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Abstract 

Introduction 

The effect of apolipoprotein E (APOE) genotype, particularly APOE ε4, the main genetic risk 

factor for late-onset Alzheimer’s disease (LOAD), has been widely explored in neuroimaging 

studies pertaining to older adults. The goal of this systematic review was to review the 

literature on the relationship between carriage of the APOE ε4 allele and grey matter (GM) 

changes across various age groups and its influence on neurodegeneration as evidenced by 

structural magnetic resonance imaging (MRI). 

Methods 

A search of the electronic databases Pubmed, Scopus, Ovid and Cochrane was carried out till 

March 2020. Only studies published in English were included. Risk of bias of each study was 

assessed using the modified Newcastle-Ottawa Scale.  

Results 

A total of 115 articles met the inclusion criteria. Methodological quality varied from poor to 

good. There is moderate evidence of reduced GM volume in the middle frontal gyrus, 

precuneus, hippocampus, hippocampal subfields, amygdala, parahippocampal gyrus, middle 

temporal lobe, whole temporal lobe, temporal pole, and posterior cingulate cortex in APOE ε4 

carriers.  

Conclusion 

The present data supports the utility of the hippocampal GM volume to evaluate early 

structural neurodegenerative changes that occurs in APOE ε4 positive elderly individuals who 

are at increased risk of developing LOAD. Furthermore, the evidence supports serial 

measurements and comparison of hippocampal volume based on age group, to track the 

progression of neurodegeneration in APOE ε4 carriers. Additional longitudinal studies are 

necessary to confirm whether the combination of MRI-detected hippocampal atrophy with 

APOE ε4 carrier status, can better predict the development of LOAD in cognitively normal 

individuals.  
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1. Introduction 

Alzheimer’s disease (AD) is the commonest type of dementia and it is postulated to cause 60–

80% of cases worldwide (WHO, 2020; Alzheimer’s Association [AA], 2020). While older age 

group is recognized as the greatest risk factor for AD (AA, 2020; Rivan et al., 2020; Ibrahim et 

al., 2019), there are multiple other factors that are responsible for cognitive decline (Hussin et 

al., 2019; Lee et al., 2012; Shahar et al., 2013; Meramat et al., 2015). One of the most important 

non-modifiable risk factors is the apolipoprotein E (APOE) genotype which has been implicated 

in late-onset Alzheimer’s disease (LOAD). APOE is a 34 kDa glycoprotein containing 299 amino 

acid residues (Utermann, 1975) which functions as an essential constituent of plasma 

lipoproteins. APOE ε2 is a less common isoform and is considered protective against the 

development of AD (Wu and Zhao, 2016). Conversely, some studies postulate that ε2 may also 

be an important risk factor for AD (Kaur et al., 2005; van Duijn et al., 1995). The APOE ε3 allele 

is the most common genotype in the general population and apparently does not affect the risk 

of AD (Qiu et al., 2019). Universally, the APOE ε4 allele is the strongest identified genetic risk 

factor for both LOAD (Corder et al., 1993; Strittmatter et al., 1993) and sporadic AD (Poirier et 

al., 1993). APOE ε4 is usually present in 13.7% of worldwide population, but its frequency in 

LOAD patients is drastically increased to 40% (Farrer et al. 1997). 

The pathological hallmarks underlying AD include Aβ plaques and neurofibrillary tangles (NFTs), 

and abnormal tau protein concentrations in the central nervous system (Sperling et al., 2011). 

Biomarkers indicating brain Aβ depositions are typically demonstrated as decreased levels of 

cerebrospinal fluid (CSF) Aβ42 and increased retention of amyloid tracer on positron emission 

tomography (PET) (Sperling et al., 2011; Suppiah et al., 2019). Structural magnetic resonance 

imaging (MRI) changes are also used as neurodegeneration biomarkers of AD, and known to 

manifest later compared to changes demonstrated on PET (Sperling et al., 2011). This suggests 

that the role of measuring structural changes may be limited in its ability to detect early 

changes in AD, prior to symptoms becoming apparent. A novel approach is to investigate the 

presence of APOE ε4 and combine the outcome with brain MRI detected changes in those who 

are at a higher risk of developing AD by the virtue of their age, family history, or other related 

risk factors. This can lead to improved diagnostic accuracy and better prediction of future 

clinical outcome with regards to LOAD.  This stems from the compelling body of evidence that 

point to the crucial role of APOE ε4 in modulating cerebral Aβ and tau protein levels (Castellano 

et al., 2011; Strittmatter et al., 1994), neuronal activity (Sheline et al., 2010; Zhu et al., 2018), 

and ultimately gray matter volume (GMv) (Cacciaglia et al., 2018). Indeed previous systematic 

reviews and meta-analyses have explored the association between the APOE ε4 allele and brain 
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structural changes; however these studies have only focused on selected regions of the brain, 

particularly the temporal lobe structures, with essentially no details on the subcortical regions 

(Liu et al., 2015; Cherbuin et al., 2007). Furthermore, these studies have placed a cap on the age 

group of the subjects when selecting their sample population as a criterion for inclusion or 

exclusion of subjects, effectively excluding younger age from adult groups. Therefore, this 

systematic review summarizes current available evidence on (1) the significant cortical and 

subcortical MRI-detected brain changes in neurodegeneration, (2) the relationship between the 

presence of APOE ε4 allele and the changes that occur in the cortical and subcortical brain 

structures, and (3) the association between APOE ε4 and cortical and subcortical changes 

examined with brain MRI across all age groups.   

 

2. Material and methods 

2.1 Sources of information and search approach 

The following electronic databases were initially searched till August 19, 2019: Pubmed 

(http://www.ncbi.nlm.nih.gov/pubmed/), Scopus (https://www.scopus.com/home.uri), Ovid 

(http://www.ovid.com/site/index.jsp), and Cochrane 

(https://www.cochranelibrary.com/search). The search was updated on 3rd March, 2020. 

Further, a review of included studies in the systematic review undertaken by Cherbuin et al. 

(2007) was conducted. The search was further complemented with a search of the grey 

literature. Additionally, cross referencing of all the bibliography of the primary sourced eligible 

articles was undertaken to identify the articles that fulfilled the inclusion criteria. The search 

method was in accordance with the Patient, measurement Instrument, Comparison, Outcome 

(PICO)-framework. The following search terms were entered: (“Apolipoprotein” OR “APOE”) 

AND (“brain imaging” OR “magnetic resonance imaging” OR “MRI”) AND (“Temporal lobe” OR 

“Hippocampus” OR “Medial Temporal Lobe” OR “Parahippocampal gyrus” OR “Amygdala” OR “ 

Entorhinal cortex” OR “Parietal lobe” OR “Frontal lobe” “Occipital lobe” OR “Precuneus” OR 

“Entorhinal cortex” OR “Atrophy”) AND (“Brain size” OR “ Brain volume” OR “Gray matter 

volume” OR “Cortical Thickness”). 

 

2.2 Study selection 

The articles had to fulfil the following inclusion criteria adopted from Cherbuin et al. (2007): (1) 

human subjects; (2) healthy subjects and/ or subjects with AD or dementia (including vascular 

dementia [VaD], dementia with Lewy bodies [DLB] and frontotemporal dementia [FTD]); (4) all 

subjects were examined using structural brain MRI technique; (5) brain regions were 

investigated for whole or regional alterations, and measurements made pertaining to GM 
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thickness and/or GMv; (6) articles published in English language, and (7) full-text available 

articles. Articles that did not meet each of the listed criteria were excluded. 

 

2.3 Eligibility Criteria 

Assessment for eligibility was undertaken by conducting a screening of all articles obtained in 

accordance with the listed inclusion and exclusion criteria. Assessment for eligibility was 

undertaken by A.D.P. A.D.P is a PhD candidate working on ‘neuroimagenomics’ of MCI/AD 

patients. After identifying potentially eligible articles, duplicates were removed, and the first 

phase of the screening was performed based on title and abstract. When an abstract is deemed 

to provide inadequate information, a retrieval of the whole text was undertaken. The next 

phase involved the retrieval of full text articles which were evaluated to ensure that they meet 

the inclusion criteria. Consensus was often reached when there is concern regarding the 

inclusion or exclusion of an article.  

 

2.4 Data information 

The following information were extracted from each included article and presented in Tables 1 

and 2. In Table 1, the following items are listed: (1) authors, (2) magnetic fields, (3) MRI 

parameters, (4) pulse sequences, (5) measurement and analysis method. Table 2 shows (1) 

authors, (2) age and gender of patient group, (3) age and gender of the control group, (4) main 

findings, and (5) remarks.  

 

2.5 Risk of bias in individual studies 

In order to determine the methodological quality of each eligible study, the Newcastle–Ottawa 

Scale (NOS, http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp) designed 

purposely for case–control and cohort studies was used (Table 3). The NOS is apportioned into 

three categories: selection, comparability, and exposure/outcome. The maximum score on the 

NOS is nine points, which represents the highest methodological quality. To avoid bias, two 

reviewers (A.D.P. and M.M) independently conducted the methodological quality assessment. 

After quality assessment, comparison was made and consensus was reached when differences 

occurred in the scores. One point is awarded for each item under the Selection and 

Exposure/Outcome categories, while two points are awarded for the Comparability category. 

Regarding the response rate, a subcategory under Exposure, this was replaced because it did 

not fit the assessment criteria for the study. Therefore, this subcategory was replaced with item 

9 to assess for ‘MRI data quality’ (Coppieters et al., 2016). This was to check whether 
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researchers did perform visual inspection of ‘MRI data quality’. Overall, the maximum 

achievable score of a study was 9 based after modifying the NOS, which represented the test 

methodological quality. The NOS Scale is described in Table 3 as a footnote.   

Regarding the study design and methodological quality, a level of evidence (LOE) was assigned 

to each study, in accordance with the 2005 classification system of the Dutch Institute for 

Healthcare Improvement (CBO) (http://www.cbo.nl/Downloads/632/bijlage_A.pdf) (Table 4).  

Following the clustering of studies with comparable methods or results, the strength of 

conclusion was determined (Table 5) based on the CBO classification, which accounted for the 

study designs as well as the risk of bias. 
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3.0 Results 

3.1 Study Selection 

The study selection process of studies that met the inclusion criteria is shown in Figure 1. 

Briefly, the initial search yielded a total of 800 studies. After eliminating duplicates, 475 studies 

remained. Further exclusion of studies based on titles and abstracts led to 239 articles 

remaining. After assessing the full-text articles, a total of 124 articles were removed, leaving 

total of 26 studies 115 which were included in the current study (Figure 1).  

 

3.2 Study Characteristics 

Briefly, from Table 1, for the studies that documented the MRI parameters, the magnetic field 

strengths ranged between 0.22 T to 7.0 T, repetition time (TR) and echo time (TE) varied 

between 2.73 to 10,000 ms and 2.0 to 30,153 ms respectively. Other parameters such as FA and 

ST varied between 70 to 150 and 1 to 10 mm respectively. While most studies acquired 3D T1-

weighted imaging using gradient echo pulse sequence, a few studies acquired T2-weighted 

imaging (Barboriak et al., 2000; Doody et al., 2000; Kerchner et al., 2014; Mueller and Weiner 

(2009); Mueller et al., 2008; Donix et al., 2013). Even though most studies used volumetric 

measures for analysis on semi- or fully automated software, a small number of studies used 

manual tracing (Du et al., 2000; Tanaka et al., 1998; Geroldi et al., 2000; Geroldi et al., 1999; Lu 

et al., 2011; Juottonen et al., 1998; Barzokis et al., 2006), and visual analysis (Cotta Ramusino et 

al., 2019; Barber et al., 1999; Doody et al., 2000).  

 

3.3 Risk of bias and level of evidence 

Table 3 shows the results of the methodological quality assessment. The LOE is graded as 

follows: -, score not fulfilled; +, score fulfilled; /, answer is unclear. Methodological quality 

varied from poor to good, between 3 of 9 and 8 of 9. Most studies lost points on ‘selection of 

controls’, and ‘definition of controls’, and ‘MRI data quality’. This was mainly because authors 

did not provide the required information or the information was inadequate.  Most eligible 

studies matched participants for age and gender. A few studies controlled for additional factors 

(e.g. APOE ε4). 

In addition, Table 2 shows the characteristics of each study. All studies in the review were 

assigned an LOE B, due to the inclusion of only case–control and cohort type of studies. 
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3.4 Syntheses of Results 

Overall, almost 87% of the eligible articles investigated the temporal lobe, yielding a total of 

100 articles. A total of 22 articles investigated the frontal lobe, while the parietal lobe was 

investigated in 18 articles. The occipital lobe was the least studied, and was found to be 

investigated in only 7 articles. Several other cortical and subcortical regions were investigated 

in a total of 29 studies. 

3.4.1 Frontal lobe 

From Table 2, most studies reported that APOE ε4 carriers demonstrated reduced GMv and/ or 

increased rate of atrophy of the frontal lobe as a whole or its specific regions which included 

the following: left frontal lobe. However, in an APOE ε4 dose-dependent manner, the evidence 

regarding the direction of change of frontal lobe GMv are conflicting. A few studies also found 

APOE ε4 carriers to demonstrate thinner cortex in the following regions: bilateral lateral frontal, 

left rostral midfrontal, right caudal midfrontal regions, superior frontal gyrus, and dorsolateral 

frontal regions. This contrasts with studies that found increased cortical thickening of the 

lateral medial orbitofrontal cortical region (Chang et al., 2016), and dorsolateral frontal region 

(Sampedro et al., 2015; Fan et al 2010). The left side region of the dorsolateral region was 

found to show increased cortical thickening compared to the right, as indicated by Fan et al. 

(2010). Several studies did not identify an effect of APOE ε4 on either the frontal lobe size, or 

on the side of the caudal and rostral middle, superior, inferior, and orbitofrontal regions. There 

is evidence of the lack of an association between APOE ε4 and frontal lobe atrophy, and several 

of its regions i.e. right superior frontal gyrus, the lateral and medial frontal region. 

Nevertheless, an association was found between APOE ε4 and reduced GMv in the inferior 

frontal lobe (Chen et al 2012), and the dorsolateral frontal region (Sampedro et al., (2015). 

Another study postulated that there was no association between APOE ε4 and cortical thinning 

of the inferior frontal cortex (Sabuncu et al., 2012).  

Moderate evidence shows reduced middle frontal gyrus size among APOE ε4 carriers (strength 

of conclusion 2). Some evidence showed cortical thinning in the lateral frontal, left rostral 

midfrontal, right caudal midfrontal, and superior frontal gyrus in APOE ε4 carriers (strength of 

conclusion 3). Additionally, there is some evidence of increased cortical thickening of the lateral 

medial orbitofrontal cortical region (strength of conclusion 3). Moderate evidence showed that 

there is no APOE ε4 effect on the frontal lobe (strength of conclusion 2), while there is some 

evidence on the lack of influence of APOE ε4 on specific regions of the frontal lobe, specifically 

the caudal and rostral middle, superior, inferior, and orbitofrontal regions (strength of 

conclusion 3). There is moderate evidence of the lack of association between APOE ε4 and the 

frontal lobe (strength of conclusion 2).  
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3.4.2 Parietal lobe  

From the studies, APOE ε4 carriers were found to demonstrate cortical thinning in the medial, 

lateral parietal, inferior parietal, precuneus, left parietal gyrus, superior parietal gyrus, angular 

gyrus, and the right hemisphere of the parietal lobe. Contrarily, APOE ε4 carriers were reported 

in other studies to demonstrated increased cortical thickness in the precuneus, inferior parietal 

region, and the right parietal regions. Although there is contradictory evidence regarding the 

direction of volumetric change in the parietal lobe in APOE ε4 carriers, its regions such as the 

right angular gyrus and precuneus were found to be reduced. Furthermore, there is conflicting 

evidence regarding the association between APOE ε4 and parietal atrophy; however some 

reports show association between APOE ε4 and the inferior and superior parietal cortices. 

There is abundant evidence pointing to an association between APOE ε4 status and increased 

rates of cortical thinning in the precuneus among MCI patients. Contrarily, there was a report of 

an absence of a significant association between APOE ε4 and the size of the inferior parietal 

cortex and sulcus (Sabuncu et al., 2012). There are conflicting evidence regarding the effect of 

APOE ε4 on the parietal lobe cortical region. 

In conclusion, there is evidence that APOE ε4 carriers show cortical thinning in the medial 

lateral parietal and left parietal gyrus (strength of conclusion 3). There is moderate evidence 

that APOE ε4 carriers demonstrate cortical thinning in the superior parietal gyrus (strength of 

conclusion 2). There is moderate evidence that the cortical thickness of the precuneus changes 

in APOE ε4 carriers (strength of conclusion 2). However, inconclusive evidence exists regarding 

the direction of change of cortical thickness in the precuneus, and inferior parietal region in 

APOE ε4 carriers (strength of conclusion 4). There is moderate evidence of GM changes in the 

parietal lobe in APOE ε4 carriers (strength of conclusion 2). There is moderate evidence that 

GMv in the precuneus is reduced in APOE ε4 carriers (strength of conclusion 2).  

 

 

3.4.3 Temporal lobe 

3.4.3.1 Hippocampus 

Several studies consistently reported that APOE ε4 carriers exhibited decreased hippocampal 

GMv or cortical thinning and/ or observed association between APOE ε4 and reduced 

hippocampal GMv. An interesting point is that apart from these studies engaging older adults 

the majority of these studies also involved MCI and/ or AD patients with or without healthy 
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controls (HCs). Several studies did not find any effect of APOE ε4 on reduced hippocampal GMv 

or size reduction rate. However, there is evidence of increased APOE ε4 dose effects on 

hippocampal atrophy. Several studies did not find an association between APOE ε4 dose effect 

and reduced hippocampal GMv or cortical thinning measurements. However a study (Kerchner 

et al., 2014) found an association between APOE ε4 dose effect on cortical thinning of the 

hippocampal subregions. 

In conclusion, moderate evidence shows that the hippocampal volume is not only reduced in 

APOE ε4 carriers but it is also associated with APOE ε4 (strength of conclusion 2). Furthermore, 

there is moderate evidence of reduced cortical thickness or GMv of some hippocampal 

subfields (CA1-3, dentate gyrus, and subiculum) (strength of conclusion 2). Some evidence 

shows that APOE ε4 dose effect is associated with cortical thinning of the hippocampal 

subregions (strength of conclusion 3).Moderate evidence shows that APOE ε4 has no effect on 

hippocampal atrophy or rate of atrophy (strength of conclusion 2). However there is moderate 

evidence that increased APOE ε4 dose effects is observed on hippocampal atrophy (strength of 

conclusion 2). Further, moderate evidence shows the lack of association between APOE ε4 dose 

effect and hippocampal atrophy or volume (strength of conclusion 2). There is moderate 

evidence of decreased cortical thickness in the hippocampal subregions (strength of conclusion 

2). There is evidence to show that APOE ε4 exerts no significant effect on hippocampal 

thickness (strength of conclusion 3). 

 

3.4.3.2 Amygdala 

Several studies reported consistent reduction of volumetric measures, or atrophy, and 

increased atrophy rate of the amygdala in APOE ε4 carriers. These studies suggest age-related 

atrophy of the amygdala similar to what was observed in the hippocampus. There are 

conflicting reports regarding the effect of APOE ε4 on amygdala volume. Furthermore, reports 

on amygdala asymmetry in APOE ε4 carriers are conflicting.  

In conclusion, there is moderate evidence of reduced amygdala volumes in older individuals 

with MCI and AD compared to HCs (strength of conclusion 2). However, there is inconclusive 

evidence regarding the effect of APOE ε4 on amygdala volumes or its atrophy, and symmetrical 

differences in demented and non-demented older adults (strength of conclusion 4). 

 

 

3.4.3.3 Entorhinal Cortex 
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Consistently, APOE ε4 carriers were found to exhibit cortical thinning (or reduced volume) in 

the entorhinal cortex. However, one study found the opposite which was observed in younger 

participants (DiBattista et al., 2014).  Furthermore, reports of effect or an association between 

APOE ε4 and entorhinal cortical atrophy/thinning or its rate of reduction are conflicting. 

Interestingly, a single study observed an association between APOE ε4 and increased entorhinal 

cortical thickening among those with early MCI and HCs (Li et al., 2017).  

In conclusion, moderate evidence shows that APOE ε4 carriers demonstrate cortical thinning in 

the entorhinal cortex (strength of conclusion 2). There is indistinct evidence regarding the 

effect of APOE ε4 and likewise the association between APOE ε4 and entorhinal size reduction 

(strength of conclusion 4).  

 

3.4.3.4 Parahippocampal gyrus 

Parahippocampal gyrus was found to demonstrate decreased cortical thickening or increased 

atrophy or rate of reduction among APOE ε4 carriers who were within the older age bracket. No 

evidence of APOE ε4 effect was observed on the parahippocampal gyrus. There is strong 

evidence to support that APOE ε4 carrier status is associated with reduced GMv (or thickness) 

or increased rate of atrophy in the parahippocampal gyrus. Interestingly, one study found an 

association between APOE ε4 and increased cortical thickening in the parahippocampal gyrus in 

healthy participants and those with early MCI. 

In conclusion, moderate evidence shows that APOE ε4 carriers demonstrate reduced cortical 

thickening, increased atrophy, or increased rate of atrophy in the parahippocampal gyrus 

(strength of conclusion 2). Further, moderate evidence shows no APOE ε4 effect on 

parahippocampal gyrus (strength of conclusion 2). Additionally, moderate evidence shows that 

APOE ε4 is associated with reduced volume and increased rate of atrophy of the 

parahippocampal gyrus (strength of conclusion 2).  

 

3.4.3.5 Other temporal lobe regions of interest 

An interesting point to highlight is the report of increased cortical thickness in APOE ε2 carriers 

relative to APOE ε4 carriers (Konishi et al., 2016; Groot et al., 2016). This suggests that APOE ε2 

may offer some protective role against dementia in both young adults older age group.  

In conclusion, from Table 2, there is reasonable evidence that APOE ε4 carriers demonstrate 

reduced GMv in the middle temporal lobe, temporal pole, and in general, the whole temporal 

lobe (strength of conclusion 2). Further, some evidence shows that APOE ε4 carriers 
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demonstrate reduced cortical thinning in the middle temporal gyrus, and medial and temporal 

regions; and GMv reduction or rate of reduction in the fusiform, temporoparietal and 

occipitotemporal regions (strength of conclusion 3). Conversely, some evidence shows that 

male APOE ε4 carriers demonstrate increased cortical thickening in the temporoparietal regions 

(strength of conclusion 3).  Furthermore, there is moderate evidence that APOE ε4 is associated 

with increased rate of cortical thinning in temporoparietal cortex, and that APOE ε4 does not 

exert an effect on temporal lobe volume (strength of conclusion 2). There is also some evidence 

that APOE ε4 is associated with lower cortical thickening of the temporal lobe cortex and 

reduced GMv in the fusiform gyrus and temporal pole cortex (strength of conclusion 3).  

 

3.4.4 Occipital lobe 

APOE ε4 carriers were reported to demonstrate increased GMv in the left middle occipital 

cortex in a dose-dependent manner, with evidence of increased rate of atrophy in bilateral 

lingual gyri in APOE ε4 carriers. Increased cortical thickening was found in the occipital region, 

and in the right hemisphere in the occipital region specifically in male APOE ε4 carriers. On the 

other hand, the occipital region was reported to demonstrate cortical thinning in APOE ε4 

carriers. One study found no association between APOE ε4 and atrophy of the occipital lobe 

(Doody et al., 2000). A single study found an association between APOE ε4 and decreased 

volume of right lingual gyrus (Tosun et al., 2010), and another found an association between 

APOE ε4 and lower volumes of the left cuneus (Yokoyama et al., 2015). 

In conclusion, although there is evidence of increased GMv or cortical thickness in some cortical 

regions of the occipital lobe in APOE ε4 carriers, only the bilateral lingual gyri were found to 

demonstrate atrophy APOE ε4 carriers (strength of conclusion 3). This is reflected in the 

differences in the association between APOE ε4 and occipital lobe or its regions. 

 

3.4.5 Other cortical gray matter regions 

In conclusion, based on the evidence presented in Table 2, it is clear that there is some 

evidence that APOE ε4 carriers showed decreased GMv in the insula, and several regions of the 

cingulate cortex (strength of conclusion 3). Further, some evidence shows an association 

between APOE ε4 and reduced GMv in the anterior cingulate, cerebral cortex; and between 

APOE ε4 and increased cortical thickness in the right caudal anterior cingulate cortex (strength 

of conclusion 3). Also, there is some evidence that APOE ε4 has no effect on the cortical 

thickness of bilateral cingulate cortices in AD patients (strength of conclusion 3). However, 

there is some evidence of additive effect of APOE ε4 on reduced GMv in the right cerebellar 
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crus (strength of conclusion 3). There is moderate evidence of reduced GMv and lower cortical 

thickening in the posterior cingulate cortex (PCC) in APOE ε4 carriers (strength of conclusion 2). 

There is some evidence that APOE ε4 exerts an effect on cerebral cortex atrophy (strength of 

conclusion 3). However there is lack of association between APOE ε4 and cerebral volume 

(strength of conclusion 2), and cerebellar GMv reduction (strength of conclusion 3).  

 

3.4.6 Other subcortical gray matter regions 

In summary, based on the findings shown in Table 2, APOE ε4 may have minimal to no effect on 

the size of the thalamus from young to middle age, while in older adults, it may exert more 

negative effect (strength of conclusion 3). Further, some evidence shows that older adult APOE 

ε4 carriers with MCI exhibit increased GM atrophy of the thalamus (strength of conclusion 3). 

There is some evidence of increased rate of subcortical atrophy of the putamen and loss of GM 

in the right caudate nucleus in APOE V4 carriers (strength of conclusion 3). Inconclusive 

evidence exists regarding the association between APOE V4 carriers and basal ganglia GMv 

(strength of conclusion 4). Some evidence shows subcortical atrophy in the accumbens, right 

ventral striatum and sulcal widening among APOE ε4 carriers (strength of conclusion 3).  
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4.0 Discussion 

Several neuroplastic changes were found to occur not only in cortical areas of GM, but several 

subcortical regions in individuals carrying the APOE ε4 allele relative to noncarriers. These 

changes have often manifested as reduced GMvs or cortical thinning in both cortical and 

subcortical structures. Patterns of GM thinning is thought to be reflective of synaptic pruning 

size alterations and number of glia or neuronal size (Huttenlocher, 1979; Cotter et al., 2002). 

GMv reduction in the middle frontal gyrus may provide better insight regarding the underlying 

pathophysiological changes that occur in APOE ε4 carriers, compared to changes in the right 

lateral orbitofrontal cortex or lateral prefrontal cortex. MRI studies reveal that to some extent, 

the cortical thinning in the frontal lobe subcortical structures i.e. the lateral frontal, left rostral 

midfrontal, right caudal midfrontal, and superior frontal gyrus; and increased cortical thickening 

in the lateral medial orbitofrontal cortical region in APOE ε4 carriers may be of clinical 

significance. Overall, it appears that the cortical thickness measurements of the frontal lobe 

subcortical structures may be able to elicit more neuroplastic changes compared to GMv 

measurements. 

Decreased volumes in specific parietal lobe subcortical structures i.e. right angular gyrus, may 

provide valuable details about structural changes in APOE ε4 carriers. We noted that the 

cortical thinning in the superior parietal gyrus appear to better reflect the effect of APOE carrier 

status with neurodegeneration. The NIA-AA guidelines recommend that the presence of cortical 

thinning or GMv loss in the lateral and medial parietal gyri is a marker of AD-pathophysiology 

(Sperling et al., 2011). Nevertheless, we did find strong evidence to support medial and lateral 

parietal lobe atrophy in the APOE carriers. In fact, Mattson et al (2018) detected increased 

cortical thickness of these regions among the APOE positive carriers as compared to non-

carriers. Similar findings have been noted by Chételat et al. (2010) and Johnson et al.,2014, 

whereby amyloid positive individuals demonstrated increased GMv in the temporal and lateral 

parietal regions, which was postulated to be due to brain swelling associated with glial 

activation in preclinical AD stages (Chételat et al., 2010; Johnson,2014). There is consistent 

reports of precuneal GMv reduction and its association with APOE ε4. The precuneus together 

with the PCC has been the main focus of several studies investigating cognitively normal 

individuals and/or AD because it is recognized as one of the key regions that demonstrates  

cortical thinning (Lehmann et al., 2010), hypometabolism on 18F-fluorodeoxyglucose (FDG)–PET 

(Minoshima et al., 1997), lower levels of  N-acetyl aspartate/creatine, elevated myoinositol/Cr 

(Voevodskaya et al., 2016; Suri et al., 2017), and histopathologic changes (Braak and Braak, 
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1991) in the early course of AD. This may suggest that precuneal GM volumetry may better 

provide insight on neuronal injury compared to cortical thickness measures. 

There is strong evidence showing that APOE ε4 carriers demonstrate reduced cortical 

thickening or increased GMv reduction in medial temporal lobe regions (hippocampus, 

amygdala, entorhinal cortex, and parahippocampal gyrus) widely known to play significant roles 

in memory and implicated in neural correlates of AD.  An important highlight to the reduction 

of cortical thickening in the hippocampus is the involvement of its subfields (CA1-3, dentate 

gyrus, and subiculum) which appear to be largely driven by old age. There are proponents of 

the hippocampal subfield volumetric measures in place of the traditional whole hippocampal 

volumetry as AD biomarker (Maruszak and Thuret, 2014; La Joie et al., 2013). This stems from 

evidence of differences in vulnerability of the hippocampal subfields to AD neuropathology 

(Braak and Braak, 1991; Braak and Braak, 1993). The findings on the effect and association 

between APOE ε4 and amygdala, entorhinal cortex, and parahippocampal gyrus is mixed, 

suggesting their limitation as potential AD biomarkers.  

The occipital lobe is the least studied, possibly due to the reason that visual symptoms are 

uncommon and that this region is not usually affected until relatively late in the neocortical 

stages of AD (Smith et al. 2001). From the findings, it seems plausible to suggest that the whole 

occipital lobe may better provide insight regarding structural changes among APOE ε4 carriers 

compared to its subcortical regions. The PCC may be an important structure to earmark for 

analysis during the pathophysiological process of AD or in healthy individuals with APOE ε4.  

To put these results into a broad perspective, these findings expand our knowledge that apart 

from cortical structures widely touted as being influenced by APOE ε4, subcortical structures 

especially that of the medial temporal lobe are also vulnerable and influenced to a large extent 

by advanced age, and APOE ε4 carriership.  

 

4.1 Strengths and Limitations.  

Compared with previous systematic reviews and meta-analysis (Liu et al., 2015; Cherbuin et al., 

2007), the current study did not restrict the inclusion criteria to the number of sample sizes, 

age of participants, and regional structures investigated in each study. Further, a level of 

evidence B was assigned because comparative studies including patient-control studies and 

cohort studies were included. However, the studies identified showed great variation in a 

number of variables, i.e. the magnetic field strength, MRI parameters, measurement and 

analytic methods, region(s) of interest studied, disproportionate distribution of sample size and 

gender, age range or average age, and differences in measuring tools applied for determining 

cognitive status of participants. It is possible that these variations to some extent may have led 
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to a few of the discordant findings reported. Nonetheless, the results are striking in that there is 

much consistency in structural alterations in APOE ε4 carriers.  

 

5.0 Conclusions 

The present data supports analyzing the hippocampal GM volume in particular as part of the 

diagnostic process in healthy individuals with APOE ε4 and those at risk of developing AD. 

Further the study supports the use of hippocampal atrophy as an invaluable AD biomarker that 

can contribute to tracking progressive structural brain alterations different age group who are 

APOE ε4 carriers. However, further longitudinal studies may be necessary to confirm whether a 

combination of both hippocampal atrophy and APOE ε4 will be capable of predicting the 

development of AD in healthy individuals.  
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