrease in 

fibrinolysis, thereby causing fibrin buildup in a manner similar to that which is observed in 

preeclampsia (54). Alternatively, activation of immune cells in the placenta and circulating pro-
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inflammatory cytokines may trigger pro-coagulant signals in the local environment (55), inducing 

tissue factor synthesis from the syncytiotrophoblasts(56), ultimately leading to the accumulation 

of fibrin. Our single-cell transcriptomic analysis supports this hypothesis by demonstrating 

increased NK cell and endothelial cell expression of genes involved in supramolecular fiber 

organization pathways in placenta derived from COVID-19 cases.  

 

This study is subject to several limitations. First, only 15 placentas were available for RT-qPCR 

analysis, and thus we had insufficient sample size to understand if specific clinical features 

(e.g., severe COVID-19 or duration of symptoms) correlated with the presence of local virus in 

the placenta. Furthermore, our analysis is limited in that we only assessed placenta from 

women who were infected with SARS-CoV-2 during the third trimester of pregnancy, and thus 

does not account for pathological and inflammatory changes at the placenta that result from 

infection during the first or second trimester. Indeed, our results demonstrating widespread 

ACE2 expression in the placenta during the first and second trimesters indicates that early 

pregnancy may be the most vulnerable time for SARS-CoV-2 induced placental pathology, and 

additional studies are needed to assess for potential placental and fetal abnormalities 

associated with infection during early pregnancy. 

 

By characterizing changes at the maternal-fetal interface in the context of systemic infection, our 

research indicated that maternal SARS-CoV-2 infection at term is associated with an 

inflammatory state in the placenta that may contribute to poor pregnancy outcomes in COVID-

19, even in the absence of viral invasion of the placenta(57). These immune responses in the 

placenta may serve to protect the placenta and fetus from infection, but they also have the 

potential to drive pathological changes with adverse consequences for developing embryos and 

fetuses, since in utero inflammation is associated with neurodevelopmental and cognitive 

disorders in affected offspring (36, 58). Mouse models of congenital viral infection have also 

shown that type I IFN signaling during early embryonic development can cause fetal 

demise(59), through the upregulation of IFITM proteins that interfere with cytotrophoblast 

fusion(60, 61). Further studies are therefore needed to assess the long-term consequences of 

SARS-CoV-2 associated immune activation in pregnant women regardless of local infectious 

status of the placenta.  
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Methods 
 

Study participants 
We searched the electronic medical record of Yale-New Haven Hospital for all women who 

tested positive for SARS-CoV-2 in the antepartum or peripartum period and presented for 

delivery hospitalization during the study period (March 27, 2020 to June 1, 2020). Women who 

were admitted to Yale New Haven Hospital Labor and Birth during the study period and who 

were positive for SARS-CoV-2 by nasopharyngeal swab RT-qPCR in the antepartum period or 

at the time of delivery hospitalization were approached for consent to donate additional tissue 

for research studies through the Yale IMPACT study (Implementing Medical and Public Health 

Action Against Coronavirus in CT).  These participants provided informed consent, including for 

research studies of donated placental tissue. SARS-CoV-2 uninfected women (as determined 

by negative RT-qPCR testing of nasopharyngeal swab) were recruited during the study period 

and provided informed consent to donate placenta tissue to serve as uninfected controls for 

transcriptomic studies. Pre-pandemic histological controls were selected from pathology files at 

Yale New Haven Hospital and matched to the COVID-19 placental cases by maternal age, 

gestational age, and maternal co-morbidities. The study was approved by the Yale Institutional 

Review Board (protocol #2000027690 and 2000028550). 

 

SARS-CoV-2 S1 spike protein IgM and IgG serology testing:  
ELISA assays for IgG and IgM antibodies towards SARS-CoV-2 were performed on plasma as 

described by Amanat et al (62). Screening of 367 total plasma samples from all SARS-CoV-2-

positive patients enrolled was performed using a 1:50 dilution. 

 

SARS-CoV-2 detection in placenta by RT-qPCR  
Placenta samples were homogenized and centrifuged before nucleic acid was extracted using 

the MagMax Viral/Pathogen Nucleic Acid Isolation kit. SARS-CoV-2 was detected using a 

modified RT-qPCR assay with the N1, N2, and human RNase P (RP) primer-probe sets 

developed by the CDC and the NEB Luna Universal Probe One-Step RT-qPCR kit on the Bio-

Rad CFX96 Touch Real-Time PCR Detection System(63). Each sample was extracted and 

tested in duplicate to confirm results. Placenta samples were considered positive by RT-qPCR if 

cycle threshold (CT) values for N1 and N2 were both <38, and with any value of RP. Samples 

were considered negative if N1 and N2 >38, and RP <38. Samples were considered invalid if 

N1 and N2 >38 and RP >38.   
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Histopathological analysis of placenta 
Pathology files at Yale New Haven Hospital were searched for placentas corresponding to 

cases of maternal COVID-19. All available placental cases were included in the histological 

study. Additionally, pathology files were searched for placentas from mothers without SARS-

CoV-2 infection (pre-June 2019) to serve as historical controls. These controls were matched to 

study cases for maternal age, gestational age and maternal comorbidities. A total of 27 cases 

and 10 matched controls were assessed histologically. Of those, one case was of a dichorionic 

diamniotic twin pregnancy. The placentas of this twin pregnancy demonstrated extremely similar 

microscopic features and identical pathologic scores; thus, they were together considered as a 

single case in the statistical analysis. All placentas received with a requisition form for 

pathologic evaluation were immediately fixed in 10% neutral buffered formalin for three days. A 

total of six sections inclusive of at least two full thickness sections, peripheral membranes and 

umbilical cord were submitted for histologic examination. 

  

Two pathologists (LI and RM) blinded to patient information and diagnostic report independently 

scored all H&E stained placental tissue for villitis (absent, low-grade or high-grade; if low-grade, 

focal or multifocal and if high-grade, patchy or diffuse), intervillositis (absent or present), 

increased intervillous fibrin (absent or present, defined as intervillous fibrin occupying >10% of a 

full thickness section on 20x low-power magnification), chorioamnionitis (absent or present; if 

present, maternal and fetal inflammatory responses were staged and graded), fetal and/or 

maternal vascular malperfusion (absent or present; if present, a histologic description was 

recorded) and increased decidual lymphocytes (absent or present, defined as clusters of >10 

lymphocytes in >3 foci in the placental disc and/or peripheral membranes). Diagnostic criteria 

for villitis, chorioamnionitis, fetal vascular malperfusion (FVM) and maternal vascular 

malperfusion (MVM) followed those reported in the Amsterdam placental workshop group 

consensus statement(64). Cases with discrepant scoring results were reviewed and re-scored 

by both pathologists simultaneously. Results were correlated with maternal, fetal and placental 

COVID-19 status. 

 

Collection of placentas across gestation 
First and second trimester specimens from the elective termination of pregnancy, ranging from 7 

to 15 weeks of gestation (based on last menstrual period), were collected from otherwise 

healthy women with no known genetic or other abnormalities, as previously described(65). All 
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women who provided first and second trimester placentas signed an informed consent (protocol 

#021-06-972) approved by the ethical committee of the Bnai Zion Medical Center, Haifa, Israel 

under Helsinki convention guidelines. Samples from normal term placentas were collected 

anonymously from healthy patients undergoing elective repeat Cesarean sections. All women 

who provided term placental samples signed an informed consent (Yale IRB protocol 

1208010742). Specimens were fixed in 10% neutral buffered formalin (NBF) for at least one day 

and embedded in paraffin, after which 5 µm sections were placed on coated glass slides 

designed for immunohistochemistry (IHC) processing. Placentas of gestational age 18 to 23 

weeks were obtained from non-genetic healthy terminations through the University of Pittsburgh 

Biospecimen Core (IRB#: PRO18010491). 

 

ACE2 Immunohistochemistry 

The following rabbit polyclonal antibodies were used: anti-ACE2 (Abcam, Cambridge, MA, ab10 

8252, used at 1 µg IgG/ml); and, as a negative control, normal rabbit serum (Sigma-Aldrich, St. 

Louis, MO, R9133, used at 1 µg IgG/ml). Antibody concentrations were chosen to produce 

strong staining in the positive cellular structures without background staining.  

 

Slides were immunohistochemically stained as previously described(66) using MACH 2 Rabbit 

HRP-Polymer (Biocare Medical, RHRP520L, Pacheco, CA) to mark the sites of antibody binding 

with a brown deposit. To minimize run-to-run variability, replicate samples were stained 

simultaneously with one antibody. Positive control sections from a de-identified normal human 

kidney were analyzed concurrently with each batch of slides. The stained sections were 

counterstained with hematoxylin. 

 

For quantification of immunoreactivity, slides were inspected microscopically using a raster 

pattern to ensure that the entire histologic section was examined. A modified histology score(67) 

was calculated by multiplying the percentage of trophoblasts that stained by the average 

staining intensity (ranging from 0-3), resulting in H-scores from 0 and 300. 

 

Preparation of decidua and placental villi for bulk and single-cell sequencing 
Placentas were collected from Yale-New Haven Hospital and transferred to the laboratory for 

processing. Placental villi were isolated by sampling from midway between the chorionic and 

basal plates of the placenta. The decidua parietalis was isolated from the chorioamniotic 

membranes as previously described(68). The chorioamniotic membranes were dissected, 
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rinsed in PBS, and placed with the chorion facing upward. Blood clots were removed using fine-

point forceps and membranes were rinsed in PBS. A disposable cell scraper was used to gently 

remove the decidual layer from the membrane. 

  

Dissected tissues were rinsed thoroughly in PBS and minced with scissors in a tissue digestion 

buffer of Liberase TM (0.28 WU/ml) and DNase I (30 μg/ml) in HBSS with Ca2+ and Mg2+. Finely 

minced tissue was enzymatically digested at 37°C for 1 hour with agitation, pipetting, and further 

mincing every 10 minutes until disaggregated. The suspension was passed through sterile 

gauze, centrifuged at 1000 x g for 5 minutes at 4°C to pellet cells, and washed with fresh 

digestion buffer. After centrifugation, the supernatant was aspirated and the cell pellet was 

resuspended in ACK lysing buffer for 5 minutes. Cells were centrifuged and resuspended in 

RPMI media before filtering through a 70-μm mesh cell strainer. 

  

Bulk RNA sequencing 
Total RNA was prepared from freshly isolated placental villi as previously described(63). 

Depletion of rRNA, library preparation, and sequencing on the Illumina HiSeq 2500 platform 

were performed at the Yale Center for Genome Analysis (YCGA). 

  

FASTQ files from HiSeq 2500 were analyzed using Kallisto v0.46.1(69) using the “-b 100 and -t 

20” options to obtain transcript abundances in TPM and estimated counts. The kallisto index 

used during transcript quantification was built (31bp k-mer length) from the Homo sapiens 

transcriptome GRCh38 downloaded as a FASTA file from Ensembl (Ensembl.org). Transcripts 

were annotated using the Bioconductor package biomaRt v2.40.5(70) in R v3.6.2. 

  

Read counts for individual transcripts were summarized for gene-level analysis using the 

Bioconductor package tximport with default parameters(71). Differential expression analysis 

was performed using DESeq2 with default parameters(72), comparing all 3rd trimester samples 

by maternal status. 

  

Single-cell RNA sequencing. 
Library preparation, data-preprocessing, and clustering: scRNA-seq libraries were generated 

using the 10x Chromium Single Cell 3’ Reagent Kit and libraries were sequenced using the 

Illumina NovaSeq platform. Sequencing results were demultiplexed into FASTQ files using the 

Cell Ranger (10x Genomics, 3.0.2) mkfastq function. Samples were aligned to GRCh38 10x 
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genome and the count matrix was generated using the count function with default settings. Low 

quality cells containing <500 or >6000 genes detected were removed, as well cells with >20% of 

transcripts mapping to mitochondrial genes. Genes that were present in less than 3 cells were 

excluded from analysis. Gene expression values were then normalized, log-transformed, and 

scaled. Single cell transcriptomes from COVID-19 cases and healthy controls were pooled prior 

to unsupervised cluster analysis. Seurat version 3.1.5 with R version 3.4.2 was used for 

normalization, dimensionality reduction, clustering, and UMAP visualization, while Seurat 

version 3.2.2(73) with R version 4.0.2(74) was used for all downstream analyses.  

Cluster annotation: Preliminary annotation of all clusters was performed by the similarity of their 

gene expression to annotated cell types in published single cell RNA-seq datasets of human 

fetal-maternal interface(26-28). For each cluster, mean of SCTransform-normalized(75) gene 

expression across cells was used as the cluster’s average gene expression. Spearman 

correlation coefficients between the cluster’s average expression and averaged expression of 

annotated cell types from all three reference datasets were calculated, and top three cell types 

with highest correlation coefficient were assigned as preliminary annotations of the clusters 

(Supp. Fig. 4). These annotations were further refined through manual examination of cluster 

marker genes (identified using Seurat function FindAllMarkers with options only.pos = TRUE 

and logfc.threshold = 0.25). Clusters that are highly similar to each other and have the same 

final cell type annotation, were then merged, resulting in the final set of 21 annotated clusters.  

Differential gene expression: For each annotated cluster, differentially expressed genes 

between control and COVID-19 samples were identified using Wilcoxon rank-sum test as 

implemented in the Seurat function FindMarkers. Genes that met the following criteria were 

considered differentially expressed: absolute log-fold difference of 0.4 (corresponding to at least 

50% difference in expression) and Bonferroni-adjusted two-tailed p-value less than 0.05.  

Functional enrichment analyses: Two types of functional gene set enrichment analyses were 

performed, Interferome(32) and Metascape(76). For Interferome analysis, lists of differentially 

expressed genes in each cluster were searched against Interferome (version 2.01) with the 

default parameters except that the search was limited to human genes. Enrichment score for 

each cluster was calculated as the ratio between the observed fraction of differentially 

expressed genes found in Interferome database and the expected fraction, where the expected 

fraction is the ratio of total number of genes in the Interferome database over the total number 

of genes used in differential expression analysis. Enrichment p-values were calculated from the 
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hypergeometric distribution using the R function phyper. Functional enrichment with Metascape 

was performed on lists of differentially expressed genes using the web application.  

Ligand-receptor interactions: Ligand-receptor interactions were inferred using CellPhoneDB(33) 

separately for cells from control and COVID-19 samples. CellPhoneDB version 2.1.4 was used 

with Python version 3.6. For computational efficiency both control and COVID-19 data were 

subsampled to 5000 cells each.  

 

Placental explant preparation 
Healthy term placentas were collected from scheduled cesarean sections performed at Yale-

New Haven Hospital. Standard clinical criteria were used to exclude cases of infection and 

inflammation. 20mg of placental villous tissue was processed and rinsed in PBS. Explants were 

plated into a 24-well plate with 0.4-μm permeable transwell cell culture inserts (Corning) and 

maintained in F12:DMEM with 10% fetal bovine serum.  

  

Primary cell isolations from placenta. 
Isolation of Hofbauer cells and cytotrophoblasts from healthy term placentas was performed as 

previously described(77). Placentas from uncomplicated term pregnancies were brought to the 

laboratory within 30 minutes following elective cesarean section without labor at Yale-New 

Haven Hospital and processed immediately. Villous tissue was dissected, minced, and rinsed 

with PBS. Minced tissue was subjected to sequential enzymatic digestions in a solution of 

0.25% trypsin and 0.2% DNase I at 37°C. Undigested tissue was removed by passage through 

gauze and a 100-μm sieve. Cells were resuspended in DMEM:F12 media with 10% FBS and 

1% antibiotic/antimycotic. 

  

Cytotrophoblasts were separated on a discontinuous gradient of Percoll (50%/45%/35%/30%) 

by centrifugation at 1000 x g for 20 minutes at room temperature. Cells migrating to the 

35%/45% Percoll interface were recovered by centrifugation at 300 x g for 10 minutes at room 

temperature and immunopurified by negative selection using mouse anti-human CD9 antibody 

and mouse anti-human CD45 antibody. Following incubation with goat anti-mouse IgG-

conjugated Dynabeads, contaminating cells were removed by exposure to a magnet. 

  

Hofbauer cells were isolated from further digestion of trypsin-treated tissue with collagenase A 

and DNase I. Cells were pelleted, resuspended in RPMI, and loaded onto a discontinuous 

Percoll gradient (40%/35%/30%/20%) and centrifuged for 30 minutes. Cells from the 20%/25% 
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to 30%/35% interfaces were combined and immunopurified by negative selection using 

sequential treatment with anti-EGFR and anti-CD10 antibodies conjugated to magnetic beads. 

Cells from the supernatant were plated and after 1 hour of incubation, floating and weakly 

adherent cells were removed. 

  

Fibroblasts were obtained from cells removed during negative immunoselection of 

cytotrophoblasts and Hofbauer cells. Bead-cell mixtures were washed and cultured in media 

until confluency was reached. Following trypsinization of first passage cells, magnetic beads 

with attached cells (~10% of population) were removed with a magnet. Passage 3 fibroblasts 

were used for experiments. 

  

SARS-CoV-2 infection.  
Primary placental cells were with icSARS-CoV-2 mNG(18) infected at an MOI of 5 for one hour 

at 37°C. Following infection, cells were washed three times in PBS before adding fresh media. 

Primary placental cells were maintained in F12:DMEM with 10% FBS supplemented with 

antibiotic/antimycotic. BeWo cells were maintained in F12K Kaighn’s modified media, HTR8 

cells in RPMI media, and Vero E6 cells in F12:DMEM media, all with 10% FBS and 

antibiotic/antimycotic. 

  

Immunohistochemistry.  
Following dissection, placental tissue was rinsed in PBS and fixed in 10% neutral buffered 

formalin for 48-72 hours. Tissues were paraffin-embedded and cut into 5 μm thickness sections 

by Yale Pathology Tissue Services. Paraffin sections were heated for 30 minutes at 60°C and 

treated with xylenes followed by rehydration in decreasing concentrations of ethanol (100%, 

90%, 80%, 70%). Antigen retrieval was performed by boiling in sodium citrate (pH 6.0) for 15 

minutes and peroxidase activity was blocked with hydrogen peroxide for 10 minutes. Blocking 

was performed in 2.5% normal horse serum (Vector Laboratories) and incubated in primary 

antibody overnight at 4°C. Mouse anti-SARS-CoV-2 spike antibody (clone 1A9, GeneTex 

GTX632604) was used at a dilution of 1:400 and rabbit anti-ACE2 (clone EPR4435(2), Abcam 

ab108252) was used at 1:200 dilution. Secondary antibody and detection reagents from the 

VECTASTAIN Elite ABC-HRP Kit (Vector Laboratories PK-7200) were used according to 

manufacturer instructions. Sections were counterstained with Hematoxylin QS (Vector 

Laboratories H-3404), dehydrated in increasing concentrations of ethanol, cleared with xylenes, 

and mounted with VectaMount permanent mounting medium (Vector Laboratories H-5000). 
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Immunofluorescence microscopy sample preparation and imaging.  
Placental cells on coverslips were fixed in fixed in 4% paraformaldehyde for 24 hours. 

Coverslips were blocked and permeabilized in 3% BSA (Sigma) and 0.1 % Triton X-100 

(American Bioanalytical). Each sample was incubated overnight with anti-SARS-CoV-2-NP 

rabbit polyclonal antibody (GeneTex # GTX135357) at a dilution of 1:200.  After washing in 

PBS, coverslips were incubated for 1 hour in a 1:500 dilution of Alexa 594 anti rabbit secondary 

antibody (Jackson ImmunoResearch 711-585-152), washed again in PBS and treated with 1 

µg/mL Hoechst 33342 for 10 min and washed a final time in PBS. Samples were then mounted 

in DABCO/glycerol mounting media (Sigma) and imaged on a Leica Sp8 Laser Scanning 

Confocal Microscope equipped with a 40x N.A. 1.3 HC PL APO CS2 objective. Images are 

displayed as maximum intensity projections of z-stacks and a color bar is given in arbitrary 

digital units. 

 

SARS-CoV-2 S1 spike protein IgM and IgG serology testing:  
ELISA assays for IgG and IgM antibodies towards SARS-CoV-2 were performed on plasma as 

described by Amanat et al (62). Screening of plasma samples from all SARS-CoV-2-positive 

patients enrolled was performed using a 1:50 dilution. 

 

Statistical Analysis 
One-way ANOVA was used to compare clinical and demographic features between the three 

groups presented in Table 1. Chi-square tests were used for statistical comparisons of histologic 

features of cases versus controls. Differences were claimed as statistically significant when the 

p value was less than 0.05.  

 

Data availability: Single cell RNA sequencing analysis code is available at 

https://github.com/archavan/covid-placenta 
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Table 1. Clinical characteristics of COVID-19 cases and histological controls. 
 

 COVID-19 cases (n=39) 

Subset of 
COVID-19 
cases with 
placenta 
histology 
available 

(n=27) 

Histological 
controls (n=10) P  

Maternal Age: Median 
(range) 32 (18 - 41) 32.0 (18 - 41) 31.5 (21 - 37) 0.788 

Gestational Age: Median 
(range) 38w6d (22w6d - 41w1d) 39w0d (36w6d 

- 41w1d) 
39w1d (37w - 

40w6d) 0.650 

Comorbidities      
Hypertension 12 (31%) 9 (33%)  4 (40%) 0.752 
Preeclampsia 6 (15%) 5 (19%) 1 (10%) 0.640 

Diabetes* 10 (26%) 7 (26%) 2 (20%) 0.932 
Mode of delivery (C-section) 13 (33%) 10 (37%) 3 (30%) 0.472 

Neonatal Apgar (1 minute) 
Median: 9 

Range: 4- 9 
  

Median: 9 
Range: 4- 9 

  

Median: 9 
Range: 4 - 9 

  
  

BMI: Mean (St Dev) 33.0 (7.3) 33.4 (7.7) 27.1 (2.33) 0.0194 
COVID-19 features     

COVID-19 symptoms at the 
time of delivery (%) 22 (56%) 14 (52%)   

Maternal severe COVID-19** 5 (13%) 3 (11%)     
Nasopharyngeal  

SARS-CoV-2 RT-qPCR  
   

 
 CT value*** : median (range)   33.2 (17.1 - 43.8) 

(n=26) 
33.35 (17.1 - 
43.8) (n=18) 

  

Positive SARS-CoV-2 RT-
qPCR of placenta (n=15) 

2/15 (13.33%)       

     
     
*gestational or pre-gestational diabetes 
**ICU or need for supplemental oxygenation    
***N1 gene     
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Figure 1. Histopathology of representative COVID-19 (A) and matched control (B) placentas. 

(A) COVID-19 placenta at low magnification revealed extensive intervillous fibrin deposition, 

with only occasional areas of open intervillous (I) spaces. (A1) High magnification at edge of 

blood filled intervillous space (I) and the earliest fibrin deposition (asterisks). Trapped chorionic 

villi (V) have become avascular and fibrotic. Initial fibrillar fibrin (arrow heads) can be seen at the 

blood-fibrin interface. (A2) Older area of intervillous fibrin (asterisks) and trapped villi (V) 

revealing migration of trophoblasts (arrow heads) into the fibrin matrix. (A3) Oldest area of 

intervillous fibrin became calcified (green asterisks), encasing villous remnants (V). (B) In sharp 

contrast, the control placenta revealed virtually no fibrin in the intervillous space (I). (B1 and B2) 
Representative magnified areas revealed normal villi (V) and open, maternal blood containing 

intervillous space (I), with only occasional foci of fibrin formation (arrow heads). Bars represents 

200 µM for images A and B and 50 µM for images A1-B2. 
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Figure 2. ACE2 protein expression in the placenta varies with gestational age. (A) Human 

kidney used as a positive control revealed strong apical staining of the proximal tubules (P). The 

distal tubules (D) and glomerulus (G) were negative. Inset shows a serial section of the same 

kidney stained with non-immune rabbit sera resulting in no staining. (B-D) Placentas derived 

from normal pregnancies between 7 and 15 weeks of gestation demonstrated strong, uniform, 

apical microvillus syncytiotrophoblast staining (arrow heads), and patchy strong basolateral 

staining at the cytotrophoblast–syncytiotrophoblast contact zone (arrows). Intervillous space (I) 

and villous core (V). (E) A normal 21-week placenta still exhibited syncytiotrophoblast surface 

staining (arrow head), but to a lesser extent than the earlier samples. Cytotrophoblast–

syncytiotrophoblast contact zone staining was still prominent (arrow). (F) A representative 

normal placenta at 39 weeks revealed almost no ACE2 staining. Occasionally, staining at the 

cytotrophoblast–syncytiotrophoblast contact zone was noted (arrow) (G) Normal extravillous 
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invasive trophoblasts from a 39-week placenta demonstrated strong surface expression of 

ACE2, with variable cytoplasmic staining.  (H) Representative image of ACE2 expression in a 

38-week placenta derived from a case of symptomatic maternal COVID-19. Reappearance of 

strong apical microvillus syncytiotrophoblast (arrow heads) and cytotrophoblast–

syncytiotrophoblast contact zone staining (arrows) was observed. All sections were cut at 5 µM, 

except panel (E), which was cut at 10 µM. Bar represents 50 µM for images A-H. (I) ACE2 H-

score demonstrated steady loss of placental ACE2 with increasing gestational age in healthy 

pregnancies (p<0.001). Linear regression (blue line) was fit to data from healthy controls 

(circles). 95% confidence interval is shown with dashed lines. Placentas derived from COVID-19 

cases are depicted as red squares. (J) ACE2 H-score was significantly increased in term 

placentas from COVID-19 cases (squares) compared to uninfected, matched controls (circles). 
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Figure 3. SARS-CoV-2 infection of placental cells in vitro. (A) Representative images of 

icSARS-CoV-2-mNG infection of primary placental cells, immortalized placental cell lines, and 

Vero E6 cells as measured by mNeonGreen expression and immunofluorescence staining of 

SARS-CoV-2 nucleocapsid (NP). Images are displayed as maximum intensity projections of z-

stacks and grayscale bars indicate measured fluorescence intensity in arbitrary digital units. (B) 
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Fold-change quantification of SARS-CoV-2 N1 by RT-qPCR at 24 hours post-infection. Cells 

were infected at an MOI of 5 for one hour and washed three times with PBS before the addition 

of fresh media. Cells were washed and collected at 24 hours post-infection. Data presented are 

representative results from one of three replicates. 
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Figure 4. HSPA1A is significantly upregulated in maternal COVID. (A) Hierarchal clustering and 

heatmap of differentially expressed genes (p<0.05). Bulk RNA-seq was performed on placental 

villi isolated from control and maternal COVID cases. (B) Gene ontology of differentially 

expressed genes (p<0.05) in bulk RNA-seq. (C) Volcano plot indicating differentially expressed 

genes between control and maternal COVID groups from bulk RNA-seq. Significant hits are 

depicted in red (padj<0.05) and black (p<0.05). Non-significant genes are shown in gray. 
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Figure 5.  (A) UMAP projection of 83378 single placenta cells from COVID-19 cases (n=2 

decidual and n=2 villous samples) and uninfected controls (n= 2 decidual and n = 3 villous 

samples). Cell type annotations based on correlation with reference datasets(26-28) followed by 

manual examination of marker genes. (B) Dotplot of the top 5 genes that are upregulated 

between COVID-19 and uninfected control samples for each annotated cell type based on fold-

difference. Size of dots represents percent of cells in cluster expressing gene of interest; 

intensity of color reflects average scaled expression. Significantly altered expression between 

COVID-19 cases and controls (Bonferroni-adjusted, two-tailed, Wilcoxon rank-sum test P < 

0.05) is marked by a solid black line. (C) Interferome analysis demonstrating the fraction of 

differentially expressed genes in each cell type that are interferon-responsive, in COVID-19 

cases compared to controls; with p values for enrichment (observed over expected fraction) 

calculated using hypergeometric distribution. (D) Clustered heatmap showing the top enriched 

functional terms according to Metascape(76) among differentially expressed genes between 

COVID-19 and control samples in the annotated placental cell types. bars are colored to 

encode p-values of increasing statistical significance. (E) Heat map depicting the log-

transformed ratio (COVID-19 cases over controls) of number of ligand-receptor interactions 

between all placental cell type pairs, inferred using the CellphoneDB repository of ligands, 

receptors and their interactions(33). Red indicates cell type pairs with more interactions in 

COVID-19 cases compared to control; blue indicates the opposite. (F) Violin plots of HSPA1A 

expression at the placental villi and maternal decidua obtained by scRNA-seq. 
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Supplementary Table 1. RT-qPCR results for placenta samples that tested positive by the 
modified CDC assay. Total nucleic acid was extracted from each sample and tested by RT-

qPCR in duplicate. Reported are Ct values for the primer-probe sets N1, N2, and RP. 

 
Sample_ID Sample_Type Replicate N1 N2 RP Result 
#1 Placenta 1 13.9 15.3 21.3 Positive 
 Umbilical Cord 1 30.6 30.6 28.2 Positive 
#2 Placenta Fetal 1 31.6 33.9 17.4 Positive 
   2 29.3 31.2 17.2 Positive 
  Placenta Maternal 1 37.2 37.7 18.0 Positive 
   2 ND ND 18.6 Negative 
  Placenta Membrane 1 33.1 33.8 19.4 Positive 
    2 32.0 32.6 18.8 Positive 
  Umbilical Cord 1 35.0 35.6 21.2 Positive 
   2 35.6 35.2 21.0 Positive 
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Supplementary Table 2. Histological features of placenta from COVID-19 cases and 
matched controls 
 

Microscopic Features P-value 

  
Cases 
(n=27) 

Controls 
(n=10)   

Increased Decidual Lymphocytes 7/27 2/10 0.71 
Maternal Vascular Malperfusion 6/27 0/10 0.10 
Fetal Vascular Malperfusion 3/27 0/10 0.27 
Chorioamnionitis  5/27 0/10 0.14 
Increased Intervillous Fibrin 9/27 0/10 0.04 
Intervillositis  0/27 0/10 NA 
Villitis  5/27 0/10 0.14 
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Supplementary Figure 1. SARS-CoV-2 spike S1 protein-specific IgG and IgM (anti-S1-IgG and 

-IgM) ELISA absorbance values in 12 pregnant SARS-CoV-2-positive women compared to 355 

non-pregnant SARS-CoV-2-positive individuals. 
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Supplementary Figure 2. Violin plot of ACE2 and TMPRSS2 expression in placenta cell 
subsets. 
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Supplementary Figure 3. SARS-CoV-2 infection of primary syncytiotrophoblasts. Primary 

syncytiotrophoblasts were derived from primary isolated cytotrophoblasts allowed to 

spontaneously differentiate for 72-96 hours. Following the differentiation period, cells were 

infected at an MOI of 5 for one hour and washed three times with PBS before the addition of 

fresh media. Shown are two individual cells as detected by immunofluorescence following 

staining with anti-NP antibody (left panel). Differential interference contrast (DIC, center panel) 

image shows these two cells are excluded from the surrounding syncytia. Merged image (right 

panel) shows pseudocolor labeling of syncytialized cells in purple and infected NP-labeled 

individual cells in pink.  
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Supplementary Figure 4. Quality control metrics for single cell RNA-seq samples. Violin plots 

showing the distributions of (A) the number of unique molecular identifier (UMI) counts per cell 

for all samples and (B) the number of detected genes per cell for all samples. (C) Stacked bar 

plots showing the cellular composition of each sample. Fraction of total cells made up by each 

annotated cell type is plotted on the Y axis. (D) UMAP projection of cells split by COVID-19 

status showing that most annotated cell types are represented in both control and COVID-19 

samples. (E) UMAP projection of cells colored by the sample of origin.  
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Supplementary Figure 5. Annotation of single cell RNA-seq clusters based on correlation with 
reference datasets. (A) Heatmap showing spearman correlation coefficients between averaged 
gene expression of each cluster and that of annotated cell types from three single cell RNA-seq 
datasets1–3 used as references. For each query cluster, three annotated cell types with highest 
correlation from each reference dataset are marked as top three matches, represented by grey 
dots. Reference-based annotation of the clusters was refined with manual verification of marker 
gene expression. Refined annotations are shown on the right-hand side of the panel. (B) 
Annotation of all 35 clusters shown on UMAP projection. (C) Highly similar clusters were 
merged to get a final set of annotations resulting in 21 annotated clusters, presented on UMAP 
projection. 
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Supplementary Figure 6. Dotplot showing ligand-receptor interactions, inferred using 
CellPhoneDB4, present in COVID-19 samples but absent in control samples. Pairs of cell types 
are on the X axis and pairs of ligands and receptors are on the Y axis, such that the first 
element of the latter is expressed in the first cell type (shown in red text) and the second 
element in the second cell type (shown in blue text). Intensity of the color of the dots represents 
mean of the expression of the ligand and the receptor in the respective cell types (mean is set to 
zero if either ligand or receptor has zero expression), and the size of the dot represents the p-
value for the specificity of the interaction. Only the interactions with p-value < 0.01 are shown 
here. 
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