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Abstract 
Although previous studies have shown that the host immune response is crucial in 

determining clinical outcomes in COVID-19 patients, the association between host 

immune signatures and COVID-19 patient outcomes remains unclear. Based on the 

enrichment levels of 11 immune signatures (eight immune-inciting and three immune-

inhibiting signatures) in leukocytes of 100 COVID-19 patients, we identified three 

COVID-19 subtypes: Im-C1, Im-C2, and Im-C3, by clustering analysis. Im-C1 had 

the lowest immune-inciting signatures and high immune-inhibiting signatures. Im-C2 

had medium immune-inciting signatures and high immune-inhibiting signatures. Im-

C3 had the highest immune-inciting signatures while the lowest immune-inhibiting 

signatures. Im-C3 and Im-C1 displayed the best and worst clinical outcomes, 

respectively, suggesting that antiviral immune responses alleviated the severity of 

COVID-19 patients. We further demonstrated that the adaptive immune response 

had a stronger impact on COVID-19 outcomes than the innate immune response. The 

patients in Im-C3 were younger than those in Im-C1, indicating that younger persons 

have stronger antiviral immune responses than older persons. Nevertheless, we did 

not observe a significant association between sex and immune responses in COVID-

19 patients. In addition, we found that the type II IFN response signature was an 

adverse prognostic factor for COVID-19. Our identification of COVID-19 immune 

subtypes has potential clinical implications for the management of COVID-19 

patients. 

 

Keywords: COVID-19 subtypes; antiviral immune response; gene expression 

profiles; clinical outcomes; clustering analysis 
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Background 

The COVID-19 pandemic caused by SARS-CoV-2 has resulted in more than 36 

million cases and one million deaths as of October 8, 2020 (1). The host immune 

defense system and immune response are crucial factors responsible for clinical 

outcomes in COVID-19 patients (2-7). For example, Takahashi et al. demonstrated 

that sex biases in COVID-19 were associated with differences in immune responses 

between males and females (2). The excessive immune response to SARS-CoV-2, 

known as COVID-19 cytokine storm, may cause severe COVID-19 (8). Despite these 

previous studies, the association between host immune responses and clinical 

outcomes in COVID-19 patients remains unclear.  

 

In this study, using a publicly available RNA-Seq gene expression profiles in 100 

leukocyte samples from COVID-19 patients (9), we performed an unsupervised 

learning to identify COVID-19 subtypes based on the enrichment levels of 11 immune 

signatures. Furthermore, we characterized the immunological and clinical features of 

these COVID-19 subtypes.  

 

Results 

Identification of COVID-19 subtypes based on immune signature 

enrichment levels 

Based on the enrichment levels of 11 immune signatures, using the hierarchical 

clustering method, we identified three COVID-19 immune subtypes, termed Im-C1, 

Im-C2, and Im-C3 (Fig. 1A). Im-C1 had the lowest enrichment levels of HLA Class II, 

CD8+ T cells, Tfh, Th1 cells, Th2 cells, NK cells, pDCs, and cytolytic activity 

(termed immune-inciting signatures) while high enrichment levels of type II IFN 
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response, Treg, and neutrophils (termed immune-inhibiting signatures). Im-C2 had 

medium immune-inciting signatures and high immune-inhibiting signatures. In 

contrast to Im-C1, Im-C3 had the highest immune-inciting signatures and the lowest 

immune-inhibiting signatures. Thus, Im-C3 and Im-C1 displayed the strongest and 

weakest antiviral immune responses, respectively. As expected, the ratios of immune-

stimulatory to immune-inhibitory signatures (CD8+/CD4+ regulatory T cells and pro-

/anti-inflammatory cytokines) were the highest in Im-C3 and the lowest in Im-C1 

(one-tailed Mann–Whitney U test, P < 0.01) (Fig. 1B). Principal component analysis 

confirmed that these COVID-19 cases could be divided into three subgroups based on 

the ssGSEA scores of these immune signatures (Fig. 1C).  

 

We found that the proportion of the COVID-19 patients admitted to intensive care 

unit (ICU) was the lowest in Im-C3 (23.5%) and the highest in Im-C1 (92.6%) 

(Fisher’s exact test, P < 0.001) (Fig. 1D). Moreover, the proportion of COVID-19 

patients requiring mechanical ventilatory support (MVS) was the lowest in Im-C3 

(8.8%) and the highest in Im-C1 (81.5%) (Fisher’s exact test, P < 0.001). The scores 

of the Acute Physiology and Chronic Health Evaluation (APACHE II) and the 

Sequential Organ Failure Assessment (SOFA), both of which measure the severity of 

ICU patients (10), were significantly different between the three subtypes: Im-C3 < 

Im-C2 < Im-C1 (one-tailed Mann–Whitney U test, P < 0.001) (Fig. 1E). The numbers 

of ventilator-free days, which is an outcome measure in treatments for acute 

respiratory distress syndrome (11), and the hospital-free days at day 45 (HFD-45) 

values, which correlated inversely with disease severity,  were significantly different 

between the three subtypes: Im-C3 > Im-C2 > Im-C1 (one-tailed Mann–Whitney U 

test, P < 0.001) (Fig. 1E). Additionally, some laboratory measurements, such as C-
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reactive protein, D-dimer, procalcitonin, ferritin, and lactate, whose elevation was 

associated with COVID-19 severity, tended to display the lowest levels in Im-C3 

while the highest levels in Im-C1 (Fig. 1F). Altogether, these results showed that the 

Im-C3 subtype of COVID-19 had the best outcomes, while the Im-C1 subtype had the 

worst outcomes. It suggests that antiviral immune responses can reduce COVID-19 

disease severity. Furthermore, we found that the patients in Im-C3 were younger than 

those in Im-C1 (one-tailed Mann–Whitney U test, P = 0.04) (Fig. 1G). It indicates 

that younger persons tended to have a stronger antiviral immune response than older 

persons after SARS-CoV-2 infection. However, we did not observe a significant 

difference in the proportions of female and male patients between Im-C3 and Im-C1 

(Fisher’s exact test, P = 0.61). 

 

Associations between immune signatures and clinical features in 

COVID-19 patients 

We further analyzed associations between immune signatures and clinical features in 

COVID-19 patients. As expected, the elevated enrichment of the eight immune-

inciting signatures were correlated with higher HFD-45 values and more ventilator-

free days (Spearman’s correlation test, P < 0.01, ρ > 0.3) (Fig. 2A). Moreover, their 

enrichment levels were significantly higher in non-ICU versus ICU patients and in 

non-MVS versus MVS patients (one-tailed Mann–Whitney U test, P < 0.01) (Fig. 2B). 

Collectively, these results indicate that the enrichment of these immune-inciting 

signatures has a positive association with outcomes in COVID-19 patients. In addition, 

we found five immune-inciting signatures (HLA Class II, CD8+ T cells, Th1 cells, 

Th2 cells, and NK cells) whose enrichment levels correlated inversely with ages of 

COVID-19 patients (P < 0.1, ρ < -0.18) (Fig. 2C). However, none of the eight 

immune-inciting signatures showed significantly different enrichment levels between 
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female and male patients. Again, these results indicate that younger patients have a 

stronger immune response to SARS-CoV-2 infection than older patients, while the 

strength of immune response is not different between female and male patients. We 

further demonstrated the significant negative correlation between the immune-inciting 

signatures and ages of COVID-19 patients in two other RNA-Seq gene expression 

profiling datasets for COVID-19 patients (GSE156063 (12) and GSE152075 (13) (Fig. 

2C). Likewise, the associations between gender and these immune-inciting signatures 

were not significant in both datasets. Interestingly, in GSE156063, six immune-

inciting signatures displayed significantly lower enrichment levels in COVID-19 

patients than in the patients infected with other viruses (one-tailed Mann–Whitney U 

test, P < 0.01) (Fig. 2D). It suggests that SARS-CoV-2 causes a weaker human host 

immune response compared to other viruses, a potential explanation for the higher 

infectivity and pathogenicity of SARS-CoV-2 versus other viruses. In contrast to the 

immune-inciting signatures, the immune-inhibiting signatures were likely to have a 

negative correlation with outcomes in COVID-19 patients, as evidenced by that the 

three immune-inhibiting signatures (type II IFN response, Treg, and neutrophils) 

displayed significantly higher enrichment levels in MVS than in non-MVS patients 

(one-tailed Mann–Whitney U test, P < 0.05) (Fig. 2E). In addition, the type II IFN 

response signature had inverse correlations with ventilator-free days and HFD-45 

values (P < 0.05, ρ < -0.21) and was significantly higher in ICU versus non-ICU 

patients (Fig. 2F). 

 

Comparison of the contribution of different factors in the prediction 

of COVID-19 outcomes 

To compare the contribution of different factors in the prediction of outcomes in 

COVID-19 patients, we used the logistic regression model with five predictors (age, 
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gender, CD8+ T cell score, NK cell score, and type II IFN response score) to predict 

ICU (= 1) versus non-ICU (= 0) and MVS (= 1) versus non-MVS (= 0) patients, 

respectively. In predicting MVS versus non-MVS, age, CD8+ T cells, and NK cells 

were significant negative predictors, while type II IFN response was a significant 

positive predictor (P < 0.05) (Fig. 3). In predicting ICU versus non-ICU, CD8+ T 

cells and NK cells were significant negative predictors (P < 0.1), while type II IFN 

response was a positive predictor (P = 0.186, β = 1.98). These results indicate that 

COVID-19 outcomes are correlated positively with immune-inciting signatures and 

negatively with immune-inhibiting signatures and age, consistent with previous 

results. Meanwhile, logistic regression analyses indicate that the adaptive immune 

response (CD8+ T cells) has a stronger impact on COVID-19 outcomes than the 

innate immune response (NK cells), as evidenced by the larger β values of CD8+ T 

cells versus NK cells in predicting ICU and MVS.  

 

Identification of gene ontology differentially enriched between 

COVID-19 subtypes 

WGCNA identified seven gene modules (indicated in cyan, light yellow, brown, light 

green, magenta, black, and turquoise color, respectively) that significantly 

differentiated COVID-19 patients by COVID-19 subtypes (Im-C1, Im-C2, and Im-C3) 

and outcomes (HFD-45, ICU, and MVS) (Fig. 4). The representative gene ontology 

(GO) terms associated with the gene modules highly enriched in Im-C3 while lowly 

enriched in Im-C1 included viral transcription, mitochondrial protein complex, RNA 

processing, and endoplasmic reticulum part. Consistently, these modules were 

associated with better outcomes of COVID-19. Besides, the immune response 

downregulated in Im-C1 was positively associated with COVID-19 outcomes. In 

addition, the protein modification process representing the black module, which was 
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downregulated in Im-C3 while upregulated in Im-C2, correlated with worse outcome 

of MVS.  

 

Identification of genes and pathways differentially expressed between 

ICU and non-ICU COVID-19 patients 

We identified 67 and 309 genes upregulated and downregulated in ICU versus non-

ICU COVID-19 patients (Fig. 5A and Supplementary Table S1). We found a number 

of immune-related pathways associated with the upregulated genes in non-ICU, 

including antigen processing and presentation, natural killer cell mediated cytotoxicity, 

hematopoietic cell lineage, intestinal immune network for IgA production, T cell 

receptor signaling, cytokine-cytokine receptor interaction, chemokine signaling, Toll-

like receptor signaling, RIG-I-like receptor signaling, cytosolic DNA-sensing, Jak-

STAT signaling, NOD-like receptor signaling, and Fc epsilon RI signaling (Fig. 5B). 

Again, these results indicate the stronger immune response in non-ICU versus ICU 

COVID-19 patients. Furthermore, we performed a prediction of ICU versus non-ICU 

patients based on gene expression profiles in leukocyte samples from 100 COVID-19 

patients (GSE157103). The 3-fold cross validation (CV) accuracy was 83.1%, and the 

area under the ROC curve (AUC) was 91.5% (Fig. 5C). It indicates that the gene 

expression profiles in leukocytes of COVID-19 patients could be a potentially useful 

predictor for the severity of  COVID-19.  

 

Discussion 

Based on the enrichment levels (ssGSEA scores) of 11 immune signatures in 

leukocytes of COVID-19 patients, we identified three COVID-19 subtypes: Im-C1, 

Im-C2, and Im-C3, by clustering analysis. The ssGSEA scores-based clustering 
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method has been shown to be more robust than the gene expression values-based 

method in identifying subtypes of diseases  (14-16). Im-C1 had the lowest immune-

inciting signatures and high immune-inhibiting signatures. Im-C2 had medium 

immune-inciting signatures and high immune-inhibiting signatures. Im-C3 had the 

highest immune-inciting signatures while the lowest immune-inhibiting signatures. 

Im-C3 and Im-C1 COVID-19 patients had the best and worst clinical outcomes, 

respectively, suggesting that antiviral immune responses alleviated the severity of 

COVID-19 patients. We further demonstrated that the adaptive immune response 

exerted a greater impact on COVID-19 outcomes than the innate immune response. 

The patients in Im-C3 were younger than those in Im-C1, indicating that younger 

persons have stronger antiviral immune responses than older persons. Nevertheless, 

we did not observe a significant association between sex and immune responses in 

COVID-19 patients. In addition, we found that the type II IFN response signature was 

an adverse prognostic factor for COVID-19 in the dataset GSE157103. This result 

appears inconsistent with previous findings (17-18). The reason behind this needs to 

be further investigated. 

 

Our data suggest that a strong antiviral immune response can reduce COVID-19  

severity. Thus, a strong host immune system is crucial for fighting against COVID-19, 

as bolstered by a recent study (19). However, previous studies have revealed that 

serum inflammatory cytokine levels had an inverse association with clinical outcomes 

in COVID-19 patients (20-23). It suggests that excessive immune response, known as 

cytokine storm, may cause immunopathological damage in COVID-19 patients (7). 

We compared the expression levels of several cytokine genes in leukocytes between 

ICU and non-ICU COVID-19 patients, including IL-6, IL-1β, TNF, CCL2, CXCL10, 
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IFNG, IL7. We found that these genes displayed significantly higher expression levels 

in non-ICU than in ICU patients (Fig. 5). A potential explanation for these different 

results could be the different sources of these cytokine. 

 

Methods 

Datasets 

We downloaded the RNA-Seq gene expression profile datasets in leukocyte samples 

from 100 COVID-19 patients (GSE157103) and in SARS-CoV-2-infected human 

tissues from nasopharyngeal swabs (GSE152075 and GSE156063) from the Gene 

Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/). Supplementary 

Table S2 summarizes these datasets. 

 
Quantification of the enrichment levels of immune signatures 

We used the single-sample gene-set enrichment analysis (ssGSEA) score [24] to 

evaluate the enrichment level of an immune signature in a COVID-19 patient based 

on the gene expression profiles. The ssGSEA score represents the enrichment score of 

a gene set in a sample based on the degree of the genes in the gene set coordinately 

up- or down-regulated in the sample. We analyzed 11 immune signatures, including 

HLA Class II, CD8+ T cells, Tfh, Th1 cells. The gene sets representing these immune 

signatures are listed in Supplementary Table S3.  

 

Clustering analysis 

We hierarchically clustered 100 leukocyte samples from COVID-19 patients 

(GSE157103) based on the ssGSEA scores of the 11 immune cell types. We 
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performed the clustering analysis by using the R function “hclust” for hierarchical 

agglomerative clustering. 

 

Logistic regression analysis 

We used logistic regression with five predictors (age, gender, CD8+ T cell score, NK 

cell score, and type II IFN response score) to predict ICU and MVS, respectively. The 

logistic regression analysis utilized the R function “glm” to fit the binary model and 

the R function “lm.beta” in the R package “QuantPsyc” to calculate the standardized 

regression coefficients (β values). 

 

Identification of gene ontology associated with COVID-19 subtypes 

We used WGCNA (25) to identify the gene modules differentially enriched in 

COVID-19 subtypes and outcomes. The representative gene ontology (GO) terms 

associated with the gene modules were identified. The WGCNA analysis was 

performed by using the R package “WGCNA” (version 1.68). 

 

Pathway analysis 

We identified differentially expressed genes between ICU and non-ICU COVID-19 

patients using Student’s t test with a threshold of adjusted P-value (false discovery 

rate (FDR) < 0.05 and fold change (FC) of mean expression levels > 2. Based on the 

differentially expressed genes, we identified KEGG (26) pathways differentially 

enriched between ICU and non-ICU COVID-19 patients by (27) with a threshold of 

FDR < 0.05. The FDR was calculated by using the Benjamini-Hochberg method (28). 

 

Class prediction 
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We predicted ICU versus non-ICU patients based on gene expression profiles in 

leukocyte samples from 100 COVID-19 patients (GSE157103). We performed 3-fold 

CV in the 100 samples. Within each loop of the CV, we selected the 100 genes with 

the largest absolute t-scores in the comparison of ICU versus non-ICU patients in the 

training set; based on the 100 genes, we trained the Random Forest (RF) classifier and 

predicted ICU versus non-ICU patients in the test set. We reported the prediction 

performance (accuracy and AUC) as the average of them in the 3-fold CV. We carried 

out the prediction algorithm in Weka (29) with the number of trees in the RF set to 

500. 

 

Statistical analysis 

In comparison of two classes of data, we used Mann–Whitney U test if they were not 

normally distributed and used Student’s t test if they were normally distributed. We 

used Spearman’s correlation test to evaluate the correlation between two groups of 

data on the assumption that they were not normally distributed. We used Fisher’s 

exact test to evaluate the association between two categorical variables. All statistical 

analyses were performed in the R programming environment (version 4.0.2). 

 

List of abbreviations 

HLA: Human leukocyte antigen; Tfh: T follicular helper cells; Th1 cells: Type 1 T 

helper cells; Th2 cells: Type 2 T helper cells; NK: Natural killer; pDCs: 

Plasmacytoid dendritic cells; Treg: Regulatory T cells; ICU: Intensive care 

unit; MVS: Mechanical ventilatory support; HFD: Hospital-free days at day 45; 

WGCNA: Weighted gene co-expression network analysis; FDR: False discovery rate; 

RF: Random forest. 
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Fig. 1. Identification of COVID-19 immune subtypes. A. Hierarchical clustering of 

100 COVID-19 patients based on the enrichment scores of 11 immune signatures in 

leukocytes. B. Comparisons of the ratios of immune-stimulatory to immune-inhibitory 

signatures between the three COVID-19 subtypes. The ratios were the mean 

expression levels of the marker genes of immune-stimulatory signatures over those of 

immune-inhibitory signatures (log2-transformed). The Student’s t test P-values are 

indicated. * P < 0.05, ** P < 0.01, *** P < 0.001 (This also applies to the following 

figures). C. Principal component analysis confirming that COVID-19 can be divided 

into three subgroups based on the enrichment scores of the 11 immune signatures. D. 

Proportions of COVID-19 patients admitted to intensive care unit (ICU) or requiring 

mechanical ventilatory support (MVS) in the COVID-19 subtypes. E. Comparisons of 

the scores of the Acute Physiology and Chronic Health Evaluation (APACHE II) and 

the Sequential Organ Failure Assessment (SOFA), ventilator-free days, and the 

hospital-free days at day 45 (HFD-45) values between the three COVID-19 subtypes. 

F. Comparisons of the COVID-19 severity-associated laboratory 

measurements between COVID-19 subtypes. G. Comparisons of the age between 

COVID-19 subtypes. The one-tailed Mann–Whitney U test P-values are shown. 

Fig. 2. Associations between immune signatures and clinical features in COVID-

19 patients. A. Associations between immune signature scores and HFD-45 values 

and ventilator-free days. The Spearman’s correlation test P-values and correlation 

coefficients are shown. B. Comparisons of immune signature scores between ICU and 

non-ICU patients and between MVS and non-MVS patients. The one-tailed Mann–

Whitney U test P-values are shown. C. Associations between immune signature 

scores and age. D. Comparisons of immune signature scores between COVID-19 

patients and the patients infected with other viruses. E. Comparisons of the scores of 

three immune-inhibiting signatures (type II IFN response, Treg, and neutrophils) 

between non-MVS and MVS patients. F. The scores of type II IFN response have 

negative correlations with HFD-45 values and ventilator-free days and are higher in 

ICU than in non-ICU patients. 

Fig. 3. Prediction of ICU versus non-ICU and MVS versus non-MVS patients 

using five predictors (age, gender, CD8+ T cell score, NK cell score, and type II 

IFN response score) by logistic regression analyses. The standardized regression 

coefficients (β values) are shown. 
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Fig. 4. WGCNA identified seven gene modules significantly differentiating 

COVID-19 patients by COVID-19 subtypes and outcomes. The representative 

gene ontology terms for gene modules, correlation coefficients, and P-values are 

shown.  

Fig. 5. Genes and pathways differentially expressed between ICU and non-ICU 

COVID-19 patients. A. Heatmap for 50 and 50 genes showing the highest increases 

and decreases of the fold change of mean expression levels in ICU versus non-ICU 

patients, respectively. B. Immune-related pathways upregulated in ICU versus non-

ICU patients. C. Prediction performance of gene expression profiles in leukocyte 

samples from 100 COVID-19 patients in the prediction of ICU versus non-ICU 

patients by Random Forest. The area under the ROC curve (AUC) is shown for each 

loop of the 3-fold cross validation (CV). 

Fig. 6. Comparisons of the expression levels of cytokine genes in leukocytes 

between ICU and non-ICU COVID-19 patients. The Student’s t test P-values are 

shown. 

 

Supplementary materials 

Table S1. The genes differentially expressed between non-ICU and ICU COVID-19 

patients. 

Table S2. A summary of the datasets used in this study. 

Table S3. The gene sets representing immune signatures. 
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