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Summary 

Background The world is experiencing local/regional hot-spots and spikes of the severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes COVID-19 disease. We aimed 

to formulate an applicable epidemiological model to accurately predict and forecast the 

impact of local outbreaks of COVID-19 to guide the local healthcare demand and capacity, 

policy making, and public health decisions. 

 

Methods The model utilised the aggregated daily COVID-19 situation reports (including counts 

of daily admissions, discharges, and bed occupancy) from the local NHS hospitals and COVID-

19 related weekly deaths in hospitals and other settings in Sussex (population 1·7M), 

Southeast England. These datasets corresponded to the first wave of COVID-19 infections 

from 24 March to 15 June 2020. A novel epidemiological predictive and forecasting model was 

then derived based on the local/regional surveillance data. Through a rigorous inverse 

parameter inference approach, the model parameters were estimated by fitting the model to 

the data in an optimal sense and then subsequently validated. 

 

Results The inferred parameters were physically reasonable and matched up to the widely 

used parameter values derived from the national datasets.28 We validate the predictive power 

of our model by using a subset of the available data and compare the model predictions for 

the next 10, 20, and 30 days. The model exhibits a high accuracy in the prediction, even when 

using only as few as 20 data points for the fitting. 
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Conclusions We have demonstrated that by using local/regional data, our predictive and 

forecasting model can be utilised to guide the local healthcare demand and capacity, policy 

making, and public health decisions to mitigate the impact of COVID-19 on the local 

population.  Understanding how future COVID-19 spikes/waves could possibly affect the 

regional populations empowers us to ensure the timely commissioning and organisation of 

services.  The flexibility of timings in the model, in combination with other early warning 

systems, produces a timeframe for these services to prepare and isolate capacity for likely and 

potential demand within regional hospitals. The model also allows local authorities to plan 

potential mortuary capacity and understand the burden on crematoria and burial services. 

The model algorithms have been integrated into a web-based multi-institutional toolkit, which 

can be used by NHS hospitals, local authorities, and public health departments in other regions 

of the UK and elsewhere. The parameters, which are locally informed, form the basis of 

predicting and forecasting exercises accounting for different scenarios and impact of COVID-

19 transmission.   

Keywords COVID-19, forecasting, healthcare demand, SEIR-D epidemiological model, 

parameter inference. 

 

Introduction 

Since SARS-CoV-2 was identified in December 2019,1 COVID-19 has swiftly and rapidly spread 

to nearly all countries in the world, becoming an ongoing global world pandemic that has 

required unprecedented international, national, and regional interventions to try and contain 

its spread.1,2 Unlike the 1918-19 H1N1 pandemic, which is considered one of the greatest 

medical disasters of the 20th century,1 the spread of COVID-19 has unfolded live on 

multimedia platforms with real-time updates, statistics and with remarkable reporting 
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accuracy,3 and yet reliable, accurate, and data-validated epidemiological modelling with 

forecasting and prediction capabilities remains largely out of reach.1,4–8 Given the lack of 

widely accessible pharmaceutical interventions, such as vaccination and antiviral drugs, 

epidemiological modelling has been thrust to the forefront of world organisations’ and 

governments’ responses, rapid decision-making, and public health interventions and 

policy.1,4,9–11 Until these pharmaceutical interventions become widely available, the only 

measures for infection prevention and control are self or group-isolation (quarantine), testing 

and contact tracing, physical distancing, decontamination, use of personal protective 

equipment, wearing masks and hygiene measures. A lot of these unprecedented 

actions/decisions have resulted in complete lockdowns of countries and economies, and yet 

these decisions are based on qualitative/quantitative predictions/models using national 

datasets outside the countries imposing the lockdowns on the basis of these models. A fair 

criticism of the underlying approach has been the lack of rigorous model validation and 

applicability given the datasets available at the time of the study, the lack of risk assessment 

associated with the decisions and their impact on the healthcare demand, capacity, and 

delivery and subsequently the lack of precision forecasting that is driven by data.8,12 

Unfortunately, early epidemiological models needed to make assumptions out of necessity 

about parameters and disease progression. Therefore, given the lack of data at the early 

stages of the pandemic, the predictions of these models were near impossible to 

validate.1,4,6,7,9 At the forefront of these epidemiological models that have played a pivotal 

role in guiding national public health policy and healthcare responses that include the current 

social distancing, contact tracing, and quarantine measures, is the well documented Imperial 

College London model.1 The societal and economic impact of the aforementioned decisions 

have hardly been quantified, only estimates in the range of trillions of dollars loss to the world 
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economy are reported.13,14 A few models dealing with decision-making within the COVID-19 

crisis have been reported;9,15,16 however, these lack the power of model prediction and 

forecasting based on appropriate variables and datasets. 

     In order to understand the temporal dynamics of COVID-19, a lot of modelling work has 

been undertaken, focusing primarily on national datasets from China, Italy, Spain, UK, and the 

USA.1,4,6,7,9,17–20 Given the inhomogeneous nature of such datasets, accurate predictions and 

forecasting of the spread of COVID-19 is challenging.8,21 Where such predictions were made, 

caveats accompanied these predictions simply because of the lack of rigorous mathematical 

and statistical validation of the models and the lack of robust data on which mathematical 

assumptions are based.1,4,6–9,19,20 Forecasting requires ample historical information/datasets, 

which were lacking during the first wave of COVID-19. Current state-of-the-art forecasting 

models are based, on the one hand, on time series analysis without an underlying dynamic 

epidemiological model.6,8,22,23 On the other hand, where forecasting is based on 

epidemiological models,6,24 these lack rigorous validation, sensitivity analysis, and analysis 

with respect to identifiability of parameters and therefore have limited forecasting power. An 

interesting approach is proposed in Bertozzi et al. (2020)4 where three models were presented 

depending on the forecasting timescales; an exponential growth model, a self-exciting 

branching process, and the classical susceptible-infected-recovered (SIR) compartmental 

model. The exponential growth model is assumed valid at the early stages of the pandemic, 

the self-exciting branching process models the individual count data going into the 

development of the pandemic, and the SIR is a macroscopic mean-field model that describes 

the pandemic dynamics as it approaches the peak of the infection and disease. Another 

interesting and alternative approach is to build machine learning and artificial intelligence 

techniques on top of epidemiological models to allow for model predictions and forecasting.6 
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This approach, so far, has been applied to national datasets from the USA but no regional 

modelling of this type has been undertaken. 

     The use of local datasets is critical for managing and mitigating COVID-19 secondary 

spikes/waves and re-infection within local communities.25 Already there is ample evidence 

that local forecasting models could help local/regional authorities to plan lockdowns, 

restrictions, opening of schools/universities, as well as planning for healthcare demand and 

capacity. For example, during the summer of 2020 all the 50 states in the USA started to relax 

lockdown restrictions, however, several states soon after either put on hold their efforts to 

open fully or started to backtrack due to the resurgence of COVID-19 infections and the start 

of secondary waves.8 At the same time in the UK, cities such as Leicester, Bradford, and 

Oldham were in the midst of experiencing secondary COVID-19 waves and re-infection. 

Similarly, in Australia, the city of Melbourne in the state of Victoria was in stage 4 lockdown 

while the remainder of the state was in stage 3 lockdown.10,11 During the first wave, Australia 

was hailed as a global success story in suppressing the spread of COVID-19 and even at the 

height of the initial outbreak, it only reported a little over 600 infections a day. A similar story 

emerged in Spain with regions in Catalonia undergoing secondary lockdowns. The usefulness 

of national models, in all these countries, is not clear in terms of being able to predict and 

forecast the emergence of such spikes, waves or new incidences locally until they have already 

taken place, which is too late. We propose therefore an alternative quantitative predictive 

approach which gives local (and national) authorities the ability to predict and forecast COVID-

19 scenarios based on their current historical datasets to visualise future dynamic temporal 

trends of the infection/disease progression for healthcare planning purposes.  

     In this study, we want to demonstrate the usefulness and utility of a locally data-driven 

epidemiological model, based on recent datasets from the three adjoining regions in Sussex, 
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Southeast England (i.e. Brighton and Hove City Council, East and West Sussex County 

Councils), to make predictions and forecast to guide local/regional decision-making and 

healthcare delivery. The approach is based on a modified SIR-type model, (Figure 1), that has 

been formulated to reflect the dynamics of the combined Sussex populations of 

approximately 1·7 million and the mathematical interpretation of the data available.  

    The aim of our study is to propose a systematic modelling approach that addresses 

healthcare demand and capacity at a local level, using the Sussex datasets, by conducting 

healthcare demand modelling that naturally leads to a standardised framework to quantify 

demand generated as a result of COVID-19. This framework will facilitate short-term 

predictions and long-term scenario forecasting, allowing for investigations into the impact of 

COVID-19 on healthcare provision and planning within the local area and to mitigate long-

term changes in local hospital demand as a result of further COVID-19 secondary waves. We 

used the local datasets collected throughout the first wave, which included local daily hospital 

data and weekly deaths data. Our approach differs substantially from current state-of-the-art 

modelling-forecasting approaches where unknown parameters driving epidemiological 

models have been based on various assumptions which vary substantially from one model to 

the other as well as variations between the domain-expertise of the researchers involved in 

making those assumptions. To the best of our knowledge, there is no work where the full SEIR-

D model is solved and fitted to data by using only the few compartments for which data is 

available. This is the novelty of our approach. We impose no a priori assumptions on the values 

of the model parameters; instead we infer these through an inverse modelling approach by 

requiring the model to fit to local data in an optimal sense. From the full SEIR-D model, we 

derive the “observational model”, which is a representation of the full SEIR-D model described 

only in terms of the model parameters and compartments that are captured by the 
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mathematical interpretation of data, in this case the observed quantities are: hospital 

admissions, bed occupancy, discharges, and COVID-19 related deaths (see details in the 

Supplementary material). In this way, by fitting the observational model to data, we obtain 

optimally defined values of the unknown model parameters (all the parameters shown in 

Figure 1), accurate to some degree of confidence.26,27   

 

Methods 

Data Collection   

As part of the national COVID response, all the National Health Service (NHS) hospitals in 

England, treating COVID-19 patients, submitted a Daily Situation Report to NHS England 

(NHSE). The regional data for Sussex hospitals were then sent to the Sussex Clinical 

Commissioning Group (CCG) who aggregated the data and combined it with the death 

registrations (with COVID-19 as the underlying cause of death) from the Office for National 

Statistics (ONS). The subsets of the hospital datasets included daily admissions, discharges, 

and bed occupancy. The death dataset consisted of weekly COVID-19 related deaths in 

hospitals and community settings (e.g. nursing homes). These datasets corresponded to the 

first wave of infections from 24th March until 15th June 2020. For the regional population 

count, the ONS Mid-Year Estimates (MYE) for 2018 were used. By identifying the 

compartments where data were available, a mathematical model was generated with the 

objective of forecasting local hospital demand and capacity and mortuary requirements. To 

mitigate changes in policy of what constituted a COVID-19 death and the procedure for 

recording patients with COVID-19, we account for significant levels of error n the observations. 

This entails that we do not explicitly distinguish between model and observational errors, but 

rather we compare the observations with the model solution and consider the difference to 
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be the overall error. In particular, we are including in the error the variation due to the 

stochastic nature of the epidemics, since the model accounts only for the mean quantities. 

Although death is an absolute count, the policy regarding what constituted a COVID-19 related 

death changed frequently throughout the lead up to and during the lockdown period. 

Similarly, testing was not optimal when the hospital data collection started and so admissions 

and occupancy counts were retroactively edited to incorporate newly tested patients, thus 

the balance of total patients between days may not match up. We note that, as detailed 

below, our model was designed specifically to avoid the use of general testing data. In this 

way, we avoid dealing with the correlation between detected cases and the number of tests. 

The number of cases in hospitals are recorded in a systematic way in order to properly isolate 

the patients to avoid outbreaks and, are therefore, less dependent on the overall number of 

tests. In a similar manner, it is well documented that age plays an important role in the severity 

of a COVID-19 infection;1,7,28,29 however, at the beginning of the epidemic within the UK, the 

appropriate age-structured data simply did not exist. 

 

Data-driven SEIR-D modelling 

The temporal dynamics of the compartmentalised epidemiological model are depicted in 

Figure 1, following classical approaches for formulating SIR models.2,30 The mathematical 

interpretation of the schematic diagram in Figure 1 leads to a temporal epidemiological 

dynamical system modelled by a system of ordinary differential equations supported by non-

negative initial conditions. The full model is summarised in equations (1) – (9) in the 

Supplementary material.   
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Figure 1: Schematic representation of the compartmental model. The susceptible population S(t) becomes infected 
through contacts with infectious individuals, U(t) and I(t). Infected individuals incubate the disease first,6 and are not 
infectious in this state, denoted by E(t), and after an incubation time, they become infectious. The compartment U(t) 
accounts for individuals that are not hospitalised; we only observe tem if they die, but not if they recover. Many models 
have split the U(t) compartment into two separate compartments (see for example Blyuss et al. (2020)2), one to describe 
individuals who are asymptomatic and the other to describe individuals who have symptoms but do not require 
hospitalisation. However, this approach is constrained by the lack of reliable datasets, and therefore, models of this nature 
rely purely on the merits of the simulations with no forecasting capabilities. For such models, it is challenging to obtain 
reliable data on those who are asymptomatic, especially on the scale of multiple regions/counties. Individuals in the 
compartment I(t) are eventually hospitalised and move to compartment H(t). We added the hospital compartment H(t) 
into the model as a transition compartment due to the data we have access to. There are two possible outcomes for COVID-
19 infections, recovery or death, denoted by R or D respectively, each subscripted with the severity of the infection. We 
note that there is also a difficulty gaining reliable data that considers those who are not hospitalised and recover. However, 
we have reliable datasets for those who die outside of hospital and thus, in the spirit of this model, are related to the not 
hospitalised pathway. Coloured and dashed arrows or compartments indicate that data are available: admissions to 
hospital (red dashed arrow from I(t) to H(t)), discharges from hospital (red dashed arrow from H(t) to RH(t)), daily counts 
of cases in hospital (red dashed H(t) compartment), and independent weekly data on deaths, both in hospital (red dashed 
arrow from H(t) to DH(t)), and out of the hospital settings (red dashed arrow from U(t) to DU(t)).  A novel feature of our 
model and inference method is that even though information about U(t) is hard to come by, we can still obtain information 
by using the red dashed arrow between U(t) to DU(t). The same thing can be said for obtaining the information on I(t), by 
using the red dashed arrow between I(t) to H(t). The parameters in the model regulate the rates from one compartment 
to the next and are described in Table 1. All parameters are inferred from the data using a minimisation process under 
constraints on the total population and the effective reproduction number. 

     Our model follows the general principles of SIR modelling approaches with one clear 

difference in that this model system is data-driven formulated where we have highlighted in 

dashed colour those compartments or pathways in Figure 1 where data is available within our 

local area. The physical justification of the SEIR-D model above is well-grounded in the 

modelling literature for COVID-19 and the general theory of epidemiology.2,30   
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Inferring model parameters given hospital datasets 

From the schematic diagram shown in Figure 1, we are interested in finding the optimal set of 

eight model parameters: b, gE, p, gU, gI, gH, mU, and µH, such that the SEIR-D model best-fits the 

observed data. We estimate the parameters in the model in two steps. First, we exploit the 

linear relationship, arising from the mathematical model, between mortality in hospitals and 

discharged patients, depicted by the blue double dashed line and the red dashed line between 

H(t) and RH(t) in Figure 1, respectively, to fit the parameter h = µH gH
-1. The second step is to 

infer the remaining parameters by expressing the model in terms of the mathematical 

interpretation using the model parameters and compartments of the available data; we call 

this the observational model. Once the observational model is found, we find the maximum 

likelihood estimation (MLE) corresponding to the negative log-likelihood described in the 

Supplementary material, by means of the minimisation algorithm L-BFGS-B.31,32 In both cases, 

we explore the relationship between model parameters where we have access to reliable 

datasets to mitigate parameter identifiability issues.33–35 Details of the linear relationship of 

discharges and deaths in hospital and the observational model are given in the Supplementary 

material. We note that this two-step fitting approach is not valid in general, but the structure 

of the model and the data allow us to do so for this particular case, since the parameter 

optimized in the first step is not present in the second step. In fact, one could perform the 

fitting in only one step to obtain the same result. The advantage of doing the fitting in two 

steps is that, in the first step, we can use more appropriate techniques for the linear 

regression. 

 

Forecasting and validation 
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As outlined above, models of this nature often lack parameter validation and thus lack the 

ability to predict relatively far into the future.8,9 To validate the predictive power of our 

modified SEIR-D model (Figure 1), we used the previously outlined inference algorithm to 

obtain new estimates for the model parameters using only a limited number of data points, 

and focused on predicting the hospital admissions, discharges, and bed occupancy using a 

minimum of 12 and a maximum of 51 data points. This is due to the larger hospital dataset we 

possess, since it is recorded daily rather than recorded weekly. We evaluated the predictive 

power of a parameter set by performing a prediction for the next 10, 20 and 30 days, starting 

the day after the last data point used for the parameter estimation. By comparing the 

prediction with the available data, we computed the percentage of days that are correctly 

predicted. It was considered that a day is correctly predicted if it lies within a given tolerance 

of standard deviations from the available data. This approach quantifies the risk associated 

with the decision of selecting a certain number of days into the future, e.g. 10, 20 and 30 days. 

It is important to note that this approach relies on the interpretation of the data, that the data 

is being collected in a consistent manner, and no policy changes happen within the period of 

the dataset, which would incur a change in public behaviour.  

 

Results 

Parameter values 

Using the compartmental model along with the novel inference algorithms, we derived the 

parameter values summarised in Table 1. Figure 2 shows the daily number of patients 

admitted to hospital, those in hospital and those who were discharged, respectively. To 

demonstrate the accuracy of the fitting procedure, we super-impose the observed datasets 

and their continuum mathematical counterparts as well as their 95% confidence intervals 
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(95%CI) for these curves. It can be easily verified that the fitting captures the trends of the 

data and fits the majority of the data within the 95% CIs. Moreover, small perturbations in 

most parameters result in small changes to the overall fit of the data, whilst others result in 

quite a large change in the overall fit (See Supplementary material for details). This reflects 

how well-characterised a parameter is from the data, rather than sensitivity of the model, 

since the forecasting pattern is not changing significantly. Accounting for the error in the log-

likelihood and the prediction technique, as well as the other sensitivity tests, demonstrates 

the robustness of the model when the actual data are perturbed and fitted. It is noteworthy 

that our set of optimal inferred parameters give a value of effective reproduction number Rt 

= 0·69 throughout the lockdown.  

 

Parameter Value Epidemiological meaning 

b 0·142 days -1 Average Transmission rate 
gE

-1 4·67 days Average incubation period 
p 0·927 Fraction of non-hospitalised infections 
gU

-1 5·02 days Average infectious period (non-hospitalised) 
gI

-1 6·30 days Average infectious period (hospitalised) 
gH

-1 18·3 days Average hospitalisation period (recovered) 
mU 0·0258 Infected fatality ratio (non-hospitalised) 
µH

-1 16·2 days Average hospitalisation period (deaths) 
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Table 1: Description of the parameters of the compartmental model, and their values when the model is fitted to the data. 
The values are inferred using only the data from the Sussex region, without taking any information from other regions or 
countries.  

 

Figure 2: Output of the compartmental model and comparison with data. The solid line represents the output of the model 
with the parameters inferred from the data. The shaded region depicts the 95% confidence interval (95%CI) computed 
from the data, that is, attributing all the error to measurement error. The dots correspond to observed data. Since all data 
are collected by manual counting and recording, there is a significant amount of noise. Furthermore, we cannot verify that 
the counting protocol has not changed during the period. There are between 1 and 5 outliers in each data set, out of a 
total of 82 data points, but generally the model captures the dynamics of the data and the situation. 

     Comparisons between our parameters and those used widely in the literature are shown 

in Table 2.1,6,20 It must be noted that the physical interpretations of some of the parameters 

differ from one model to another, however, the overall picture appears plausible. Previous 
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estimates of the average transmission rate and infected fatality ratio were not calibrated 

locally, or were based on data from other regions, for instance the Imperial College London 

model and other similar reports. It must be observed that the fraction of non-hospitalised 

cases is slightly due to its interpretation.  

 

Table 2: Comparison of parameter values from different studies. There is evidence to support that one becomes infectious 
before presenting symptoms,36,37 and also that one becomes infectious after presenting symptoms.6 Different studies use 
different definitions for the incubation period, for instance time from exposure to onset of symptoms instead of time from 
exposure to transmissibility. This therefore has a knock-on effect on the understanding of the average infectious period. 
*The infected fatality ratio (IFR) in Ferguson et al. (2020)1 includes all cases, whilst in our model, it is limited to non-hospital 
infections but is heavily influenced by mortality in care-homes. **In Lourenço et al. (2020)20, the IFR is limited to severe 
infections. 

 

Predictive power of the SEIR-D model 

Using the predictive power method outlined above corresponds to a total of 1776 parameters 

sets. The resulting values of the parameters from the inference algorithm using the subsets of 

data are similar to the global fit using all the available data. Figure 3 shows the results for 

predictions 10, 20 and 30 days into the future. To our knowledge, this is the first result of its 

kind that validates the forecasting in this manner.  

Parameter 
Campillo-Funollet 
et al. (2020) 

Ferguson et al. 
(2020)1 

Kissler et al. 
(2020)6 

Lourenço et al. 
(2020)15 

Average 
incubation period 4·67 days 5·1 days 4·6 days N/A 
Fraction non-
hospitalised cases 0·927 0·956 0·956 N/A 
Average 
infectious period 6·30 days 5 days 5 days 4·5 days 
Average 
hospitalisation 18·3 days 8-16 days 6-8 days N/A 
Infected fatality 
ratio 0·0258 0·009* N/A 0·14** 
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Figure 3: Validation of the predictive power of the model. We fitted the parameter models using all possible sequences of 
consecutive admissions, discharge and bed occupancy data points, from 12 to 51 points. Note that since there are only 82 
data points available, we could not use more than 51 points to validate a prediction for 30 days, otherwise we will not 
have data to compare with. The predictive power is quantified as the number of days predicted within an accuracy of one, 
two, or three standard deviations of the data. There are significant differences in the predictive power for different 
variables. Admissions and discharges can be predicted accurately using as low as 15 data points to fit the model, whilst 
hospital bed occupancy requires about 30 data points to reach the same accuracy levels. Admissions/discharges and bed 
occupancy are different in nature: the former are rates (individuals per day), whilst the latter is an absolute count - this 
might explain the difference in the predictive power. In addition, bed occupancy is roughly ten times the value of 
admissions and discharges. 

 

Discussion 

Predicting the local/regional resurgence of COVID-19 is the number one priority of 

governments and local authorities in the UK and around the world, to control and halt the 

local and national transmission of infection. The pandemic itself has thrown to the forefront 

of science the role and utility of epidemiological modelling at a time when questions of 

urgency, national importance, and uncertainty simultaneously come into play, thereby 

exposing its current limitations in terms of predictions and forecasting.8,12 A comment by 

Saltelli et al. (2020)12 outlines a manifesto highlighting five ways in which mathematical 

models should serve society. These include minding the assumptions (the minimal the better), 

being mindful of model complexities (hubris – balancing the usefulness of the model with the 
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breath of its predictions), being mindful of the interests of the researchers (techniques and 

methodology can be limited in scope to the expertise of the researchers), being aware of the 

consequences (mitigate the uncertainty), and finally being mindful of the unknowns 

(communicating what is unknown is as important as communicating what is known). Our 

approach is based on these five pillars to ensure that our research outcomes are engrained 

and driven by reliable local surveillance data with minimal assumptions and an explicit simple 

data-formulated model. Predictive epidemiological modelling applied to local data has the 

unique ability to offer local authorities a framework for decision-making that is based on 

temporal trends of these local datasets. Modelling lessons learnt at the local level can possibly 

be transferred to the national arena to help guide data acquisition such that datasets are 

amenable to model-data prediction approaches as well as providing avenues for short-, 

medium-, and long-term forecasting.  

     During the early stages of COVID-19, parallels between COVID-19 and the Spanish flu 

(among other influenza diseases) that killed more than 50 million people with an average age 

of 28 years, were drawn.1,4,6,22,38 As a result, to mitigate and prepare for COVID-19 

hospitalisations and deaths, national governments and hospitals suspended or postponed 

important critical diagnostic procedures/treatments, such as cancer diagnosis and treatment. 

Recent studies have highlighted how predictions need to be transparent and humble in order 

to instill confidence and invite insight and not blame.12 For a disease such as COVID-19, 

espoused wrong predictions can have a devastating effect on billions of people around the 

world in terms of the economy, job-security, health, education, and societal turmoil, just to 

mention a few. In this report, we have demonstrated that our inference process and resulting 

parameters allow us to produce forecasts for up to 30 days into the future to a high accuracy, 

for quantities of interest such as hospital bed occupancy, where such a time period can ensure 
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that decisions, and changes in decisions, can be enacted. The underlying temporal dynamics 

fit the pattern of an infectious disease outbreak and does not rely solely on statistically 

inferred parameters,8 in the absence of a dynamic model. Such statistical models lack the 

ability for long-term forecasting. A recent review by Jewell et al. (2020)39 established the need 

for accurate forecasting in the timescales we have demonstrated to help ease public 

uncertainty and anxiety by aiding local policy planning in the exact manner we are using the 

presented results in our collaborations with the Sussex local authorities and public health 

departments. 

     It is clear from the literature that the accuracy of predictions and forecasting is closely 

correlated with the underlying theoretical assumptions and the use of pre-determined values 

of the parameters that are extracted from studies in different contexts, for instance for 

populations with different demographics.8,12 This, in turn, is driven by the lack of reliable 

datasets appropriate for model-data validation and sensitivity analysis. In this study, we have 

proposed a bottom-up approach where a model built on local datasets has the ability to guide 

local decision-making in terms of healthcare demand and capacity, in particular given the 

surge in COVID-19 secondary spikes/waves.10,11 Other widely used publications, such as 

Ferguson et al. (2020)1, used datasets mainly from Wuhan and other national datasets for 

similar infectious diseases which means that overall policy and data collection will, in general, 

differ to the current situation. The important highlight and applicability of our work is that we 

used local datasets for our modelling, and so we fully understand how the data were collected 

and know exactly the physical interpretation of the parameters, something that cannot be 

claimed by using the parameters found in the other publications of predictive modelling.8,39 

The SEIR-D model itself is simple and transparent. Moreover, we have designed our approach 

in such a way that this method can be used by other regions/counties across the UK provided 
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they have the required data, and as such, we have created a toolkit which makes our approach 

more accessible.40 This allows for users who are not familiar with mathematical modelling to 

use our approach and generate their own parameters to inform local policy.  

     Our modelling framework is not only tailored to deal with COVID-19 but can be applied to 

other excess death situations in summer and winter months which are known to kill thousands 

of people every year, provided the appropriate datasets exist. Since the framework is built 

around an SEIR-D model, introducing vaccinations into the model is not mathematically 

difficult provided we have a good understanding of the vaccination program with reliable 

datasets.41–44 Similarly, with the emergence of the new COVID-19 variants (UK, South Africa, 

Brazil), for example the UK VOC 202012/01 variant that emerged in the Southeast of England 

in November 2020, we can adapt the work by Kissler et al. (2020)6 to provide a multi-strain 

model whereby an individual either catches one strain or the other.6,45 Understanding the 

impact of these will be vitally important in the progression of dealing with the disease, 

however it is not clear what data will be readily available, and our observational model will 

need to be adapted accordingly.  

     Epidemic forecasting and the development of early warning systems for healthcare 

demand and capacity has been thrown to the forefront of epidemiological modelling. By 

working in close collaboration, theoreticians, local authority public health teams, and NHS 

planners have a unique opportunity to bring novel approaches to healthcare decision-making 

and planning with forecasting capabilities similar to those used for weather forecasting. 

 

Subsequent performance of the model post phase one of the lockdown 

We continued to use the model and inference approach in the subsequent months following 

the lifting of COVID-19 restrictions and lockdowns. Figure 4 shows the performance of the 
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model for hospital bed occupancy until the beginning of October 2020. The parameters of the 

model were re-fitted twice during the period of March to October to account for policy 

changes, such as implementation of lift of lockdowns and other restrictions. In these cases, 

the decision to re-fit was based on expert opinion, but in the future we will use model 

selection methods to find the optimal refitting times. 

 

Figure 4: Hospital bed occupancy up to the 6th October 2020. The model parameters were fitted for three different 
periods of time (24th March to 22nd May, 23rd May to 10th August, 11th August to 6th October) to reflect significant 
policy changes. The performance of the model is stable throughout the depicted period.  
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